

Lecture Notes in Artificial Intelligence 5254
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Yoav Freund László Györfi
György Turán Thomas Zeugmann (Eds.)

Algorithmic
Learning Theory

19th International Conference, ALT 2008
Budapest, Hungary, October 13-16, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Yoav Freund
University of California at San Diego, La Jolla, USA
E-mail: yfreund@ucsd.edu

László Györfi
Budapest University of Technology and Economics, Hungary
E-mail: gyorfi@szit.bme.hu

György Turán
University of Illinois, Chicago, USA
and University of Szeged, Hungary
E-mail: gyt@uic.edu

Thomas Zeugmann
Hokkaido University, Sapporo, Japan
E-mail: thomas@ist.hokudai.ac.jp

Library of Congress Control Number: 2008936817

CR Subject Classification (1998): I.2.6, F.4, I.7, K.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-87986-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87986-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12533824 06/3180 5 4 3 2 1 0

Preface

This volume contains papers presented at the 19th International Conference on
Algorithmic Learning Theory (ALT 2008), which was held in Budapest, Hungary
during October 13–16, 2008. The conference was co-located with the 11th In-
ternational Conference on Discovery Science (DS 2008). The technical program
of ALT 2008 contained 31 papers selected from 46 submissions, and 5 invited
talks. The invited talks were presented in joint sessions of both conferences.

ALT 2008 was the 19th in the ALT conference series, established in Japan
in 1990. The series Analogical and Inductive Inference is a predecessor of this
series: it was held in 1986, 1989 and 1992, co-located with ALT in 1994, and sub-
sequently merged with ALT. ALT maintains its strong connections to Japan, but
has also been held in other countries, such as Australia, Germany, Italy, Singa-
pore, Spain and the USA. The ALT conference series is supervised by its Steering
Committee: Naoki Abe (IBM T.J. Watson Research Center, Yorktown, USA),
Shai Ben-David (University of Waterloo, Canada), Yoav Freund (University of
San Diego, USA), Steffen Lange (Publicity Chair) (FH Darmstadt, Germany),
Phil Long (Google, Mountain View, USA), Akira Maruoka (Ishinomaki Senshu
University, Japan), Takeshi Shinonhara (Kyushu Institute of Technology, Iizuka,
Japan), Frank Stephan (National University of Singapore, Republic of Singapore),
Einoshin Suzuki (Kyushu University, Fukuoka, Japan), György Turán (University
of Illinois at Chicago, USA and University of Szeged, Hungary), Eiji Takimoto
(Tohoku University, Japan) Osamu Watanabe (Tokyo University of Technology,
Japan) and Thomas Zeugmann (Hokkaido University, Japan; Chair). The ALT
Web pages and submission system have been set up (together with Frank Balbach
and Jan Poland) and are maintained by Thomas Zeugmann.

The history of conferences in Hungary discussing machine learning goes back,
at least, to 1962. The Proceedings of the Colloquium on the Foundations of Math-
ematics, Mathematical Machines and Their Applications (held in Tihany, Hun-
gary during September 11–15, 1962), edited by László Kalmár and published by
Akadémiai Kiadó in 1965, contains a paper by S. Watanabe on ‘A Mathematical
Explication of Inductive Inference,’ and has a section on artificial intelligence
and machine learning, containing a paper by V. M. Glushkov and A. A. Stogny
‘On a Self-Teaching Algorithmic System.’

The present volume contains the texts of the 31 papers presented at ALT
2008, divided into groups of papers on statistical learning, probability and stochas-
tic processes, boosting and experts, active and query learning and inductive
inference. The volume also contains abstracts of the invited talks:

– Imre Csiszár (Hungarian Academy of Sciences, Budapest, Hungary):
On Iterative Algorithms with an Information Geometry Background

– Daniel Keim (Universität Konstanz, Germany): Visual Analytics: Combining
Automated Discovery with Interactive Visualizations

VI Preface

– László Lovász (Eötvös Loránd University, Budapest, Hungary): Some Math-
ematics Behind Graph Property Testing

– Heikki Mannila (HIIT, Helsinki University of Technology and University of
Helsinki, Finland): Finding Total and Partial Orders from Data for Seriation

– Tom Mitchell (Carnegie Mellon University, Pittsburgh, PA, USA): Compu-
tational Models of Neural Representations in the Human Brain

Papers presented at DS 2008 are contained in the DS 2008 proceedings.
The E. Mark Gold Award is presented annually at the ALT conferences since

1999, for the most outstanding student contribution. This year, the award was
given to Mikhail Dashevskiy for his paper “Aggregating Algorithm for a Space
of Analytic Functions.”

We would like to thank the many people and institutions who contributed
to the success of the conference. Thanks to the authors of the papers for their
submissions, and to the invited speakers for presenting exciting overviews of im-
portant recent research developments. We are very grateful to the sponsors of
the conference: Aegon Hungary, Fraunhofer IAIS (Sankt Augustin, Germany),
Hokkaido University, the Institute of Informatics of the University of Szeged
(Hungary), Kyushu University and Tohoku University for their generous finan-
cial support.

We are grateful to the members of the Program Committee of ALT 2008.
Their hard work in reviewing and discussing the papers made sure that we had
an interesting and strong program. We also thank the subreferees assisting the
Program Committee. Special thanks go to Local Chair János Csirik (University
of Szeged, Hungary), and to Gusztáv Hencsey (Scope Meetings Ltd., Budapest)
for the local organization of the conference. We are also grateful to Akira Ishino
and Ayumi Shinohara from Tohoku University for their support in preparing
ALT/DS 2008. Furthermore, we heartily thank Einoshin Suzuki from Kyushu
University for his effort of making travel arrangements for the invited and tutorial
speakers. We would like to thank the Discovery Science conference for its ongo-
ing collaboration with ALT, which makes it possible to provide a well-rounded
picture of the current theoretical and practical advances in machine learning
and the related areas. In particular, we are grateful to Conference Chair Tamás
Horváth (University of Bonn and Fraunhofer IAIS, Sankt Augustin, Germany)
and Program Committee Chairs Jean-François Boulicaut (INSA Lyon, France)
and Michael Berthold (Universität Konstanz, Germany) for their cooperation.
Last but not least, we thank Springer for their excellent support in preparing
and publishing this volume of the Lecture Notes in Artificial Intelligence series.

August 2008 Yoav Freund
László Györfi

György Turán
Thomas Zeugmann

Organization

Conference Chair

László Györfi Budapest University of Technology and
Economics, Hungary

Program Committee

Naoki Abe IBM T.J. Watson Research Center, Yorktown
Marta Arias Universitat Politècnica de Catalunya,

Barcelona
Nicolò Cesa-Bianchi Università degli Studi di Milano
Koby Crammer University of Pennsylvania, Philadelphia
Eyal Even-Dar Google Inc., New York
Yoav Freund University of California, San Diego (Chair)
Ricard Gavaldà Universitat Politècnica de Catalunya,

Barcelona
Mark Herbster University College London
Kouichi Hirata Kyushu Institute of Technology, Iizuka
Marcus Hutter Australian National University, Canberra, and

NICTA
Efim Kinber Sacred Heart University, Fairfield
Gábor Lugosi Pompeu Fabra University, Barcelona
Ulrike von Luxburg MPI for Biological Cybernetics, Tübingen
Partha Niyogi University of Chicago
Csaba Szepesvári University of Alberta, Edmonton
György Turán University of Illinois at Chicago and

University of Szeged (Chair)
Nicolas Vayatis Ecole Normale Supérieure de Cachan
Vladimir Vovk Royal Holloway, University of London
Manfred K. Warmuth University of California, Santa Cruz
Akihiro Yamamoto Kyoto University
Sandra Zilles University of Alberta, Edmonton

Local Arrangements

János Csirik University of Szeged and RGAI Szeged,
Hungary

VIII Organization

Subreferees

Yohji Akama
Jakob Abernethy
Alberto Bertoni
Giovanni Cavallanti
Kamalika Chaudhuri
Alexey Chernov
Matthew de Brecht
Koichiro Doi
Evan Ettinger
Thomas Gaertner
Karen Glocer
Eiju Hirowatari
Maya Hristakeva
Tamás Horváth
Daniel Hsu
Mayank Kabra

Yuri Kalnishkan
Kevin T. Kelly
Steffen Lange
Guy Lever
Aurelie C. Lozano
Markus Maier
Tetsuhiro Miyahara
Jan Poland
Scott Sanner
Hiroshi Sakamoto
Nathan Srebro
Shinichi Shimozono
Takeshi Shinohara
Rajmonda Sulo
Jie Yang

Sponsoring Institutions

Aegon Hungary
Fraunhofer IAIS, Sankt Augustin, Germany
Institute of Informatics, University of Szeged, Hungary
Department of System Information Science, Tohoku University
Department of Informatics, Kyushu University
Division of Computer Science, Hokkaido University

Erratum

Hutter, M., Servedio, R.A., Takimoto, E. (Eds.) ALT 2007. LNCS (LNAI), vol.
4754. Springer, Heidelberg (2007)

By mistake the following text was not included in the frontmatter of the ALT
2007 proceedings volume LNAI 4754.

Conference Chair

Eiji Takimoto Tohoku University, Japan

Program Committee

Marcus Hutter Australian National University, Australia
(Chair)

Rocco Servedio Columbia University, USA (Chair)
Marta Arias Columbia University, USA
Nader Bshouty Technion, Israel
Sanjoy Dasgupta University of California, San Diego, USA
Ran El-Yaniv Technion, Israel
Claudio Gentile Università dell’Insubria, Italy
Lisa Hellerstein Polytechnic University, USA
Sanjay Jain National University of Singapore, Singapore
Yuri Kalnishkan Royal Holloway University of London, UK
Jyrki Kivinen University of Helsinki, Finland
Adam Klivans University of Texas, Austin, USA
Phil Long Google, USA
Jan Poland Hokkaido University, Japan
Daniil Ryabko IDSIA, Switzerland
Frank Stephan National University of Singapore, Singapore
Christino Tamon Clarkson University, USA
Vladimir Vovk Royal Holloway University of London, UK
Osamu Watanabe Tokyo Institute of Technology, Japan
Bob Williamson Australian National University, Australia

Local Arrangements

Akira Ishino Tohoku University, Japan

X Organization

Subreferees

Douglas Aberdeen
Ron Begleiter
John Case
Jiang Chen
Alexey Chernov
Alex Clarck
Yoav Freund
Alex Fukunaga
Bill Gasarch
Ricard Gavaldá
Paul Goldberg
Simon Guenter
Jeff C. Jackson
Efim Kinber
Gregory Kucherov
Steffen Lange

Shane Legg
Shie Mannor
Hanna Mazzawi
Dmitry Pechyony
Jim Royer
Tamer Salman
Shai Shalev-Shwartz
Takeshi Shinohara
Etsuji Tomita
György Turán
Rolf Wiehagen
Yair Wiener
Ryo Yoshinaka
Sandra Zilles

Sponsoring Institutions

Air Force Office of Scientific Research (AFOSR)
Asian Office of Aerospace Research and Development (AOARD)
Computation, IEICE of Japan
Google
GSIS, Tohoku University
New Horizons in Computing (NHC)
RIEC, Tohoku University
Semi-Structured Data Mining Project
Division of Computer Science, Hokkaido University
Institute for Theoretical Computer Science, University at Lübeck

Table of Contents

Invited Papers

On Iterative Algorithms with an Information Geometry Background 1
Imre Csiszár

Visual Analytics: Combining Automated Discovery with Interactive
Visualizations . 2

Daniel A. Keim, Florian Mansmann, Daniela Oelke, and
Hartmut Ziegler

Some Mathematics behind Graph Property Testing 3
László Lovász

Finding Total and Partial Orders from Data for Seriation 4
Heikki Mannila

Computational Models of Neural Representations in the Human
Brain (Extended Abstract) . 5

Tom M. Mitchell

Regular Contributions

Statistical Learning

Generalization Bounds for Some Ordinal Regression Algorithms 7
Shivani Agarwal

Approximation of the Optimal ROC Curve and a Tree-Based Ranking
Algorithm . 22

Stéphan Clémençon and Nicolas Vayatis

Sample Selection Bias Correction Theory . 38
Corinna Cortes, Mehryar Mohri, Michael Riley, and
Afshin Rostamizadeh

Exploiting Cluster-Structure to Predict the Labeling of a Graph 54
Mark Herbster

A Uniform Lower Error Bound for Half-Space Learning 70
Andreas Maurer and Massimiliano Pontil

Generalization Bounds for K-Dimensional Coding Schemes in Hilbert
Spaces . 79

Andreas Maurer and Massimiliano Pontil

XII Table of Contents

Learning and Generalization with the Information Bottleneck 92
Ohad Shamir, Sivan Sabato, and Naftali Tishby

Probability and Stochastic Processes

Growth Optimal Investment with Transaction Costs 108
László Györfi and István Vajda

Online Regret Bounds for Markov Decision Processes with Deterministic
Transitions . 123

Ronald Ortner

On-Line Probability, Complexity and Randomness 138
Alexey Chernov, Alexander Shen, Nikolai Vereshchagin, and
Vladimir Vovk

Prequential Randomness . 154
Vladimir Vovk and Alexander Shen

Some Sufficient Conditions on an Arbitrary Class of Stochastic
Processes for the Existence of a Predictor . 169

Daniil Ryabko

Nonparametric Independence Tests: Space Partitioning and Kernel
Approaches . 183

Arthur Gretton and László Györfi

Boosting and Experts

Supermartingales in Prediction with Expert Advice 199
Alexey Chernov, Yuri Kalnishkan, Fedor Zhdanov, and
Vladimir Vovk

Aggregating Algorithm for a Space of Analytic Functions 214
Mikhail Dashevskiy

Smooth Boosting for Margin-Based Ranking . 227
Jun-ichi Moribe, Kohei Hatano, Eiji Takimoto, and Masayuki Takeda

Learning with Continuous Experts Using Drifting Games 240
Indraneel Mukherjee and Robert E. Schapire

Entropy Regularized LPBoost . 256
Manfred K. Warmuth, Karen A. Glocer, and S.V.N. Vishwanathan

Active Learning and Queries

Optimally Learning Social Networks with Activations and
Suppressions . 272

Dana Angluin, James Aspnes, and Lev Reyzin

Active Learning in Multi-armed Bandits . 287
András Antos, Varun Grover, and Csaba Szepesvári

Table of Contents XIII

Query Learning and Certificates in Lattices . 303
M. Arias and J.L. Balcázar

Clustering with Interactive Feedback . 316
Maria-Florina Balcan and Avrim Blum

Active Learning of Group-Structured Environments 329
Gábor Bartók, Csaba Szepesvári, and Sandra Zilles

Finding the Rare Cube . 344
Shlomo Hoory and Oded Margalit

Inductive Inference

Iterative Learning of Simple External Contextual Languages 359
Leonor Becerra-Bonache, John Case, Sanjay Jain, and
Frank Stephan

Topological Properties of Concept Spaces . 374
Matthew de Brecht and Akihiro Yamamoto

Dynamically Delayed Postdictive Completeness and Consistency in
Learning . 389

John Case and Timo Kötzing

Dynamic Modeling in Inductive Inference . 404
John Case and Timo Kötzing

Optimal Language Learning . 419
John Case and Samuel E. Moelius III

Numberings Optimal for Learning . 434
Sanjay Jain and Frank Stephan

Learning with Temporary Memory . 449
Steffen Lange, Samuel E. Moelius III, and Sandra Zilles

Erratum

Erratum: Constructing Multiclass Learners from Binary Learners: A
Simple Black-Box Analysis of the Generalization Errors 464

Jittat Fakcharoenphol and Boonserm Kijsirikul

Author Index . 467

On Iterative Algorithms with an Information

Geometry Background

Imre Csiszár

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
csiszar@renyi.hu

Abstract. Several extremum problems in Statistics and Artificial In-
telligence, e.g., likelihood maximization, are often solved by iterative
algorithms such as iterative scaling or the EM algorithm, admitting an
intuitive “geometric” interpretatation as iterated projections in the sense
of Kullback information divergence. Such iterative algorithms, includ-
ing those using Bregman rather than Kullback divergences, will be sur-
veyed. It will be hinted to that the celebrated belief propagation (or
sum-product) algorithm may also admit a similar interpretation.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Visual Analytics: Combining Automated

Discovery with Interactive Visualizations�

Daniel A. Keim, Florian Mansmann, Daniela Oelke, and Hartmut Ziegler

University of Konstanz, Germany
first.lastname@uni-konstanz.de
http://infovis.uni-konstanz.de

Abstract. In numerous application areas fast growing data sets develop
with ever higher complexity and dynamics. A central challenge is to fil-
ter the substantial information and to communicate it to humans in an
appropriate way. Approaches, which work either on a purely analytical
or on a purely visual level, do not sufficiently help due to the dynamics
and complexity of the underlying processes or due to a situation with
intelligent opponents. Only a combination of data analysis and visualiza-
tion techniques make an effective access to the otherwise unmanageably
complex data sets possible.

Visual analysis techniques extend the perceptual and cognitive abili-
ties of humans with automatic data analysis techniques, and help to gain
insights for optimizing and steering complicated processes. In the paper,
we introduce the basic idea of Visual Analytics, explain how automated
discovery and visual analysis methods can be combined, discuss the main
challenges of Visual Analytics, and show that combining automatic and
visual analysis is the only chance to capture the complex, changing char-
acteristics of the data. To further explain the Visual Analytics process,
we provide examples from the area of document analysis.

� The full version of this paper is published in the Proceedings of the 11th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 5255.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://infovis.uni-konstanz.de

Some Mathematics behind Graph Property

Testing

László Lovász

Department of Computer Science, Eötvös Loránd University, Budapest, Hungary
lovasz@cs.elte.hu

Abstract. Graph property testing is the third reincarnation of the same
general question, after statistics and learning theory. In its simplest form,
we have a huge graph (we don’t even know its size), and we draw a sample
of the node set of bounded size. What properties of the graph can be
deduced from this sample?

The graph property testing model was first introduced by Goldreich,
Goldwasser and Ron (but related questions were considered before). In
the context of dense graphs, a very general result is due to Alon and
Shapira, who proved that every hereditary graph property is testable.

Using the theory of graph limits, Lovász and Szegedy defined an an-
alytic version of the (dense) graph property testing problem, which can
be formulated as studying an unknown 2-variable symmetric function
through sampling from its domain and studying the random graph ob-
tained when using the function values as edge probabilities. This analytic
version allows for simpler formulation of the problems, and leads to vari-
ous characterizations of testable properties. These results can be applied
to the original graph-theoretic property testing. In particular, they lead
to a new combinatorial characterization of testable graph properties.

We survey these results, along with analogous results for graphs with
bounded degree.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Finding Total and Partial Orders from Data for

Seriation�

Heikki Mannila

HIIT
Helsinki University of Technology and

University of Helsinki, Finland
heikki.mannila@tkk.fi

Abstract. Ordering and ranking items of different types (observations,
web pages, etc.) are important tasks in various applications, such as
query processing and scientific data mining. We consider different prob-
lems of inferring total or partial orders from data, with special emphasis
on applications to the seriation problem in paleontology. Seriation can be
viewed as the task of ordering rows of a 0-1 matrix so that certain condi-
tions hold. We review different approaches to this task, including spectral
ordering methods, techniques for finding partial orders, and probabilistic
models using MCMC methods.

Joint work with Antti Ukkonen, Aris Gionis, Mikael Fortelius, Kai
Puolamäki, and Jukka Jernvall.

� The full version of this paper is published in the Proceedings of the 11th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 5255.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, p. 4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computational Models of Neural

Representations in the Human Brain

(Extended Abstract)

Tom M. Mitchell

Carnegie Mellon University, Pittsburgh, PA 15213, USA
tom.mitchell@cmu.edu

http://www.cs.cmu.edu/∼tom

For many centuries scientists have wondered how the human brain represents
thoughts in terms of the underlying biology of neural activity. Philosophers,
linguists, cognitive scientists and others have proposed theories, for example
suggesting that the brain organizes conceptual information in hierarchies of con-
cepts, or that it instead represents different concepts in different local regions of
the cortex.

Over the past decade rapid progress has been made on the study of human
brain function, driven by the advent of modern brain imaging methods such as
functional Magnetic Resonance Imaging (fMRI), which is able to produce three
dimensional images of brain activity at a spatial resolution of approximately one
millimeter. Using fMRI we have spent several years exploring the question of
how the brain represents the meanings of invididual words in terms of patterns
of neural activity observed with fMRI. The talk accompanying this abstract will
present our results, and the use of machine learning methods to analyze this
data and to develop predictive computational models. In particular, we ([1],[2])
have explored the following questions:

– Can one observe differences in neural activity using fMRI, as people think
about different items such as “hammer” versus “house”? Many researchers
have now demonstrated that fMRI does indeed reveal differences in neural ac-
tivity due to considering different items. We present results [1] showing that
it is possible to train a machine learning classifier to discover the different
patterns of activity associated with different items, and to use this to classify
which of several items a person is considering, based on their neural activity.

– Are neural representations of concepts similar if the stimulus is a word, ver-
sus a line drawing of the object? We tested this question by asking whether
a machine learning classifier trained on fMRI data collected when a person
reads words, could successfully distinguish which item they were thinking
about when the stimuli were line drawings. The classifier performed nearly
as accurately classifying fMRI activity generated by line drawing stimuli as
by word stimuli, despite being trained on word stimuli. This result suggests
that the neural activity captured by the classifier reflects the semantics of
the item, and not simply some surface perceptual features associated with
the particular form of stimulus.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 5–6, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.cmu.edu/~tom

6 T.M. Mitchell

– Are neural representations similar across different people? We tested this
question by asking whether a machine learning classifier trained on fMRI
data collected from a group of people, could successfully distinguish which
item a new person was thinking about, despite the fact that the classifier had
never seen data from this new person. These experiments were performed
for stimuli corresponding to concrete nouns (i.e., nouns such as “bicycle”
and “tomato” which describe physical objects). We found the answer is yes,
although accuracies vary by person. This result suggests that despite the
fact that invididual people are clearly different, our brains use similar neural
encodings of semantics of concrete nouns.

– Can we discover underlying principles of neural representations sufficient
to develop a computational model that predicts neural representations for
arbitrary words? We recently developed a computational model that predicts
the neural representation for any concrete noun. While imperfect, this model
performs well on the 100 words for which we have data to test it. The model is
trained using a combination of fMRI data for dozens of words, plus data from
a trillion word text corpus that reflects the way in which people typically
use words in natural language. This model represents a new approach to
computational studies of neural representations in the human brain.

Acknowledgments. The research summarized here is the product of a large
team of collaborators, including Marcel Just, Andy Carlson, Kai-Min Chang,
Rebecca Hutchinson, Vicente Maleve, Rob Mason, Mark Palatucci, Francisco
Pereira, Indra Rustandi, Svetlana Shinkareva, Wei Wang and others. We are
grateful for support from the W.M. Keck foundation and the National Science
Foundation.

References

[1] Shinkareva, S., Mason, R., Malave, V., Wang, W., Mitchell, T., Just,
M.: Using fMRI Brain Activation to Identify Cognitive States Associated
with Perception of Tools and Dwellings. PLoS ONE 3(1), 1394 (2008),
doi:10.1371/journal.pone.0001394

[2] Mitchell, T., Shinkareva, S., Carlson, A., Chang, K., Malave, V., Mason, R., Just,
M.: Predicting Human Brain Activity Associated with the Meanings of Nouns.
Science 320, 1191 (2008), doi: 10.1126/science.1152876.

Generalization Bounds for Some Ordinal Regression
Algorithms

Shivani Agarwal

Massachusetts Institute of Technology, Cambridge MA 02139, USA
shivani@mit.edu

Abstract. The problem of ordinal regression, in which the goal is to learn a rule
to predict labels from a discrete but ordered set, has gained considerable atten-
tion in machine learning in recent years. We study generalization properties of
algorithms for this problem. We start with the most basic algorithms that work by
learning a real-valued function in a regression framework and then rounding off
a predicted real value to the closest discrete label; our most basic bounds for such
algorithms are derived by relating the ordinal regression error of the resulting
prediction rule to the regression error of the learned real-valued function. We end
with a margin-based bound for the state-of-the-art ordinal regression algorithm
of Chu & Keerthi (2007).

1 Introduction

In addition to the classical problems of classification and regression, several new types
of learning problems have emerged in recent years. Among these is the problem of
ordinal regression, in which the goal is to learn a rule to predict labels of an ordi-
nal scale, i.e., labels from a discrete but ordered set. Ordinal regression is common
in the social sciences where surveys frequently ask users to rate items on an ordi-
nal scale, and has been studied previously in the statistical literature [1]. Recent years
have seen a surge of interest in ordinal regression from a machine learning perspective
[2,3,4,5,6,7,8,9,10,11,12], partly due to the fact that it is a unique problem which shares
characteristics of many other learning problems such as classification, regression, and
ranking – and yet is distinct from each – but also due to the fact that ordinal regression
increasingly finds applications in diverse areas such as finance, medicine, information
retrieval, and user-preference modeling.

Although there has been considerable progress in developing learning algorithms for
ordinal regression in the last few years, in most cases, not much is known about the
theoretical properties of these algorithms: how well they generalize, and at what rate (if
at all) they converge to an optimal solution. In this paper, we begin an attempt to fill this
gap. Our focus is on the question of generalization properties of these algorithms.

1.1 Previous Results

In the ordinal regression problem, described in greater detail in Section 2, the learner
is given a sequence of labeled training examples S = ((x1, y1), . . . , (xm, ym)), the xi

being instances in some instance space X and the yi being labels in a discrete, ordered

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 7–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

8 S. Agarwal

set, which we take to be [r] = {1, . . . , r} for some r ∈ N, and the goal is to learn a rule
g : X→[r] that predicts accurately labels of future instances. The penalty incurred for
a wrong prediction is larger for predictions farther from the true label: in the setting we
consider, the penalty incurred by g on an example (x, y) is proportional to |g(x) − y|.

Barring some work on neural network models in the 1990s [13] (which was inspired
largely by the statistical models of [1]), among the earliest studies of ordinal regression
in machine learning was that of Herbrich et al. [2], in which a large-margin algorithm
similar to support vector machines (SVMs) was proposed. This work included a margin-
based generalization bound for the zero-training-error case1. However, the setting of [2]
differs from the setting described above, in that the error of a prediction rule is measured
in terms of pairs of examples for which the relative order between the predicted labels
differs from the relative order between the true labels; indeed, in their setting, it is
possible for a rule that predicts the wrong labels on two instances to incur no loss at
all, as long as the relative order of those labels is correct. In this sense, the problem
studied in [2] is more similar to some ranking problems than what has now come to be
commonly accepted as the problem of ordinal regression.

The years following [2] saw several developments in ordinal regression. Crammer &
Singer [14] proposed an algorithm for ordinal regression in the online learning model,
motivated by the perceptron algorithm for classification, and provided a mistake bound
for their algorithm. This was followed by an extension of their algorithm by Harrington
[7], in which an online approximation to the Bayes point was sought, as well as exten-
sions in [5] which included a multiplicative update algorithm. All of these came with
mistake bounds; indeed, it can safely be said that these online algorithms for ordinal
regression are among the better understood theoretically.

In the traditional offline (or ‘batch’) learning model, there have been four broad
approaches to developing ordinal regression algorithms. The first approach treats the
labels yi as real values, uses a standard regression algorithm to learn a real-valued func-
tion f : X→R, and then predicts the label of a new instance x by rounding the predicted
real value f(x) to the closest discrete label. This approach can be used with any regres-
sion learning algorithm, and was discussed specifically in the context of regression trees
by Kramer et al. [3]; Kramer et al. also discussed some simple methods to modify the
regression tree learning algorithm to directly predict labels for ordinal regression.

The second approach consists of reducing an ordinal regression problem to one or
more binary classification problems, which can then be solved using a standard binary
classification algorithm. For example, Frank & Hall [4] proposed a method for reducing
an r-label ordinal regression problem to a series of r−1 binary classification problems,
each of which could be solved using any classifier capable of producing probability
estimates; the method was somewhat ad-hoc as it required certain independence as-
sumptions in order to compute probabilities needed for making label predictions. More
recently, Cardoso & da Costa [11] have proposed an algorithm for transforming an ordi-
nal regression problem in a Euclidean space into a single binary classification problem
in a higher-dimensional space.

1 We note that the bound in [2] contains a mistake, although the mistake is easily corrected: the
article incorrectly claims that a sample of m independent instances gives m − 1 independent
pairs of instances; this can be corrected by replacing m − 1 in the bound with m/2.

Generalization Bounds for Some Ordinal Regression Algorithms 9

In the third approach, algorithms are designed to directly learn prediction rules for
ordinal regression; as in the case of [2] or [14], this usually consists of learning a real-
valued function f : X→R together with a set of thresholds b1 ≤ . . . ≤ br−1 ≤ br = ∞,
the resulting prediction rule being given by g(x) = minj∈{1,...,r}{j : f(x) < bj}.
Going back full circle to the large-margin framework used in [2], Shashua & Levin
[6] proposed two large-margin algorithms, also motivated by SVMs, to directly learn
prediction rules for ordinal regression; unlike [2], the problem setting in this case corre-
sponds to the setting described above, in which the error of a prediction rule is measured
in terms of the difference between the true and predicted labels. However, as pointed
out by Chu & Keerthi [10], one of the algorithms in [6] contains a fundamental flaw in
that it fails to guarantee the necessary inequalities among the thresholds; Chu & Keerthi
offer a modification that corrects this, as well as a second large-margin algorithm that
is among the current state of the art.

Finally, there has also been some work on Bayesian learning algorithms for ordinal
regression, such as that by Chu & Ghahramani [8].

Among all the (offline) algorithms discussed above, only two – the classification-
based algorithm of Cardoso & da Costa [11] and the large-margin algorithm of Shashua
& Levin [6] – have been accompanied by some form of generalization analysis; unfortu-
nately, in both cases, the analysis is either incorrect or incomplete. Cardoso & da Costa
(in an appendix of [11]) attempt to derive a margin-based bound for their algorithm by
applying a bound for binary classifiers; however it is not clear to what function class the
bound is applied, and on closer inspection it becomes clear that the analysis is, in fact,
incorrect. Shashua & Levin (in [15]) also attempt to derive a margin-based bound for
their algorithm; again, the quantities involved are not clearly defined, and furthermore
the analysis claims to bound the ‘probability that a test example will not be separated
correctly’ which, as we argue in Section 2, is not the natural quantity of interest in ordi-
nal regression, and so this analysis too appears, at best, to be incomplete. These failed
attempts – as well as the lack of any theoretical analysis for the other algorithms – all
point to the need for a more careful analysis of the generalization properties of ordinal
regression algorithms. This is what we aim to achieve in this paper.

1.2 Our Results

We formalize the mathematical setting involved in studying generalization properties
of ordinal regression algorithms, including clear definitions of the quantities involved
(Section 2), and then proceed to derive generalization bounds for some of these algo-
rithms. We start with the most basic algorithms that work by learning a real-valued
function in a regression framework and then rounding off a predicted real value to the
closest discrete label; we relate the ordinal regression error of the resulting prediction
rule to the regression error of the learned real-valued function, and use this to derive
some basic ‘black-box’ generalization bounds for such algorithms (Section 3). Next
we employ a direct stability analysis for such algorithms (Section 4); this gives better
bounds in some cases. We also investigate the use of stability analysis for more general
algorithms for ordinal regression, and outline some difficulties involved in achieving
this goal (Section 5). Finally, we derive a margin-based bound for the state-of-the-art
ordinal regression algorithm of Chu & Keerthi [10] (Section 6).

10 S. Agarwal

2 The Ordinal Regression Problem

The setting of the ordinal regression problem can be described as follows. There is an
instance space X from which instances are drawn, and a finite set of discrete labels
that have a total order relation among them; we take this set to be [r] = {1, . . . , r} for
some r ∈ N, with the usual ‘greater than’ order relation among the labels. The learner
is given a sequence of labeled training examples S = ((x1, y1), . . . , (xm, ym)) ∈ (X×
[r])m, and the goal is to learn a rule g : X→[r] that predicts accurately labels of future
instances. For example, consider a user-preference modeling task in which a user gives
ratings to the books she reads – ranging from 1 to 5 stars – and the goal is to predict her
ratings on new books. In this case the ratings can be viewed as a discrete set of labels,
but these labels clearly have an ordering among them, and so this is an instance of an
ordinal regression problem (with r = 5).

Ordinal regression shares properties of both classification and regression: as in (mul-
ticlass) classification, the goal is to assign one of r different labels to a new instance;
but as in regression, the labels are ordered, suggesting that predictions farther from the
true label should incur a greater penalty than predictions closer to the true label. Indeed,
if a book is rated by a user as having 5 stars, then a prediction of 4 stars would clearly
be preferable to a prediction of 1 star (and should therefore incur a smaller penalty). As
in classification and regression, it is generally assumed that all examples (x, y) (both
training examples and future, unseen examples) are drawn randomly and independently
according to some (unknown) distribution D on X × [r].

There are many ways to evaluate the quality of a prediction rule g : X→[r]; indeed,
some recent work has focused on comparing different evaluation criteria for ordinal re-
gression [12]. In applications where the relative ranking of instances is important, it may
be appropriate to consider the performance of g on pairs of examples (x, y), (x′, y′), and
count a mistake if the relative order of the predicted labels g(x), g(x′) differs from the
relative order of the true labels y, y′, i.e., if (y − y′)(g(x) − g(x′)) < 0. This leads to
the following ‘pair-wise’ error for evaluating g:

L
pairs
D (g) = E((x,y),(x′,y′))∼D×D

[
I{(y−y′)(g(x)−g(x′))<0}

]
, (1)

where Iφ denotes the indicator variable whose value is 1 if φ is true and 0 otherwise;
this is simply the probability that g incurs a mistake on a random pair of examples, each
drawn independently according to D. As discussed in Section 1, this is the evaluation
criterion used by Herbrich et al. [2]. This criterion focuses on the relative order of
instances in the ranking induced by g, and is similar to the criterion used in a form of
ranking problem termed r-partite ranking (see, for example, [16]).

In the setting we consider, however, the goal is not to produce a ranking of instances,
but rather to predict a label for each instance that is as close as possible to the true label;
in other words, we are interested in the performance of g on individual examples. Again,
there are several ways of measuring the loss of a prediction rule g on an example (x, y)
depending on the particular application and the semantics associated with the labels. A
common approach, which has been used explicitly or implicitly by a majority of the more

Generalization Bounds for Some Ordinal Regression Algorithms 11

recent papers on ordinal regression, is to use the absolute loss�ord(g, (x, y)) = |g(x)−y|–
henceforth referred to as the ordinal regression loss – which simply measures the absolute
difference between the predicted and true labels.2 This is the loss we use.

Thus, in the setting considered in this paper, the quality of a prediction rule g :
X→[r] is measured by its expected ordinal regression error with respect to D:

Lord
D (g) = E(x,y)∼D [|g(x) − y|] . (2)

In practice, since the distribution D is not known, the expected ordinal regression error
of a prediction rule g cannot be computed exactly; instead, it must be estimated using
an empirically observable quantity, such as the empirical ordinal regression error of g
with respect to a finite sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × [r])m:

L̂ord
S (g) =

1
m

m∑
i=1

|g(xi) − yi| . (3)

Our goal in this paper is to derive generalization bounds for ordinal regression algorithms;
in particular, we wish to derive probabilistic bounds on the expected ordinal regression
error of a learned prediction rule in terms of an empirical quantity, such as the empirical
error of the rule, measured with respect to the training sample from which it is learned.

3 Black-Box Bounds for Regression-Based Algorithms

We start with the most basic algorithms that learn a real-valued function f : X→R in a
standard regression setting, treating the labels yi simply as real values, and then round
off a predicted real value f(x) to the closest label in [r]; the prediction rule for such an
algorithm is given by

gf (x) =

⎧⎨⎩
1, if f(x) < 1 + 1

2
j, if j − 1

2 ≤ f(x) < j + 1
2 , j ∈ {2, . . . , r − 1}

r, if f(x) ≥ r − 1
2 ,

(4)

which can also be written as

gf(x) = min
j∈{1,...,r}

{j : f(x) < bj} , (5)

with bj = j + 1
2 for j ∈ {1, . . . , r − 1} and br = ∞. In this section, we relate the

ordinal regression error of such a prediction rule gf to the regression error of the under-
lying real-valued function f ; this allows us to use established generalization bounds for
regression algorithms to obtain some basic black-box bounds for the resulting ordinal
regression algorithms.

2 While many of the ordinal regression papers discussed in Section 1 (including [14,6,5] which,
despite the the term ‘ranking’ in their titles, are on ordinal regression) explicitly employ the
absolute loss, several others (such as [7,11]) use this loss implicitly – in the form of the mean
absolute error (MAE) or mean absolute distance (MAD) criterion – when measuring perfor-
mance empirically on benchmark data sets.

12 S. Agarwal

The loss of a real-valued function f : X→R on an example (x, y) ∈ X × R in
the regression setting is usually measured either by the absolute loss �abs(f, (x, y)) =
|f(x) − y|, or more frequently, by the squared loss �sq(f, (x, y)) = (f(x) − y)2. The
quality of f with respect to a distribution D on X × R is then measured by either its
expected absolute error or its expected squared error:

Labs
D (f) = E(x,y)∼D [|f(x) − y|] ; Lsq

D(f) = E(x,y)∼D
[
(f(x) − y)2

]
. (6)

The corresponding empirical quantities with respect to S = ((x1, y1), . . . , (xm, ym)) ∈
(X × R)m are defined analogously:

L̂abs
S (f) =

1
m

m∑
i=1

|f(xi) − yi| ; L̂sq
S (f) =

1
m

m∑
i=1

(f(xi) − yi)2 . (7)

The following simple lemma provides a connection between the respective errors of
a real-valued function f and the corresponding prediction rule gf .

Lemma 1. For all f : X→R and for all (x, y) ∈ X × [r], we have:

1. |gf (x) − y| ≤ min
(
|f(x) − y| + 1

2 , 2|f(x) − y|
)
.

2. |gf (x) − y| ≤ min
(
2(f(x) − y)2 + 1

2 , 4(f(x) − y)2
)
.

Proof. If |gf (x)− y| = 0, both results clearly hold. Therefore assume |gf (x)− y| �= 0.
Then |gf (x) − y| ∈ {1, . . . , r − 1}, and from the definition of gf , it follows that

|f(x) − y| ≥ 1
2

. (8)

Part 1. The definition of gf easily yields the first inequality:

|gf (x) − y| ≤ |f(x) − y| + 1
2

. (9)

Combining this with Eq. (8) gives the second inequality:

|gf (x) − y| ≤ 2|f(x) − y| . (10)

Part 2. From Eq. (8), we have 2|f(x) − 1| ≥ 1 . Since a ≥ 1 ⇒ a ≤ a2, this gives

2|f(x) − 1| ≤ 4(f(x) − 1)2 .

Combining this with Eqs. (9) and (10) yields the desired inequalities. �	

Theorem 1. For all f : X→R and for all distributions D on X × [r], we have:

1. Lord
D (gf) ≤ φ(Labs

D (f)), where φ(L) = min
(
L + 1

2 , 2L
)
.

2. Lord
D (gf) ≤ ψ(Lsq

D(f)), where ψ(L) = min
(
2L + 1

2 , 4L
)
.

Proof. Immediate from Lemma 1. �	

Generalization Bounds for Some Ordinal Regression Algorithms 13

As a consequence of Theorem 1, any generalization result that provides a bound on the
expected (absolute or squared) error of the real-valued function f learned by a regres-
sion algorithm immediately provides a bound also on the expected ordinal regression
error of the corresponding prediction rule gf . Below we provide two specific examples
of such black-box bounds: the first uses a standard uniform convergence bound for re-
gression algorithms that is expressed in terms of covering numbers; the second uses a
stability bound for regression algorithms due to Bousquet & Elisseeff [17].

Theorem 2 (Covering number bound). Let F be a class of real-valued functions on
X , and let A be an ordinal regression algorithm which, given as input a training sample
S ∈ (X × [r])m, learns a real-valued function fS ∈ F and returns as output the
prediction rule gS ≡ gfS . Then for any ε > 0 and for any distribution D on X × [r],

PS∼Dm

[
Lord
D (gS) ≤ ψ

(
L̂sq

S (fS) + ε
)]

≥ 1 − 4N1(ε/16,F , 2m) · exp(−mε2/32) ,

where ψ(·) is as defined in Theorem 1, and N1 refers to d1 covering numbers.

Proof. The following bound on the expected squared error of the learned real-valued
function is well known (cf. the uniform convergence result in Theorem 17.1 of [18]):

PS∼Dm

[
Lsq
D(fS) ≤ L̂sq

S (fS) + ε
]

≥ 1 − 4N1(ε/16,F , 2m) · exp(−mε2/32) .

The result then follows from Part 2 of Theorem 1. �	
Next we review some notions needed to present the stability bound.

Definition 1 (Loss stability). Let �(f, (x, y)) be a loss function defined for f : X→R

and (x, y) ∈ X × Y for some Y ⊆ R. A regression algorithm whose output on a
training sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m we denote by fS : X→R

is said to have loss stability β with respect to � (where β : N→R) if for all m ∈ N,
S ∈ (X × Y)m, 1 ≤ i ≤ m and (x′

i, y
′
i) ∈ X × Y , we have for all (x, y) ∈ X × Y ,

|�(fS , (x, y)) − �(fSi , (x, y))| ≤ β(m) ,

where Si denotes the sequence obtained from S by replacing (xi, yi) with (x′
i, y

′
i).

Theorem 3 ([17]3). Let �(f, (x, y)) be a loss function defined for f : X→R and
(x, y) ∈ X × Y for some Y ⊆ R. Let A be a regression algorithm which, given
as input a training sample S ∈ (X × Y)m, returns as output a real-valued function
fS : X→R, such that 0 ≤ �(fS , (x, y)) ≤ M for all S and all (x, y) ∈ X × Y . If A
has loss stability β with respect to �, then for any 0 < δ < 1 and for any distribution D
on X × Y , with probability at least 1 − δ over the draw of S (according to Dm),

L�
D(fS) ≤ L̂�

S(fS) + β(m) +
(
2mβ(m) + M

)√ ln(1/δ)
2m

,

where L�
D , L̂�

S denote expected and empirical �-errors, defined analogously to (6–7).

3 The version presented here differs slightly (only in constants) from the result of [17]. This is
due to a slight difference in definitions of stability: our definitions are in terms of changes to
a training sample that consist of replacing one element in the sample with a new one, while
those in [17] are in terms of changes that consist of removing one element from the sample.

14 S. Agarwal

Theorem 4 (Stability bound). Let A be an ordinal regression algorithm which, given
as input a training sample S ∈ (X×[r])m, learns a real-valued function fS : X→[c, d]
using a regression algorithm that has loss stability β with respect to the squared loss
�sq (defined for (x, y) ∈ X × [r]), and returns as output the prediction rule gS ≡ gfS .
Then for any 0 < δ < 1 and for any distribution D on X × [r], with probability at least
1 − δ over the draw of S (according to Dm),

Lord
D (gS) ≤ ψ

(
L̂sq

S (fS) + β(m) +
(
2mβ(m) + M

)√ ln(1/δ)
2m

)
,

where M = (max(d, r) − min(c, 1))2, and ψ(·) is as defined in Theorem 1.

Proof. Follows from Theorem 3 applied to �sq (note that 0 ≤ �sq(f, (x, y)) ≤ M for all
f : X→[c, d] and all (x, y) ∈ X × [r]), and Part 2 of Theorem 1. �	
Example 1 (Bound 1 for SVR-based algorithm). As a further example of how Theo-
rem 1 can be applied, consider an ordinal regression algorithm which, given a training
sample S ∈ (X × [r])m, uses the support vector regression (SVR) algorithm to learn a
real-valued function fS ∈ F in some reproducing kernel Hilbert space (RKHS) F , and
returns the prediction rule gS ≡ gfS . The SVR algorithm minimizes a regularized ver-
sion of the empirical �ε-error L̂ε

S(f) = 1
m

∑m
i=1 �ε(f, (xi, yi)) for some ε > 0, where

�ε is the ε-insensitive loss defined by �ε(f, (x, y)) = (|f(x) − y| − ε)+ (here a+ =
max(a, 0)). If the kernel K associated with F satisfies K(x, x) ≤ κ2 ∀x ∈ X , and a
regularization parameter λ is used, then the SVR algorithm has loss stability 2κ2/λm
with respect to �ε [17], and furthermore, with M = max

(
r + κ

√
r/λ, 2κ

√
r/λ

)
,

satisfies 0 ≤ �ε(fS , (x, y)) ≤ M . Therefore, applying Theorem 3 to �ε, observing that
�abs ≤ �ε + ε, and finally, using Part 1 of Theorem 1, we get that for any 0 < δ < 1 and
for any distribution D on X × [r], with probability at least 1 − δ over S ∼ Dm,

Lord
D (gS) ≤ φ

(
L̂ε

S(fS) + ε +
2κ2

λm
+
(

4κ2

λ
+ M

)√
ln(1/δ)

2m

)
, (11)

where φ(·) is as defined in Theorem 1.

4 Direct Stability Analysis for Regression-Based Algorithms

The stability bounds for regression-based algorithms discussed above – in Theorem 4
and in Example 1 – make use of existing stability bounds for regression algorithms in a
black-box manner. In this section, we directly analyze the stability of these algorithms
in the context of the ordinal regression error of the final prediction rule; this allows us to
obtain alternative bounds which in some cases are tighter than those obtained through
the above black-box analysis. We start with an alternative definition of the stability
of a regression algorithm (note that the algorithms we consider here are the same as
before, i.e., algorithms that learn a real-valued function f in a regression setting and
then make label predictions according to gf ; the difference will lie in the manner in
which we analyze these algorithms). The approach we use is similar to that used by
Bousquet & Elisseeff [17] to analyze binary classification algorithms that learn a real-
valued function f and then make class predictions according to sgn(f).

Generalization Bounds for Some Ordinal Regression Algorithms 15

Definition 2 (Score stability). A regression algorithm whose output on a training sam-
ple S = ((x1, y1), . . . , (xm, ym)) ∈ (X × R)m we denote by fS : X→R is said to
have score stability ν (where ν : N→R) if for all m ∈ N, S ∈ (X × Y)m, 1 ≤ i ≤ m
and (x′

i, y
′
i) ∈ X × Y , we have for all x ∈ X ,

|fS(x) − fSi(x)| ≤ ν(m) ,

where Si denotes the sequence obtained from S by replacing (xi, yi) with (x′
i, y

′
i).

The following loss, defined for f : X→R and, crucially, for (x, y) ∈ X × [r], will play
an important role in our analysis; we refer to it as the ‘clipped’ loss:

�clip(f, (x, 1)) =

⎧⎨⎩
0, if f(x) < 1

2(f(x) − 1), if 1 ≤ f(x) < r+1
2

r − 1, if f(x) ≥ r+1
2 ;

�clip(f, (x, y)) =

⎧⎪⎪⎨⎪⎪⎩
y − 1, if f(x) < y+1

2

2(y − f(x)), if y+1
2 ≤ f(x) < y

2(f(x) − y), if y ≤ f(x) < r − y+r
2

r − y, if f(x) ≥ y+r
2

for y ∈ {2, . . . , r − 1};

�clip(f, (x, r)) =

⎧⎨⎩ r − 1, if f(x) < r+1
2

2(r − f(x)), if r+1
2 ≤ f(x) < r

0, if f(x) ≥ r.

Figure 1 shows plots of this loss for r = 4. A crucial property of this loss, which is
immediate from the definitions (see Figure 1), is the following:

Lemma 2. For all f : X→R and for all (x, y) ∈ X × [r], we have:

|gf(x) − y| ≤ �clip(f, (x, y)) ≤ 2|f(x) − y| .

The following lemma shows that a regression algorithm that has good score stability
also has good loss stability with respect to �clip. The proof is similar to the proof of
Lemma 2 of [19], and is omitted for lack of space.

Lemma 3. If a real-valued function learning algorithm has score stability ν (where
ν : N→R), then it has loss stability β = 2ν with respect to the clipped loss �clip.

We are now ready for the main result of this section:

Theorem 5 (Direct stability bound). Let A be an ordinal regression algorithm which,
given as input a training sample S ∈ (X × [r])m, learns a real-valued function fS :
X→R using a regression algorithm that has score stability ν, and returns as output
the prediction rule gS ≡ gfS . Then for any 0 < δ < 1 and for any distribution D on
X × [r], with probability at least 1 − δ over the draw of S (according to Dm),

Lord
D (gS) ≤ L̂clip

S (fS) + 2ν(m) +
(
4mν(m) + r − 1

)√ ln(1/δ)
2m

,

where L̂
clip
S denotes the empirical �clip-error with respect to S.

16 S. Agarwal

Fig. 1. Plots of the clipped loss �clip(f, (x, y)), together with �ord(gf , (x, y)) = |gf (x) − y|, and
2�abs(f, (x, y)) = 2|f(x) − y|, for y = 1, 2, 3 and 4 (each plotted as a function of f(x)), for an
ordinal regression problem with r = 4

Proof. By Lemma 3, we have that A has loss stability 2ν with respect to �clip. Further-
more, we have 0 ≤ �clip(f, (x, y)) ≤ r − 1 for all f : X→R and all (x, y) ∈ X × [r].
The result then follows from Theorem 3 applied to �clip (with β = 2ν and M = r − 1),
and from Lemma 2. �	

Example 2 (Bound 2 for SVR-based algorithm). For a comparison of the above bound
with the black-box stability bounds of Section 3, consider again the SVR-based ordinal
regression algorithm of Example 1 which, given a training sample S ∈ (X×[r])m, uses
the SVR algorithm to learn a real-valued function fS ∈ F in an RKHS F , and returns
the prediction rule gS ≡ gfS . Under the conditions of Example 1, the SVR algorithm is
known to have score stability 2κ2/λm [17]. Therefore, by Theorem 5, we get that for
any 0 < δ < 1 and for any distribution D on X × [r], with probability at least 1 − δ
over S ∼ Dm,

Lord
D (gS) ≤ L̂clip

S (fS) +
4κ2

λm
+
(

8κ2

λ
+ r − 1

)√
ln(1/δ)

2m
. (12)

Comparing this with the bound of Example 1, we find that if the term in the argument
of φ(·) in Eq. (11) is smaller than 1/2, then the direct bound above is guaranteed to give
a tighter generalization result.

Generalization Bounds for Some Ordinal Regression Algorithms 17

5 Stability Analysis for More General Algorithms

So far we have considered regression-based algorithms for ordinal regression that learn
a real-valued function f : X→R and then make label predictions according to gf . We
now consider more general algorithms that learn both a real-valued function f : X→R

and a set of thresholds b1 ≤ . . . ≤ br−1 ≤ br = ∞; as discussed previously, the
prediction rule in this case is given by

gf,b(x) = min
j∈{1,...,r}

{j : f(x) < bj} , (13)

where b ≡ (b1, . . . , br−1) denotes the vector of r − 1 thresholds (note that br is fixed
to ∞). Recall that regression-based algorithms can be viewed as using a fixed threshold
vector given by bj = j + 1

2 for j ∈ {1, . . . , r − 1}. In what follows, the term thresh-
old vector will always refer to a vector of thresholds (b1, . . . , br−1) that satisfies the
inequalities b1 ≤ . . . ≤ br−1.

The ordinal regression loss of a prediction rule gf,b on an example (x, y) ∈ X × [r]
effectively counts the number of thresholds bj such that f(x) falls to the wrong side
of bj: ∣∣gf,b(x) − y

∣∣ =
y−1∑
j=1

I{f(x)<bj} +
r−1∑
j=y

I{f(x)≥bj} . (14)

In general, the loss on an example (x, y) ∈ X × [r] in this more general setting is
determined by both f and b, and as before, given a loss function �(f, b, (x, y)) in this
setting, we can define the expected and empirical �-errors of a function/threshold-vector
pair (f, b) with respect to a distribution D on X × [r] and a sample S ∈ (X × [r])m,
respectively, as follows:

L�
D(f, b) = E(x,y)∼D

[
�(f, b, (x, y))

]
; L̂�

S(f, b) =
1
m

m∑
i=1

�(f, b, (xi, yi)) . (15)

In order to analyze ordinal regression algorithms in this more general setting, we
can extend the notion of loss stability in a straightforward manner to loss functions
�(f, b, (x, y)). It is then possible to show the following result, which states that an al-
gorithm with good loss stability with respect to such a loss � has good generalization
properties with respect to the error induced by �. We omit the proof, which follows the
proofs of similar results for classification/regression and ranking in [17,19].

Theorem 6 (Stability bound for (f, b)-learners). Let A be an ordinal regression al-
gorithm which, given as input a training sample S ∈ (X × [r])m, learns a real-valued
function fS : X→R and a threshold vector bS ≡ (b1

S , . . . , br−1
S), and returns as output

the prediction rule gS ≡ gfS ,bS . Let � be any loss function in this setting such that
0 ≤ �(fS , bS, (x, y)) ≤ M for all training samples S and all (x, y) ∈ X × [r], and let
β : N→R be such that A has loss stability β with respect to �. Then for any 0 < δ < 1
and for any distribution D on X × [r], with probability at least 1 − δ over the draw of
S (according to Dm),

L�
D(fS , bS) ≤ L̂�

S(fS , bS) + β(m) +
(
2mβ(m) + M

)√ ln(1/δ)
2m

.

18 S. Agarwal

In the case of classification and regression, and also of ranking, once a stability-based
generalization result of the above form was established, it was quickly shown that there
were practical learning algorithms for those problems that satisfied the desired stability
conditions, and hence the result could be applied to these algorithms to obtain general-
ization bounds for them (indeed, we used such bounds for the support vector regression
(SVR) algorithm in our study of regression-based algorithms in the previous two sec-
tions). Unfortunately, this has proved to be more difficult in our setting.

Given that many of the classification, regression and ranking algorithms for which
stability analysis has been successful are regularization-based algorithms – with par-
ticular success among algorithms that perform regularization in an RKHS (such as the
SVR algorithm for regression or SVMs for classification) – a natural candidate for sta-
bility analysis in our setting is the ordinal regression algorithm of Chu & Keerthi [10],
which is inspired by SVMs and also performs regularization in an RKHS. However, our
attempts to show stability of this algorithm have so far had limited success.

The algorithm of [10] learns a real-valued function f and a threshold vector b by mini-
mizing a regularized upper bound on the empirical ordinal regression error. Specifically,
if we associate with each label y ∈ [r] the sign vector (y1, . . . , yr−1) ∈ {−1, +1}r−1

defined by

yj =
{

+1, if j ∈ {1, . . . , y − 1}
−1, if j ∈ {y, . . . , r − 1}, (16)

then the loss �CK used by Chu & Keerthi is given by

�CK(f, b, (x, y)) =
r−1∑
j=1

(
1 − yj(f(x) − bj)

)
+

. (17)

Comparing with Eq. (14), it is easily verified that∣∣gf,b(x) − y
∣∣ ≤ �CK(f, b, (x, y)) . (18)

Given a training sample S ∈ (X × [r])m, the Chu-Keerthi algorithm returns a real-
valued function fS ∈ F and a threshold vector bS ∈ Rr−1 that satisfy4

(fS , bS) = arg min
(f,b)∈F×Rr−1

L̂CK
S (f, b) + λ

(
‖f‖2

K + ‖b‖2
)
, (19)

where F is an RKHS with kernel K , ‖f‖K denotes the RKHS norm of f , and λ > 0
is a regularization parameter; as discussed in [10], the vector bS returned by the above
algorithm always satisfies the necessary inequalities b1

S ≤ . . . ≤ br−1
S . The difficulty in

showing stability of the above algorithm seems to stem from the lack of a satisfactory
notion of the loss �CK being ‘jointly convex’ in f(x) and the bj; in the corresponding
analysis for classification/regression and ranking algorithms, convexity of the relevant
loss functions in f(x) allowed the desired stability conditions to be established. This
difficulty appears to apply also in considering other notions of stability, such as possible
extensions of score stability to the above setting.

4 The version here includes the regularization term for b suggested in a footnote of [10].

Generalization Bounds for Some Ordinal Regression Algorithms 19

6 Margin Bound for Chu & Keerthi’s Algorithm

We consider now a different approach to analyzing ordinal regression algorithms that
learn both a real-valued function f : X→R and a set of thresholds b1 ≤ . . . ≤ br−1 ≤
br = ∞, and then make label predictions according to the prediction rule gf,b defined
in Eq. (13) (recall that b is the threshold vector (b1, . . . , br−1), and that the term thresh-
old vector always refers to a vector of thresholds satisfying the above inequalities). In
particular, we define a notion of margin for prediction rules of this form, and use this
notion to derive generalization bounds for such algorithms. Our approach generalizes
the margin-based analysis used in the study of classification algorithms, and results
in a margin-based bound for the ordinal regression algorithm of Chu & Keerthi [10]
discussed in Section 5.

Definition 3 (Margin). Let f : X→R and let b ≡ (b1, . . . , br−1) be a threshold vector.
Then for each j ∈ {1, . . . , r − 1}, we define the margin of f with respect to bj on an
example (x, y) ∈ X × [r] as follows:

ρj(f, bj , (x, y)) = yj(f(x) − bj) ,

where yj is as defined in Eq. (16).

Next, for γ > 0, we define the γ-margin loss of a real-valued function f and a threshold
vector b on an example (x, y) ∈ X × [r] as follows:

�γ(f, b, (x, y)) =
r−1∑
j=1

I{ρj(f,bj ,(x,y))≤γ} . (20)

The �γ loss counts the number of thresholds bj for which the corresponding margin
ρj(f, bj , (x, y)) is smaller than (or equal to) γ; thus, comparing with Eq. (14), we im-
mediately have that for all γ > 0,∣∣gf,b(x) − y

∣∣ ≤ �γ(f, b, (x, y)) . (21)

We then have the following margin-based generalization bound for (f, b)-learners.
The proof makes use of a margin-based bound for binary classifiers (cf. Theorem 10.1
of [18]), applied separately to each of the r − 1 classification tasks of predicting yj

through sgn(f(x) − bj); a union bound argument then leads to the result below. We
omit the details due to lack of space.

Theorem 7 (Margin bound). Let F be a class of real-valued functions on X , and let
A be an ordinal regression algorithm which, given as input a training sample S ∈ (X×
[r])m, learns a real-valued function fS ∈ F and a threshold vector bS ∈ [−B, B]r−1,
and returns as output the prediction rule gS ≡ gfS ,bS . Let γ > 0. Then for any 0 < δ <
1 and for any distribution D on X × [r], with probability at least 1 − δ over the draw
of S (according to Dm),

Lord
D (gS) ≤ L̂γ

S(fS , bS) + (r − 1)

√
8
m

(
lnN∞(γ/2,F , 2m) + ln

(
4B(r − 1)

δγ

))
,

where L̂γ
S denotes the empirical �γ-error, and N∞ refers to d∞ covering numbers.

20 S. Agarwal

Example 3 (Bound for Chu-Keerthi algorithm). Recall that the ordinal regression al-
gorithm of Chu & Keerthi [10], described in Section 5, performs regularization in an
RKHS F with kernel K as follows: given a training sample S ∈ (X × [r])m, the algo-
rithm selects a function fS ∈ F and a threshold vector bS that minimize a regularized
upper bound on the ordinal regression error of the resulting prediction rule gS ≡ gfS ,bS .
It is easy to show that the output of the Chu-Keerthi algorithm always satisfies

‖fS‖2
K + ‖bS‖2 ≤ r − 1

λ
,

where λ is the regularization parameter. Thus we have that

bS ∈
[
−
√

r − 1
λ

,

√
r − 1

λ

]r−1

; fS ∈ Fr,λ ≡
{

f ∈ F
∣∣∣ ‖f‖2

K ≤ r − 1
λ

}
.

By Theorem 7, it follows that if the covering numbers N∞(γ/2,Fr,λ, 2m) of the effec-
tive function class Fr,λ can be upper bounded appropriately, then we have a generaliza-
tion bound for the Chu-Keerthi algorithm. Such covering number bounds are known in
a variety of settings. For example, if the kernel K satisfies K(x, x) ≤ κ2 ∀ x ∈ X , then
using a covering number bound of Zhang [20], we get that there is a constant C such
that for any γ > 0, any 0 < δ < 1 and any distribution D on X × [r], with probability
at least 1 − δ over S ∼ Dm,

Lord
D (gS) ≤ L̂γ

S(fS , bS) + (r − 1)

√
C

m

(
κ2(r − 1)

λγ2
ln(m) + ln

(
r − 1
λδγ

))
.

7 Conclusion

Our goal in this paper has been to study generalization properties of ordinal regression
algorithms that learn to predict labels in a discrete but ordered set. We have focused on
the absolute loss |g(x)− y|, for which we have obtained bounds in a variety of settings;
other losses such as the squared loss (g(x) − y)2 can also be useful and should be
explored. Note that all such losses that measure the performance of a prediction rule
g on a single example (x, y) must necessarily assume a metric on the set of labels y;
in our case, we assume the labels are in {1, . . . , r}, with the absolute distance metric
(such labels are referred to as having an interval scale in [1]). In applications where the
labels are ordered but cannot be associated with a metric, it may be more appropriate to
consider losses that measure the ranking performance of g on pairs of examples [2,16].

Another important question concerns the consistency properties of ordinal regres-
sion algorithms: whether they converge to an optimal solution, and if so, at what rate.
It would be particularly interesting to study the consistency properties of algorithms
that minimize a convex upper bound on the ordinal regression error, as has been done
recently for classification [21,22].

Acknowledgments

We would like to thank Yoram Singer for discussions on ordinal regression and for
pointing us to the need for generalization bounds for this problem. This research was
supported in part by NSF award DMS-0732334.

Generalization Bounds for Some Ordinal Regression Algorithms 21

References

1. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, Boca
Raton (1989)

2. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regres-
sion. In: Advances in Large Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)

3. Kramer, S., Pfahringer, B., Widmer, G., Groeve, M.D.: Prediction of ordinal classes using
regression trees. Fundamenta Informaticae 47, 1001–1013 (2001)

4. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Proceedings of the 12th
European Conference on Machine Learning, pp. 145–156 (2001)

5. Crammer, K., Singer, Y.: Online ranking by projecting. Neural Computation 17(1), 145–175
(2005)

6. Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches. In: Advances
in Neural Information Processing Systems, vol. 15, pp. 937–944. MIT Press, Cambridge
(2003)

7. Harrington, E.F.: Online ranking/collaborative filtering using the perceptron algorithm. In:
Proceedings of the 20th International Conference on Machine Learning, pp. 250–257 (2003)

8. Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. Journal of Machine
Learning Research 6, 1019–1041 (2005)

9. Rennie, J.D.M., Srebro, N.: Loss functions for preference levels: Regression with discrete
ordered labels. In: Proc. IJCAI Multidisciplinary Workshop on Advances in Preference Han-
dling (2005)

10. Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Computation 19(3), 792–
815 (2007)

11. Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: The data replication method.
Journal of Machine Learning Research 8, 1393–1429 (2007)

12. Waegeman, W., De Baets, B., Boullart, L.: ROC analysis in ordinal regression learning. Pat-
tern Recognition Letters 29(1), 1–9 (2008)

13. Mathieson, M.J.: Ordinal models for neural networks. In: Neural Networks in Financial En-
gineering, pp. 523–536. World Scientific, Singapore (1996)

14. Crammer, K., Singer, Y.: Pranking with ranking. In: Advances in Neural Information Process-
ing Systems, vol. 14, pp. 641–647. MIT Press, Cambridge (2002)

15. Shashua, A., Levin, A.: Taxonomy of large margin principle algorithms for ordinal regres-
sion problems. Technical Report 2002-39, Leibniz Center for Research, School of Computer
Science and Engg., The Hebrew University of Jerusalem (2002)

16. Rajaram, S., Agarwal, S.: Generalization bounds for k-partite ranking. In: Proceedings of the
NIPS-2005 Workshop on Learning to Rank (2005)

17. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learning Re-
search 2, 499–526 (2002)

18. Anthony, M., Bartlett, P.L.: Learning in Neural Networks: Theoretical Foundations. Cam-
bridge University Press, Cambridge (1999)

19. Agarwal, S., Niyogi, P.: Stability and generalization of bipartite ranking algorithms. In: Pro-
ceedings of the 18th Annual Conference on Learning Theory (2005)

20. Zhang, T.: Covering number bounds of certain regularized linear function classes. Journal of
Machine Learning Research 2, 527–550 (2002)

21. Zhang, T.: Statistical behavior and consistency of classification methods based on convex
risk minimization. The Annals of Statistics 32, 56–85 (2004)

22. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds. Jour-
nal of the American Statistical Association 101(473), 138–156 (2006)

Approximation of the Optimal ROC Curve and

a Tree-Based Ranking Algorithm

Stéphan Clémençon1 and Nicolas Vayatis2

1 LTCI, Telecom Paristech (TSI) - UMR Institut Telecom/CNRS 5141
stephan.clemencon@telecom-paristech.fr

2 CMLA, ENS Cachan & UniverSud - UMR CNRS 8536
61, avenue du Président Wilson - 94235 Cachan cedex, France

nicolas.vayatis@cmla.ens-cachan.fr

Abstract. We consider the extension of standard decision tree meth-
ods to the bipartite ranking problem. In ranking, the goal pursued is
global: define an order on the whole input space in order to have positive
instances on top with maximum probability. The most natural way of
ordering all instances consists in projecting the input data x onto the
real line using a real-valued scoring function s and the accuracy of the
ordering induced by a candidate s is classically measured in terms of
the AUC. In the paper, we discuss the design of tree-structured scoring
functions obtained by maximizing the AUC criterion. In particular, the
connection with recursive piecewise linear approximation of the optimal
ROC curve both in the L1-sense and in the L∞-sense is discussed.

1 Introduction

The statistical ranking problem can broadly be considered as the problem of
ordering instances from a high-dimensional space. A natural approach consists
in ”projecting” these instances onto the real line through some real-valued scor-
ing function. Such a function would allow to rank any list of instances in the
initial space. We focus here on the setup where a binary label characterizing
each instance is given. This is known as the bipartite ranking problem ([FISS03],
[AGH+05], [CLV05]). A standard performance measure for a scoring function
in the presence of classification data is the Receiver Operating Characteristic
(ROC) curve, together with the Area Under the ROC Curve, known as the
AUC (see [Ega75], [HM82]). But, since their introduction, ROC curves and the
AUC have served mostly for validation and not as the target for optimization
principles. More recently, several aspects of AUC maximization have been dis-
cussed in the machine learning literature ([CM04], [Rak04], [YDMW03]) and
also from a statistical learning perspective ([AGH+05], [CLV05], [CLV08]). A
particular class of learning algorithms will be at the center of the present pa-
per, namely decision trees in the spirit of CART [BFOS84]. The investigation
of decision trees in the context of ranking was initiated only recently in the
field of machine learning ([FFHO02], [PD03], [XZW06]). In the present work,
we propose a tree-based ranking algorithm and exhibit statistical results which

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 22–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximation of the Optimal ROC Curve 23

guarantee its performance. The method builds adaptively a scoring function from
training data with an ROC curve close to the optimal one. The approach relies
on linear-by-parts approximations of the ROC curve which correspond to finite-
dimensional (piecewise constant) approximations of optimal scoring functions.
As the ROC curve provides a performance measure of functional nature, the
approximation can be conceived in a variety of ways depending on the topology
equipping the space of ROC curves. For instance, the AUC is related to the L1-
distance but we will also consider convergence to the optimal ROC curve in a
stronger sense described by the L∞-distance. A recursive implementation of the
approximation procedure naturally leads to a tree-like structure for underlying
scoring functions. We suggest that such a tree-based ranker could serve as a weak
learner and feed a boosting-type algorithm such as RankBoost ([FISS03]). We
also provide mathematical results in terms of the approximation error, statistical
consistency, and convergence rates.

The paper is organized as follows. In Section 2, we present a general ap-
proach for assessing optimality in the bipartite ranking problem. We also recall
the main concepts and discuss the issue of AUC maximization. In Section 3,
we discuss the approximation of the optimal ROC curve with piecewise constant
scoring functions and provide an adaptive tree-structured recursive procedure for
which an approximation error result is established. This approximation scheme
can be carried out over empirical data by the means of the TreeRank algo-
rithm described in Section 4. The statistical consistency of the method is also
studied.

2 Setup and Optimal ROC Curves

We study the ranking problem for classification data with binary labels. This is
also known as the bipartite ranking problem ([FISS03]). The data are assumed
to be generated as copies of a random pair (X,Y) ∈ X ×{−1,+1} where X is a
random descriptor living in the measurable space X and Y represents its binary
label (relevant vs. irrelevant, healthy vs. sick, ...). We denote by P = (µ, η) the
distribution of (X,Y), where µ is the marginal distribution of X and η is the
regression function (up to an affine transformation): η(x) = P{Y = 1 | X = x},
x ∈ X . We will also denote by p = P{Y = 1} the proportion of positive labels.
In the sequel, we assume that the distribution µ is absolutely continuous with
respect to Lebesgue measure. The goal of a ranking procedure is to provide
an ordering of the elements of X based on their labels. We expect to end up
with a list with positive labels at the top and negative labels at the bottom.
However, label information does not permit to derive a total order on X and
among relevant (positively labelled) objects in X , some might be more relevant
than others. In short, a good ranking should preserve the ordering induced by
the likelihood of having a positive label, namely the regression function η. We
consider the approach where the ordering can be derived by the means of a
scoring function s : X → R. The following definition sets the goal of learning
methods in the setup of bipartite ranking.

24 S. Clémençon and N. Vayatis

Definition 1 (Optimal scoring functions). A scoring function s∗ : X → R

is said to be optimal if it induces the same ordering over X as the function
η(x) = P{Y = 1 | X = x}, ∀x ∈ X . In other words:

∀x, x′ ∈ X , s∗(x) − s∗(x′) > 0 ⇒ η(x) − η(x′) > 0 .

According to the previous definition, the next proposition is a trivial character-
ization of the class of optimal scoring functions.

Proposition 1. The class of optimal scoring functions is given by the set

S∗ = { s∗ = T ◦ η | T : [0, 1] → R strictly increasing }.

We now recall the concept of ROC curve and explain why it is a natural choice
of performance measure for the ranking problem with classification data. In this
section, we only consider true ROC curves which correspond to the situation
where the underlying distribution is known. Before recalling the definition, we
need to introduce some notations. For a given scoring rule s, the conditional
cumulative distribution functions (cdf) of the random variable s(X) given Y =
+1 and Y = −1 are denoted respectively by Gs and Hs. We also denote by
Ḡs(z) = 1 − Gs(z) and H̄s(z) = 1 − Hs(z) the residual conditional cdfs of the
r.v. s(X). When s = η, we shall denote the previous functions by G∗, H∗, Ḡ∗,
H̄∗ respectively. We will also use the notation, for all t:

α(t) = H̄∗(t) and β(t) = Ḡ∗(t).

We introduce the notation Q(Z,α) to denote the quantile of order 1 − α for
the distribution of a random variable Z conditioned on the event Y = −1. In
particular, the following quantile will be of interest: Q∗(α) = Q(η(X), α) =
H̄∗−1(α), where we have used here the notion of generalized inverse F−1 of a
càdlàg function F : F−1(z) = inf{t ∈ R | F (t) ≥ z}.

A classical way to assess the performance of a scoring function s in separat-
ing the two populations (positive vs. negative labels) is the Receiver Operating
Characteristic known as the ROC curve ([Ega75]).

Definition 2 (True ROC curve). The ROC curve of a scoring function s is
the parametric curve: z �→

(
H̄s(z), Ḡs(z)

)
for thresholds z ∈ R. It can also be

defined as the plot of the function:

α ∈ [0, 1] �→ Ḡs ◦ H̄−1
s (α) = Ḡs (Q(s(X), α)) = ROC(s, α).

By convention, points of the curve corresponding to possible jumps (due to pos-
sible degenerate points for Hs or Gs) are connected by line segments, in order
that the ROC curve is always continuous. For s = η, we take the notation
ROC∗(α) = ROC(η, α).

The residual cdf Ḡs is also called the true positive rate and H̄s is the false
positive rate, so that the ROC curve is the plot of the true positive rate against

Approximation of the Optimal ROC Curve 25

the false positive rate. The ROC curve provides a visual tool for comparing the
ranking performance of two scoring rules. Optimal scoring functions are those
for which the ROC curve dominates all the others for all α ∈ (0, 1). The next
proposition highlights the fact that the ROC curve is relevant when evaluating
performance in the bipartite ranking problem.

Proposition 2. The class S∗ provides the best possible ranking with respect to
the ROC curve criterion. As a matter of fact, for any scoring function s, we have:
∀α ∈ (0, 1), ROC∗(α) ≥ ROC(s, α), and ∀s∗ ∈ S∗, ROC(s∗, α) = ROC∗(α).
Moreover, if we set:

R∗
α = {x ∈ X | η(x) > Q∗(α)} and Rs,α = {x ∈ X | s(x) > Q(s(X), α)}

then, for any s and any α such that Q∗(α) < 1:

ROC∗(α) − ROC(s, α) =
E(|η(X) − Q∗(α)| I{X ∈ R∗

α∆Rs,α})
p(1 − Q∗(α))

where ∆ denotes the symmetric difference between sets.

The last statement reveals that the pointwise difference between the dominat-
ing ROC curve and the one related to a candidate scoring function s may be
interpreted as the error made in recovering the specific level set R∗

α through
Rs,α. A simple consequence of the previous result (and its proof) is that the
one-dimensional statistic η(X) (instead of the supposedly high-dimensional ob-
servation X) suffices to recover the optimal ROC curve. In other words, project-
ing the original data onto (0, 1) using the regression function leaves the ROC
curve untouched. The following result will be needed later.

Proposition 3 (Derivative of the ROC). We assume that the optimal ROC
curve is differentiable. Then, we have, for any α such that Q∗(α) < 1:

d

dα
ROC∗(α) =

1 − p

p
· Q∗(α)
1 −Q∗(α)

.

Although the ROC curve is a useful graphical tool for evaluating the performance
of a scoring function, its use as the target of an optimization strategy to estimate
ROC-optimal scoring functions turns out to be quite challenging. Indeed, select-
ing a scoring function by empirical maximization of the ROC curve over a class
S of scoring functions is a highly complex task because of the functional nature
of the ROC curve criterion. Of course, the closer to ROC∗ the ROC curve of a
candidate scoring function s ∈ S, the more pertinent the ranking induced by s.
However, various metrics can be considered for measuring the distance between
curves. We focus on two essential cases:

the L1 metric: d1(s∗, s) =
∫ 1

0

(ROC(s∗, α) − ROC(s, α)) dα

the L∞ metric: d∞(s∗, s) = sup
α∈(0,1)

(ROC(s∗, α) − ROC(s, α))

26 S. Clémençon and N. Vayatis

Remark 1. In order to avoid a possible confusion due to the notation, we bring
to the reader’s attention the fact that d1 and d∞ do not denote metrics on the
space of scoring functions S, but on the set of ROC curves.

As far as we know, the L∞ metric has not been considered in the literature
yet, while the weaker L1-metric actually corresponds to a very popular criterion
which is at the heart of most practical ranking methods. This is known as the
Area Under an ROC Curve (or AUC, see [HM82]).

Definition 3 (AUC). For any scoring function s, define the AUC as:

AUC(s) =
∫ 1

0

ROC(s, α) dα ,

and set AUC∗ = AUC(η). We then have: d1(s∗, s) = AUC∗ − AUC(s).

When it comes to finding a scoring function, based on empirical data, which
will perform well with respect to the AUC criterion, various strategies can be
considered. A possible angle is the plug-in approach ([DGL96]). The idea of plug-
in consists in using an estimate η̂ of the regression function as a scoring function.
It is expected that, whenever η̂ is close to η in a certain sense, then ROC(η̂, ·)
and ROC∗ are also close.

Proposition 4. Consider η̂ an estimator of η. We have:

AUC∗ − AUC(η̂) ≤ 1
p(1 − p)

E (|η̂(X) − η(X)|) .

Moreover if H∗ has a density which is bounded by below on [0, 1]: ∃c > 0 such
that ∀α ∈ [0, 1], dH∗

dα (α) ≥ c−1. Then, we have: ∀α ∈ [0, 1] such that Q∗(α) < 1,

ROC∗(α) − ROC(η̂, α) ≤ cE (|H∗(η(X)) − Hη̂(η̂(X))|)
p(1 − Q∗(α))

.

However, plug-in rules face difficulties when dealing with high-dimensional data
([GKKW02]). Another drawback of plug-in rules is that they are not consistent
with respect to the supremum norm. This observation provides an additional
motivation for exploring algorithms based on empirical AUC maximization. A
nice feature of the AUC performance measure is that it may be interpreted in a
probabilistic fashion and we refer to [CLV08] for a systematic study of related
empirical and convex risk minimization strategies which involve U -statistics.
From a machine learning perspective, there is a growing literature in which
existing algorithms are adapted in order to perform AUC optimization (such as,
for instance: [CM04], [Rak04], [YDMW03]). The tree-based method we propose
in the sequel consists in an adaptive recursive strategy for building a piecewise
constant scoring function with nearly maximum AUC.

Approximation of the Optimal ROC Curve 27

3 Piecewise Linear Approximation of the Optimal ROC
Curve

In this section, we assume that the distribution, and hence the optimal ROC
curve, are known. We also assume that the optimal ROC curve is differentiable
and concave (see [CV08] for a discussion on these assumptions). We consider the
problem of building, in a stepwise manner, a scoring function whose ROC curve
is a piecewise linear approximation/interpolation of the optimal curve ROC∗.

3.1 Piecewise Constant Scoring Functions

When it comes to approximations of the optimal s∗, a natural idea is to intro-
duce discrete versions and to replace the expectation by a finite sum. We now
introduce D-representation of a piecewise constant scoring function where the
’D’ stands for ’disjoint’.

Definition 4 (D-representation). Let N ≥ 1. The D-representation of a
piecewise constant scoring function sN taking values in {a1, . . . , aN} is given
by: ∀x ∈ X , sN (x) =

∑N
j=1 aj I{x ∈ Cj} , for some decreasing sequence

(aj)j≥1 and some partition CN = (Cj)1≤j≤N of X . We define SN to be the class
of such scoring functions.

We now list some obvious properties of piecewise constant scoring function.

Proposition 5. Consider some piecewise constant scoring function sN ∈ SN .

(i) The ROC curve of sN is piecewise linear with N linear parts.
(ii) The ROC curve of sN does not depend on the particular values of the se-

quence (aj)j≥1 appearing in its D-representation but only on their ordering.

Our purpose in this section is to design an iterative procedure which outputs
a piecewise constant scoring function sN ∈ SN whose ROC curve is as close as
possible to the optimal ROC∗. Closeness between ROC curves will be measured
both in terms of AUC and in the L∞-sense. The iterative procedure described
in the sequel satisfies the following approximation error result.

Proposition 6. Assume that the optimal ROC curve is twice differentiable and
concave and that its second derivative takes its values in a bounded interval
which does not contain zero. There exists a sequence of piecewise constant scoring
functions (sN)N≥1 such that, for any N ≥ 1, sN ∈ SN and:

d1(s∗, sN) ≤ C ·N−2 and d∞(s∗, sN) ≤ C ·N−2,

where the constant C depends only on the distribution.

The approximation rate of O(N−2) is actually reached by any piecewise linear
approximation provided that the mesh length is of order O(N−1). This result is
well-known folklore in approximation theory, see [DL93]. We underline that the

28 S. Clémençon and N. Vayatis

piecewise linear approximation method we describe next is adaptive in the sense
that breakpoints are not fixed in advance and strongly depend on the target curve
(which suggests that this scheme possibly yields a sharper constant C). It high-
lights the explicit relationship between the approximation of the optimal ROC
curve and the corresponding piecewise constant scoring function. The ranking
algorithm proposed in the sequel (Section 4) will appear as a statistical version
of this variable knot approximation, where the unknown quantities driving the
recursive partitioning will be replaced by their empirical counterparts.

3.2 One-Step Approximation to the Optimal ROC Curve

We now provide some insights on the general construction by describing the
one-step modification of a given piecewise constant scoring function sN . Here,
modifications are picked up in the class G of level sets of the regression function
η: G = {{x ∈ X : η(x) > t} : t ∈ (0, 1)}.

Definition 5 (One-step L1 approximation). Given sN ∈ SN , we define:

σN = argmax
σ∈G

d1(sN , sN + σ).

Then, the one-step approximation sequence to some optimal scoring function s∗

is defined as the sequence (sN)N≥1 of scoring functions such that:

s1 = IX and ∀N ≥ 1, sN+1 = sN + σN .

Now we consider a different representation of piecewise constant scoring func-
tions based on increasing subsets. A constructive procedure will rely on a par-
ticular choice of subsets (Rj)j≥1. We focus on partitions with sets of the form:
Rj = {x ∈ X : η(x) > uj} for some positive decreasing sequence (uj)j≥1 with
u1 > 0.

First iteration. We initialize the procedure for N = 1 with the scoring function:

∀x ∈ X , s1(x) = I{x ∈ X} ≡ 1 ,

which ranks all instances equally. It is clear that adding up the indicator of any
region of the form {η(x) > t} for some t ∈ (0, 1) would provide a piecewise linear
approximation of the optimal ROC curve. We choose the one which maximizes
the AUC criterion. It is easy to see that the one-step L1 approximation at the
first iteration is given by the piecewise constant scoring function:

∀x ∈ X , s2(x) = I{x ∈ X} + I{η(x) > p} .

where p = P{Y = 1}. We also have: (dβ/dα)(p) = 1.
It is noteworthy that the one-step L1 approximation obtained by optimization

of the AUC criterion is the same as the one obtained through optimization of
the sup-norm. One can easily check that

argmax
σ∈G

d1(s1, s1 + σ) = arg max
σ∈G

d∞(s1, s1 + σ) .

Approximation of the Optimal ROC Curve 29

N-th iteration. Now consider a piecewise constant scoring function sN ∈ SN .
The ROC curve of sN is a broken line with N linear pieces defined by the
sequence of points ((αj , βj))0≤j≤N where (α0, β0) = (0, 0) and (αN , βN) = (1, 1).
For a fixed j, we look for the optimal splitting which would increase the AUC
by adding a knot (α(t), β(t)) such that α(t) is between αj and αj+1. We take
the notation

s
(j)
N+1,t(x) = sN (x) + I{η(x) > t}, with t ∈ (Q∗(αj+1), Q∗(αj)).

The AUC can then be written, for some constant cj, as:

AN+1(t) = AUC(s(j)N+1,t) = cj +
1
2
(αj+1 − αj)β(t) − 1

2
α(t)(βj+1 − βj),

which is maximized at t∗ such that:

dβ(t∗) =
(

βj+1 − βj

αj+1 − αj

)
dα(t∗) .

Set α∗
j = α(t∗) and get, thanks to Proposition 3, the following relationship:

1 − p

p
·

Q∗(α∗
j)

1 −Q∗(α∗
j)

=
βj+1 − βj

αj+1 − αj
.

This leads to a one-step optimal splitting point (α∗
j , β

∗
j) on the ROC curve such

that: α∗
j = H̄∗ (∆j) and β∗

j = Ḡ∗ (∆j) where

∆j =
p(βj+1 − βj)

(1 − p)(αj+1 − αj) + p(βj+1 − βj)
= t∗ .

Remark 2 (Interpretation in terms of partitions). The insertion of the
new knot (α∗

j , β
∗
j) is materialized by the splitting of subset Rj+1 with a subset

R∗
j containing Rj and we have R∗

j = {x ∈ X : η(x) > Q∗(α∗
j)}, while Rj =

{x ∈ X : η(x) > Q∗(αj)}. In terms of D-representations, we can write: sN =∑N
j=1(N − j + 1) ICj where Cj = {x ∈ X : Q∗(αj+1) < η(x) ≤ Q∗(αj)}. After

the splitting, in the new partition, the set Cj+1 is replaced by C∗
j and Cj+1 \C∗

j

where Cj+1 = {x ∈ X : Q∗(αj+1) < η(x) ≤ Q∗(α∗
j)}.

The previous computations quantify the improvement in terms of AUC after
adding one knot for each linear part of the ROC curve at step N . Instead of
sticking to one-step approximations, we can introduce an approximation scheme
which will add 2N knots after the N -th iteration.

3.3 A Tree-Structured Recursive Approximation Scheme

We now turn to the full recursive procedure. At each step, an adaptively chosen
knot is added between all consecutive points of the current meshgrid. We take
N = 2D with D ≥ 0 and we describe iterations over D for constructing a

30 S. Clémençon and N. Vayatis

sequence of piecewise constant scoring functions. It will be easier to work with
D-representations of the form: ∀x ∈ X , sD(x) =

∑2D−1
k=0 (2D−k) I{x ∈ CD,k},

where, for fixed D, the class of sets (CD,k)0≤k≤2D−1 is a disjoint partition of X .
We will use the following notations:

α(C) = P{X ∈ C | Y = −1} and β(C) = P{X ∈ C | Y = 1}.

The iterative procedure goes as follows.

Initialization (d = 0 and d = 1). For the extremal points, we set:

∀d ∈ N , α∗
d,0 = β∗

d,0 = 0 and α∗
d,2d = β∗

d,2d = 1 ,

and for the first iteration points (d = 1): α∗
1,1 = H̄∗(p) and β∗

1,1 = Ḡ∗(p).

From d to d + 1, for d ≥ 1. Let the collection {(α∗
d,k, β

∗
d,k)}k=0,...,2d−1 be

given. On each interval (α∗
d,k, α

∗
d,k+1), we apply the one-step approximation.

Hence, the new point is given by: α∗
d+1,2k+1 = H̄∗(∆∗

d+1,2k+1) and β∗
d+1,2k+1 =

Ḡ∗(∆∗
d+1,2k+1), where

∆∗
d+1,2k+1 =

p(β∗
d,k+1 − β∗

d,k)
(1 − p)(α∗

d,k+1 − α∗
d,k) + p(β∗

d,k+1 − β∗
d,k)

.

Moreover, the previous cut-off point is renamed: α∗
d+1,2k = α∗

d,k and β∗
d+1,2k =

β∗
d,k. Set also ∆∗

d+1,2k = ∆∗
d,k. Note that, for each level d, the resulting partition

is given by the class of sets: C∗
d,k = {x ∈ X : ∆∗

d,k < η(x) ≤ ∆∗
d,k+1}, for all

k = 0, . . . , 2d − 1 with the convention that ∆∗
d,0 = 0 and ∆∗

d,2d = 1 for all d ≥ 0.
We also define the sets R∗

d,k by: R∗
d,k = C∗

d,k ∪R∗
d,k−1 with R∗

d,0 = C∗
d,0.

Remark 3 (A tree-structured recursive interpolation scheme). A ni-
ce feature of the recursive approximation procedure is its binary-tree structure.
Owing to their crucial practical advantages regarding implementation and inter-
pretation, tree-structured decision rules have been proved useful for a wide range
of statistical tasks and are in particular among the most popular methods for
regression and classification (we refer to Chapter 20 in [DGL96] for an excellent
account of tree decision rules in the context of classification).

4 A Tree-Structured Weak Ranker

It is time to exploit the theory developed in the previous sections to deal with
empirical data. We formulate a practical algorithm which implements a top-
down strategy to build a binary tree-structured scoring function. This algorithm
mimics the ideal recursive approximation procedure of the optimal ROC curve
from Section 3, where probabilities are replaced by their empirical counterparts.

Approximation of the Optimal ROC Curve 31

4.1 The TreeRank Algorithm

Assume now that a training dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} of n inde-
pendent copies of the pair (X,Y) is available. Set n+ =

∑n
i=1 I{Yi = 1} = n−n−.

We introduce the following data-based quantities, for any subset C:

α̂(C) =
1
n−

n∑
i=1

I{Xi ∈ C, Yi = −1} and β̂(C) =
1
n+

n∑
i=1

I{Xi ∈ C, Yi = +1}

which correspond respectively to the empirical false positive rate and the empir-
ical true positive rate of a classifier predicting +1 on the set C. For notational
convenience, we set αd,0 = βd,0 = 0 and αd,2d = βd,2d = 1 for all d ≥ 0. We
assume that we are given a class C of subsets of X .

TreeRank Algorithm

1. Initialization. Set C0,0 = X .
2. Iterations. For d = 0, . . . , D − 1 and for k = 0, . . . , 2d − 1:

(a) (Optimization step.) Set the entropy measure:

Λd,k+1(C) = (αd,k+1 − αd,k)β̂(C) − (βd,k+1 − βd,k)α̂(C).

Find the best subset Cd+1,2k of rectangle Cd,k in the AUC sense:

Cd+1,2k = arg max
C∈C, C⊂Cd,k

Λd,k+1(C) .

Then, set Cd+1,2k+1 = Cd,k \ Cd+1,2k.
(b) (Update.) Set

αd+1,2k+1 = αd,k + α̂(Cd+1,2k) and βd+1,2k+1 = βd,k + β̂(Cd+1,2k)

as well as αd+1,2k+2 = αd,k+1 and βd+1,2k+2 = βd,k+1.

3. Output. After D iterations, get the piecewise constant scoring func-
tion:

sD(x) =

2D−1�

k=0

(2D − k) I{x ∈ CD,k}

The main features of the TreeRank algorithm are listed in the following remarks.

Remark 4 (Reading the ranks). The resulting ranking induced by the scoring
function sD may be read from the left to the right looking at the terminal nodes

Remark 5 (A simple stopping criterion). If there is more than one subrec-
tangle solution in the Optimization step, take the larger. Hence, if there is no
improvement in terms of AUC maximization when splitting the current rectangle
Cd,k, set Cd+1,2k = Cd,k, so that Cd+1,2k+1 = ∅.

Remark 6 (On the splitting criterion). The splitting criterion Λd,k comes
from the expression of AN+1(t) in Subsection 3.2. In the context of classification,

32 S. Clémençon and N. Vayatis

this splitting rule has been considered previously in [FFHO02]. We point out
that, in contrast to tree-based classification methods, such as CART, the splitting
criterion depends on the node through the parent’s false and true positive rates
α̂(C) and β̂(C). This can be explained by the fact that the goal pursued in the
ranking problem is global: one attempts to order all input data with respect to
each other.

4.2 Consistency of TreeRank and Rate Bounds

We now provide a consistency result for the class of partitions induced by the
TreeRank algorithm. The formulation (and the proof) mimics Theorem 21.2
from [DGL96].

Theorem 1. We consider scoring functions sn corresponding to partitions Fn

of X . We assume that the Fn’s are random partitions of X resulting from runs
of TreeRank with training sets of size n. We also assume that X is bounded
and that the partitions Fn belong to a VC class of sets with VC dimension V ,
for any n and any training set. If the diameter of any cell of Fn goes to 0 when
n tends to infinity, then we have that:

AUC(s∗) − AUC(sn) = d1(s∗, sn) → 0

almost surely, as n goes to ∞.
If we have, in addition that H∗ has a density which is bounded by below on

[0, 1] and that, for any α, Q∗(α) < 1 − ε, for some ε > 0, then:

d∞(s∗, sn) → 0

almost surely, as n goes to ∞.

Remark 7 (Boundedness of X). This assumption is a simplification which can
be removed at the cost of a longer proof (the core of the argument can be found
in [DGL96]).

Remark 8 (Complexity assumption). Instead of assuming a finite VC dimen-
sion, a weaker assumption on the combinatorial entropy of the class of partitions
may be provided (again check [DGL96] for this refinement).

Under additional assumptions, a rate bound can be established for the scoring
function produced by TreeRank.

Theorem 2. Assume that conditions of Proposition 6 are fulfilled. Suppose that
the class C of subset candidates contains all level sets R∗

α, α ∈ [0, 1] and is stable
under intersections, i.e. ∀(C,C′) ∈ C2: C ∩ C′ ∈ C. Assume furthermore that C
has finite VC dimension V .

(i) For all δ > 0, there exists a constant c0 and universal constants c1, c2 such
that, with probability at least 1 − δ, we have for all D ≥ 1, n ∈ N:

Approximation of the Optimal ROC Curve 33

d1(ŝD, sD) ≤ cD
0

{(
c21V

n

) 1
2D

+
(
c22 log(1/δ)

n

) 1
2D

}
,

and

d∞(ŝD, sD) ≤ cD
0

⎧⎨⎩
(
c21V

n

) 1
2(D+1)

+
(
c22 log(1

δ)
n

) 1
2(D+1))

⎫⎬⎭ .

(ii) Choosing D = Dn so that Dn ∼
√

logn, as n → ∞. Then, for all δ > 0,
there exist constants c and κ such that, with probability at least 1 − δ, we
have for all n ∈ N:

di(ŝDn , s
∗) ≤ c exp(−κ

√
logn), i ∈ {1, ∞}.

References

[AGH+05] Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Gener-
alization bounds for the area under the ROC curve. Journal of Machine
Learning Research 6, 393–425 (2005)

[BFOS84] Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Re-
gression Trees. Wadsworth and Brooks (1984)

[CLV05] Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and scoring using em-
pirical risk minimization. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS
(LNAI), vol. 3559, pp. 1–15. Springer, Heidelberg (2005)

[CLV08] Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and empirical risk min-
imization of U-statistics. The Annals of Statistics 36, 844–874 (2008)

[CM04] Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization. In:
Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge (2004)

[CV08] Clémençon, S., Vayatis, N.: Tree-structured ranking rules and approxi-
mation of the optimal ROC curve. Technical Report hal-00268068, HAL
(2008)

[DGL96] Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern
Recognition. Springer, Heidelberg (1996)

[DL93] Devore, R., Lorentz, G.: Constructive Approximation. Springer, Heidel-
berg (1993)

[Ega75] Egan, J.P.: Signal Detection Theory and ROC Analysis. Academic Press,
London (1975)

[FFHO02] Ferri, C., Flach, P.A., Hernández-Orallo, J.: Learning decision trees us-
ing the area under the roc curve. In: ICML 2002: Proceedings of the
Nineteenth International Conference on Machine Learning, pp. 139–146.
Morgan Kaufmann Publishers Inc., San Francisco (2002)

[FISS03] Freund, Y., Iyer, R.D., Schapire, R.E., Singer, Y.: An efficient boost-
ing algorithm for combining preferences. Journal of Machine Learning
Research 4, 933–969 (2003)

[GKKW02] Györfi, L., Köhler, M., Krzyzak, A., Walk, H.: A Distribution-Free The-
ory of Nonparametric Regression. Springer, Heidelberg (2002)

34 S. Clémençon and N. Vayatis

[HM82] Hanley, J.A., McNeil, J.: The meaning and use of the area under a ROC
curve. Radiology 143, 29–36 (1982)

[PD03] Provost, F., Domingos, P.: Tree induction for probability-based ranking.
Machine Learning 52(3), 199–215 (2003)

[Rak04] Rakotomamonjy, A.: Optimizing area under roc curve with svms. In:
Proceedings of the First Workshop on ROC Analysis in AI (2004)

[XZW06] Xia, F., Zhang, W., Wang, J.: An effective tree-based algorithm for ordi-
nal regression. IEEE Intelligent Informatics Bulletin 7(1), 22–26 (2006)

[YDMW03] Yan, L., Dodier, R.H., Mozer, M., Wolniewicz, R.H.: Optimizing clas-
sifier performance via an approximation to the wilcoxon-mann-whitney
statistic. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth
International Conference on Machine Learning (ICML 2003), pp. 848–855
(2003)

Appendix – Proofs

Due to space limitations, we only provide some of the proofs of our results. More
details can be found in the extended version of the paper [CV08].

Proof of Proposition 2. The first part of the proposition is a simple conse-
quence of Neyman-Pearson’s lemma formulated in the following setting: given
the observation X , test the null assumption H0 : Y = −1 against the alterna-
tive H1 : Y = +1. Denote by p = P{Y = 1}. The optimal test statistic is then
given by the likelihood ratio test:

φ∗(x) =
P{X = x | Y = 1}

P{X = x | Y = −1} =
1 − p

p
· η(x)
1 − η(x)

.

Indeed, since the function u �→ 1−p
p · u

1−u is strictly increasing on (0, 1), the test
based on the statistic φ∗(X) is obviously equivalent to the one based η(X). Hence
η is an optimal scoring function in the sense of the ROC curve. Any element
of the class S∗ will also maximize the ROC curve thanks to the invariance
property under strictly increasing transforms. The last statement of Proposition
2 is proved as follows. First, we use the fact that, for any measurable function
h, we have:

E(h(X) | Y = +1) =
1 − p

p
E

(
η(X)

1 − η(X)
h(X) | Y = −1

)
.

We apply this with h(X) = I{X ∈ R∗
α} − I{X ∈ Rs,α} to get:

ROC∗(α) − ROC(s, α) =
1 − p

p
E

(
η(X)

1 − η(X)
h(X) | Y = −1

)
.

Then we add and substract Q∗(α)
1−Q∗(α) and using the fact that 1 − α = P{X ∈

Rs,α} = P{X ∈ R∗
α}, we get:

ROC∗(α)−ROC(s, α)=
(

1 − p
p

)
E

((
η(X)

1 − η(X)
− Q∗(α)

1 − Q∗(α)

)
h(X)

∣∣∣∣Y=−1
)

.

Approximation of the Optimal ROC Curve 35

We remove the conditioning with respect to Y = −1 and using then conditioning
on X , we obtain:

ROC∗(α) − ROC(s, α) =
1
p

E

((
η(X) − Q∗(α)

1 − Q∗(α)

)
h(X)

)
.

It is then easy to see that this expression corresponds to the statement in the
Proposition.

Proof of Proposition 4. We recall (see [CLV08]) that:

AUC∗ − AUC(η̂) =
E (|η(X) − η(X′)|I{(X,X′) ∈ Γ})

2p(1 − p)
.

where Γ = {(x, x′) : sgn(η̂(X) − η̂(X ′)) �= sgn(η(X) − η(X ′))} But, one may
easily check that: if sgn(η̂(X) − η̂(X ′)) �= sgn(η(X) − η(X ′)), then

|η(X) − η(X ′)| ≤ |η(X) − η̂(X)| + |η(X ′) − η̂(X ′)| ,

which gives the first part of the result.
Turning to the second assertion, consider the event E = {X ∈ R∗

α∆Rη̂,α}.
Notice first that, after Proposition 2, we have:

ROC∗(α) − ROC(η̂, α) =
E(|η(X) − Q∗(α)| IE)

p(1 − Q∗(α))
≤ cE(|H∗(η(X)) − 1 + α| IE)

p(1 − Q∗(α))

by virtue of the finite increments theorem. Now, observing that

E = {sgn(H∗(η(X)) − 1 + α) �= sgn(Hη̂(η̂(X)) − 1 + α)},

we have in a similar fashion as above: if X ∈ R∗
α∆Rη̂,α, then

|H∗(η(X)) − 1 + α| ≤ |H∗(η(X)) −Hη̂(η̂(X))|,

which, combined to the previous bound, proves the second part.

Partial proof of Theorem 2. We consider here the case of the L1. The proof
for the L∞-metric is similar.

The general version can be established by recurrence. Here we only detail the
transition from D = 1 to D = 2. Let us introduce the notation: for all C ∈ C,
d ∈ N and k ∈ {1, . . . , 2d},

Λ∗
d,k(C) = α(C∗

d,k−1)β(C) − β(C∗
d,k−1)α(C),

Λ̃d,k(C) = α(Cd,k−1)β(C) − β(Cd,k−1)α(C).

Equipped with this notation, we can bound the deviation 2|AUC(s∗D)−AUC(sD)|
by

2D−1−1∑
k=0

|Λ∗
D−1,k+1(C

∗
D,2k) − Λ̃D−1,k+1(CD,2k)|.

36 S. Clémençon and N. Vayatis

We have

2AUC(s∗1) − 1 = Λ∗
0,1(C

∗
1,0) = β∗

1,1 − α∗
1,1,

2AUC(s1) − 1 = Λ∗
0,1(C1,0) = Λ̃0,1(C1,0).

In the first place, notice that

AUC(s∗1) − AUC(s1) ≥ 0.

Indeed, since ROC∗ dominates any true ROC curve everywhere, observe that

β(C1,0) − α(C1,0) ≤ ROC∗(α(C1,0)) − α(C1,0).

and recall that α∗
1,1 = argmaxα∈(0,1){ROC∗(α) − α}.

Now, write
2{AUC(s∗1) − AUC(s1)} = (I) + (II) + (III),

where

(I) = Λ∗
0,1(C

∗
1,0) − Λ0,1(C∗

1,0)
(II) = Λ0,1(C∗

1,0) − Λ0,1(C1,0)
(III) = Λ0,1(C1,0) − Λ∗

0,1(C1,0).

By definition, one has (II) ≤ 0, while (I) and (III) are both bounded by

sup
C∈C

|α(C) − α̂(C)| + sup
C∈C

|β(C) − β̂(C)|.

Let δ > 0. Consequently, using twice the VC inequality for the expectation of a
supremum, we obtain that, with probability at least 1 − δ: ∀n ∈ N,

AUC(s∗1) − AUC(s1) ≤ c1

√
V
n

+ c2

√
log(1/δ)

n
= B(1, n, δ),

Using a Taylor-Lagrange expansion of α �→ ROC∗(α) − α around α∗
1,1 at the

second order, we get that {ROC∗(α∗
1,1)− α∗

1,1} − {ROC∗(α(C1,0))− α(C1,0)} is
equal to

−1
2
(ROC∗)′′(α̃)(α∗

1,1 − α(C1,0))2,

for a certain α̃ between α(C1,0) and α∗
1,1. Besides, using again that ROC∗ dom-

inates any other true ROC curve (so that β(C1,0) ≤ ROC∗(α(C1,0))), it is also
bounded by the deviation 2{AUC(s∗1)−AUC(s1)}). We set m=−supα∈[0,1](ROC∗)′′

(α) > 0. Combined with the bound previously established, we obtain that, for
all δ > 0, we have with probability larger than 1 − δ: ∀n ∈ N,

|α∗
1,1 − α(C1,0)| ≤

2√
m

√
B(1, n, δ) ≤ 2√

m
B(2, n, δ).

Approximation of the Optimal ROC Curve 37

By triangular inequality again, we have with probability larger than δ: ∀n ∈ N,

|β∗
1,1 − β(C1,0)| ≤

2√
m

B(2, n, δ) + B(1, n, δ).

Hence, ∀n ≥ nδ = max{c21V, c22 log(1/δ)}, with probability at least 1−δ, we have

|α(C∗
1,1) − α(C1,0)| + |β(C∗

1,1) − β(C1,0)| ≤ κ2B(2, n, δ),

with κ2 = 6/
√
m. This suggests that the deviation at the next iteration should

be of order OP(n−1/4). With some additional technicalities, this argument can
be iterated. The recurrence leads to the next lemma which is the key for the
proof of the theorem.

Lemma 1. Under the assumptions of Theorem 2, there exist constants κ1, κ2,
c1 and c2 such that, for all δ > 0, we have with probability at least 1− δ: ∀d ∈ N,
∀n ∈ N,

|AUC(s∗d) − AUC(sd)| ≤ κd−1
1 B(d, n, δ),

and ∀k ∈ {0, . . . , 2d−1 − 1},

|α(C∗
d,2k) − α(Cd,2k)| + |β(C∗

d,2k) − β(Cd,2k)| ≤ κd
2B(d + 1, n, δ),

where: ∀(d, n, δ) ∈ N × N×]0, 1[,

B(d, n, δ) =
(
c21V

n

) 1
2d

+
(
c22 log(1/δ)

n

) 1
2d

.

Sample Selection Bias Correction Theory

Corinna Cortes1, Mehryar Mohri1,2, Michael Riley1, and Afshin Rostamizadeh2

1 Google Research,
76 Ninth Avenue, New York, NY 10011

2 Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012

Abstract. This paper presents a theoretical analysis of sample selec-
tion bias correction. The sample bias correction technique commonly
used in machine learning consists of reweighting the cost of an error on
each training point of a biased sample to more closely reflect the unbi-
ased distribution. This relies on weights derived by various estimation
techniques based on finite samples. We analyze the effect of an error
in that estimation on the accuracy of the hypothesis returned by the
learning algorithm for two estimation techniques: a cluster-based esti-
mation technique and kernel mean matching. We also report the results
of sample bias correction experiments with several data sets using these
techniques. Our analysis is based on the novel concept of distributional
stability which generalizes the existing concept of point-based stability.
Much of our work and proof techniques can be used to analyze other im-
portance weighting techniques and their effect on accuracy when using
a distributionally stable algorithm.

1 Introduction

In the standard formulation of machine learning problems, the learning algorithm
receives training and test samples drawn according to the same distribution.
However, this assumption often does not hold in practice. The training sample
available is biased in some way, which may be due to a variety of practical
reasons such as the cost of data labeling or acquisition. The problem occurs in
many areas such as astronomy, econometrics, and species habitat modeling.

In a common instance of this problem, points are drawn according to the test
distribution but not all of them are made available to the learner. This is called
the sample selection bias problem. Remarkably, it is often possible to correct this
bias by using large amounts of unlabeled data.

The problem of sample selection bias correction for linear regression has been
extensively studied in econometrics and statistics (Heckman, 1979; Little & Ru-
bin, 1986) with the pioneering work of Heckman (1979). Several recent machine
learning publications (Elkan, 2001; Zadrozny, 2004; Zadrozny et al., 2003; Fan
et al., 2005; Dud́ık et al., 2006) have also dealt with this problem. The main
correction technique used in all of these publications consists of reweighting the
cost of training point errors to more closely reflect that of the test distribution.
This is in fact a technique commonly used in statistics and machine learning for

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 38–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sample Selection Bias Correction Theory 39

a variety of problems of this type (Little & Rubin, 1986). With the exact weights,
this reweighting could optimally correct the bias, but, in practice, the weights
are based on an estimate of the sampling probability from finite data sets. Thus,
it is important to determine to what extent the error in this estimation can af-
fect the accuracy of the hypothesis returned by the learning algorithm. To our
knowledge, this problem has not been analyzed in a general manner.

This paper gives a theoretical analysis of sample selection bias correction. Our
analysis is based on the novel concept of distributional stability which generalizes
the point-based stability introduced and analyzed by previous authors (Devroye
& Wagner, 1979; Kearns & Ron, 1997; Bousquet & Elisseeff, 2002). We show that
large families of learning algorithms, including all kernel-based regularization
algorithms such as Support Vector Regression (SVR) (Vapnik, 1998) or kernel
ridge regression (Saunders et al., 1998) are distributionally stable and we give
the expression of their stability coefficient for both the l1 and l2 distance.

We then analyze two commonly used sample bias correction techniques: a
cluster-based estimation technique and kernel mean matching (KMM) (Huang
et al., 2006b). For each of these techniques, we derive bounds on the difference
of the error rate of the hypothesis returned by a distributionally stable algo-
rithm when using that estimation technique versus using perfect reweighting.
We briefly discuss and compare these bounds and also report the results of ex-
periments with both estimation techniques for several publicly available machine
learning data sets. Much of our work and proof techniques can be used to an-
alyze other importance weighting techniques and their effect on accuracy when
used in combination with a distributionally stable algorithm.

The remaining sections of this paper are organized as follows. Section 2 de-
scribes in detail the sample selection bias correction technique. Section 3 in-
troduces the concept of distributional stability and proves the distributional
stability of kernel-based regularization algorithms. Section 4 analyzes the effect
of estimation error using distributionally stable algorithms for both the cluster-
based and the KMM estimation techniques. Section 5 reports the results of
experiments with several data sets comparing these estimation techniques.

2 Sample Selection Bias Correction

2.1 Problem

Let X denote the input space and Y the label set, which may be {0, 1} in classifi-
cation or any measurable subset of R in regression estimation problems, and let D
denote the true distribution over X×Y according to which test points are drawn.
In the sample selection bias problem, some pairs z=(x, y) drawn according to D
are not made available to the learning algorithm. The learning algorithm receives
a training sample S of m labeled points z1, . . . , zm drawn according to a biased
distribution D′ over X × Y . This sample bias can be represented by a random
variable s taking values in {0, 1}: when s = 1 the point is sampled, otherwise it
is not. Thus, by definition of the sample selection bias, the support of the biased
distribution D′ is included in that of the true distribution D.

40 C. Cortes et al.

As in standard learning scenarios, the objective of the learning algorithm is to
select a hypothesis h out of a hypothesis set H with a small generalization error
R(h) with respect to the true distribution D, R(h) = E(x,y)∼D[c(h, z)], where
c(h, z) is the cost of the error of h on point z ∈ X × Y .

While the sample S is collected in some biased manner, it is often possible
to derive some information about the nature of the bias. This can be done by
exploiting large amounts of unlabeled data drawn according to the true distrib-
ution D, which is often available in practice. Thus, in the following let U be a
sample drawn according to D and S ⊆ U a labeled but biased sub-sample.

2.2 Weighted Samples

A weighted sample Sw is a training sample S of m labeled points, z1, . . . , zm

drawn i.i.d. from X × Y , that is augmented with a non-negative weight wi ≥ 0
for each point zi. This weight is used to emphasize or de-emphasize the cost of
an error on zi as in the so-called importance weighting or cost-sensitive learning
(Elkan, 2001; Zadrozny et al., 2003). One could use the weights wi to derive an
equivalent but larger unweighted sample S′ where the multiplicity of zi would
reflect its weight wi, but most learning algorithms, e.g., decision trees, logistic
regression, AdaBoost, Support Vector Machines (SVMs), kernel ridge regression,
can directly accept a weighted sample Sw. We will refer to algorithms that can
directly take Sw as input as weight-sensitive algorithms.

The empirical error of a hypothesis h on a weighted sample Sw is defined as

R̂w(h) =
m∑

i=1

wi c(h, zi). (1)

Proposition 1. Let D′ be a distribution whose support coincides with that of D
and let Sw be a weighted sample with wi = PrD(zi)/PrD′(zi) for all points zi in
S. Then,

E
S∼D′

[R̂w(h)] = R(h) = E
z∼D

[c(h, z)]. (2)

Proof. Since the sample points are drawn i.i.d.,

E
S∼D′

[R̂w(h)] =
1
m

∑
z

E
S∼D′

[wic(h, zi)] = E
z1∼D′

[w1c(h, z1)]. (3)

By definition of w and the fact that the support of D and D′ coincide, the
right-hand side can be rewritten as follows

∑
D′(z1) 	=0

PrD(z1)
PrD′(z1)

Pr
D′

(z1) c(h, z1) =
∑

D(z1) 	=0

Pr
D

(z1) c(h, z1) = E
z1∼D

[c(h, z1)]. (4)

This last term is the definition of the generalization error R(h). �	

Sample Selection Bias Correction Theory 41

2.3 Bias Correction

The probability of drawing z = (x, y) according to the true but unobserved
distribution D can be straightforwardly related to the observed distribution D′.
By definition of the random variable s, the observed biased distribution D′ can
be expressed by PrD′ [z] = PrD[z|s = 1]. We will assume that all points z in the
support of D can be sampled with a non-zero probability so the support of D
and D′ coincide. Thus for all z ∈ X × Y , Pr[s = 1|z] �= 0. Then, by the Bayes
formula, for all z in the support of D,

Pr
D

[z] =
Pr[z|s = 1] Pr[s = 1]

Pr[s = 1|z] =
Pr[s = 1]

Pr[s = 1|z] Pr
D′

[z]. (5)

Thus, if we were given the probabilities Pr[s = 1] and Pr[s = 1|z], we could
derive the true probability PrD from the biased one PrD′ exactly and correct
the sample selection bias.

It is important to note that this correction is only needed for the training
sample S, since it is the only source of selection bias. With a weight-sensitive
algorithm, it suffices to reweight each sample zi with the weight wi = Pr[s=1]

Pr[s=1|zi]
.

Thus, Pr[s = 1|z] need not be estimated for all points z but only for those falling
in the training sample S. By Proposition 1, the expected value of the empirical
error after reweighting is the same as if we were given samples from the true
distribution and the usual generalization bounds hold for R̂(h) and R(h).

When the sampling probability is independent of the labels, as it is commonly
assumed in many settings (Zadrozny 2004; 2003), Pr[s = 1|z] = Pr[s = 1|x], and
Equation 5 can be re-written as

Pr
D

[z] =
Pr[s = 1]

Pr[s = 1|x]
Pr
D′

[z]. (6)

In that case, the probabilities Pr[s = 1] and Pr[s = 1|x] needed to reconstitute
PrD from PrD′ do not depend on the labels and thus can be estimated using
the unlabeled points in U . Moreover, as already mentioned, for weight-sensitive
algorithms, it suffices to estimate Pr[s = 1|xi] for the points xi of the training
data; no generalization is needed.

A simple case is when the points are defined over a discrete set.1 Pr[s = 1|x]
can then be estimated from the frequency mx/nx, where mx denotes the number
of times x appeared in S ⊆ U and nx the number of times x appeared in the full
data set U . Pr[s = 1] can be estimated by the quantity |S|/|U |. However, since
Pr[s = 1] is a constant independent of x, its estimation is not even necessary.

If the estimation of the sampling probability Pr[s = 1|x] from the unlabeled
data set U were exact, then the reweighting just discussed could correct the
sample bias optimally. Several techniques have been commonly used to estimate
the reweighting quantities. But, these estimate weights are not guaranteed to be
exact. The next section addresses how the error in that estimation affects the
error rate of the hypothesis returned by the learning algorithm.
1 This can be as a result of a quantization or clustering technique as discussed later.

42 C. Cortes et al.

3 Distributional Stability

Here, we will examine the effect on the error of the hypothesis returned by
the learning algorithm in response to a change in the way the training points
are weighted. Since the weights are non-negative, we can assume that they are
normalized and define a distribution over the training sample. This study can
be viewed as a generalization of stability analysis where a single sample point is
changed (Devroye & Wagner, 1979; Kearns & Ron, 1997; Bousquet & Elisseeff,
2002) to the more general case of distributional stability where the sample’s
weight distribution is changed.

Thus, in this section the sample weight W of SW defines a distribution over
S. For a fixed learning algorithm L and a fixed sample S, we will denote by hW
the hypothesis returned by L for the weighted sample SW . We will denote by
d(W ,W ′) a divergence measure for two distributions W and W ′. There are many
standard measures for the divergences or distances between two distributions,
including the relative entropy, the Hellinger distance, and the lp distance.

Definition 1 (Distributional β-Stability). A learning algorithm L is said to
be distributionally β-stable for the divergence measure d if for any two weighted
samples SW and SW′ ,

∀z ∈ X × Y, |c(hW , z) − c(hW′ , z)| ≤ β d(W ,W ′). (7)

Thus, an algorithm is distributionally stable when small changes to a weighted
sample’s distribution, as measured by a divergence d, result in a small change
in the cost of an error at any point. The following proposition follows directly
from the definition of distributional stability.

Proposition 2. Let L be a distributionally β-stable algorithm and let hW (hW′)
denote the hypothesis returned by L when trained on the weighted sample SW
(resp. SW′). Let WT denote the distribution according to which test points are
drawn. Then, the following holds

|R(hW) −R(hW′)| ≤ β d(W ,W ′). (8)

Proof. By the distributional stability of the algorithm,

E
z∼WT

[|c(z, hW) − c(z, hW′)|] ≤ β d(W ,W ′), (9)

which implies the statement of the proposition. �	

3.1 Distributional Stability of Kernel-Based Regularization
Algorithms

Here, we show that kernel-based regularization algorithms are distributionally β-
stable. This family of algorithms includes, among others, Support Vector Regres-
sion (SVR) and kernel ridge regression. Other algorithms such as those based on

Sample Selection Bias Correction Theory 43

the relative entropy regularization can be shown to be distributionally β-stable
in a similar way as for point-based stability. Our results also apply to classifi-
cation algorithms such as Support Vector Machine (SVM) (Cortes & Vapnik,
1995) using a margin-based loss function lγ as in (Bousquet & Elisseeff, 2002).

We will assume that the cost function c is σ-admissible, that is there exists
σ ∈ R+ such that for any two hypotheses h, h′ ∈ H and for all z = (x, y) ∈ X×Y ,

|c(h, z) − c(h′, z)| ≤ σ|h(x) − h′(x)|. (10)

This assumption holds for the quadratic cost and most other cost functions when
the hypothesis set and the set of output labels are bounded by some M ∈ R+:
∀h ∈ H, ∀x ∈ X, |h(x)| ≤ M and ∀y ∈ Y, |y| ≤ M . We will also assume that c
is differentiable. This assumption is in fact not necessary and all of our results
hold without it, but it makes the presentation simpler.

Let N : H → R+ be a function defined over the hypothesis set. Regularization-
based algorithms minimize an objective of the form: FW(h) = R̂W(h) + λN(h),
where λ ≥ 0 is a trade-off parameter. We denote by BF the Bregman divergence
associated to a convex function F , BF (f‖g) = F (f) − F (g) − 〈f − g,∇F (g)〉,
and define ∆h as ∆h = h′ − h.

Lemma 1. Let the hypothesis set H be a vector space. Assume that N is a proper
closed convex function and that N is differentiable. Assume that FW admits a
minimizer h ∈ H and FW′ a minimizer h′ ∈ H. Then, the following bound holds,

BN (h′‖h) + BN (h‖h′) ≤ σ l1(W ,W ′)
λ

sup
x∈S

|∆h(x)|. (11)

Proof. Since BFW = B
�RW

+λBN and BFW′ = B
�RW′

+λBN , and a Bregman di-
vergence is non-negative, λ

(
BN(h′‖h)+BN (h‖h′)

)
≤ BFW (h′‖h)+BFW′ (h‖h′).

By the definition of h and h′ as the minimizers of FW and FW′ ,

BFW (h′‖h) + BFW′ (h‖h′) = R̂FW (h′) − R̂FW (h) + R̂FW′ (h) − R̂FW′ (h′). (12)

Thus, by the σ-admissibility of the cost function c, using the notation Wi =
W(xi) and W ′

i = W ′(xi),

λ
(
BN (h′‖h) + BN (h‖h′)

)
≤ R̂FW (h′) − R̂FW (h) + R̂FW′ (h) − R̂FW′ (h′)

=
m∑

i=1

[
c(h′, zi)Wi − c(h, zi)Wi + c(h, zi)W ′

i − c(h′, zi)W ′
i

]

=
m∑

i=1

[
(c(h′, zi) − c(h, zi))(Wi −W ′

i)
]

=
m∑

i=1

[
σ|∆h(xi)|(Wi −W ′

i)
]

≤ σl1(W ,W ′) sup
x∈S

|∆h(x)|,

(13)

which establishes the lemma. �	

44 C. Cortes et al.

Given x1, . . . , xm ∈ X and a positive definite symmetric (PDS) kernel K, we
denote by K ∈ Rm×m the kernel matrix defined by Kij = K(xi, xj) and by
λmax(K) ∈ R+ the largest eigenvalue of K.

Lemma 2. Let H be a reproducing kernel Hilbert space with kernel K and let
the regularization function N be defined by N(·) = ‖·‖2

K. Then, the following
bound holds,

BN (h′‖h) + BN (h‖h′) ≤ σλ
1
2
max(K) l2(W ,W ′)

λ
‖∆h‖2. (14)

Proof. As in the proof of Lemma 1,

λ
(
BN (h′‖h) + BN (h‖h′)

)
≤

m∑
i=1

[
(c(h′, zi) − c(h, zi))(Wi −W ′

i)
]
. (15)

By definition of a reproducing kernel Hilbert space H , for any hypothesis h ∈ H ,
∀x ∈ X,h(x) = 〈h,K(x, ·)〉 and thus also for any ∆h = h′ − h with h, h′ ∈ H ,
∀x ∈ X,∆h(x) = 〈∆h,K(x, ·)〉. Let ∆Wi denote W ′

i − Wi, ∆W the vector
whose components are the ∆Wi’s, and let V denote BN (h′‖h)+BN(h‖h′). Using
σ-admissibility, V ≤ σ

∑m
i=1 |∆h(xi)∆Wi| = σ

∑m
i=1 | 〈∆h,∆WiK(xi, ·)〉 |. Let

εi ∈ {−1,+1} denote the sign of 〈∆h,∆WiK(xi, ·)〉. Then,

V ≤ σ

〈
∆h,

m∑
i=1

εi∆WiK(xi, ·)
〉

≤ σ‖∆h‖K ‖
m∑

i=1

εi∆WiK(xi, ·)‖K

= σ‖∆h‖K

(m∑
i,j=1

εiεj∆Wi∆WjK(xi, xj)
)1/2

= σ‖∆h‖K

[
∆(Wε)
K∆(Wε)

] 1
2 ≤ σ‖∆h‖K‖∆W‖2λ

1
2
max(K).

(16)

In this derivation, the second inequality follows from the Cauchy-Schwarz inequal-
ity and the last inequality from the standard property of the Rayleigh quotient for
PDS matrices. Since ‖∆W‖2 = l2(W ,W ′), this proves the lemma. �	

Theorem 1. Let K be a kernel such that K(x, x) ≤ κ < ∞ for all x ∈ X. Then,
the regularization algorithm based on N(·) = ‖·‖2

K is distributionally β-stable for

the l1 distance with β ≤ σ2κ2

2λ , and for the l2 distance with β ≤ σ2κλ
1
2
max(K)
2λ .

Proof. For N(·) = ‖·‖2
K , we have BN (h′‖h) = ‖h′ − h‖2

K , thus BN (h′‖h) +
BN (h‖h′) = 2‖∆h‖2

K and by Lemma 1,

2‖∆h‖2
K ≤ σ l1(W ,W ′)

λ
sup
x∈S

|∆h(x)| ≤ σ l1(W ,W ′)
λ

κ||∆h||K . (17)

Thus ‖∆h‖K ≤ σκ l1(W,W′)
2λ . By σ-admissibility of c,

∀z ∈ X × Y, |c(h′, z) − c(h, z)| ≤ σ|∆h(x)| ≤ κσ‖∆h‖K . (18)

Sample Selection Bias Correction Theory 45

Therefore,

∀z ∈ X × Y, |c(h′, z) − c(h, z)| ≤ σ2κ2 l1(W ,W ′)
2λ

, (19)

which shows the distributional stability of a kernel-based regularization algo-
rithm for the l1 distance. Using Lemma 2, a similar derivation leads to

∀z ∈ X × Y, |c(h′, z) − c(h, z)| ≤ σ2κλ
1
2
max(K) l2(W ,W ′)

2λ
, (20)

which shows the distributional stability of a kernel-based regularization algo-
rithm for the l2 distance. �	

Note that the standard setting of a sample with no weight is equivalent to a
weighted sample with the uniform distribution WU : each point is assigned the
weight 1/m. Removing a single point, say x1, is equivalent to assigning weight
0 to x1 and 1/(m − 1) to others. Let WU ′ be the corresponding distribution,

then l1(WU ,WU ′) = 1
m +

∑m−1
i=1

∣∣∣∣ 1
m − 1

m−1

∣∣∣∣ = 2
m . Thus, in the case of kernel-

based regularized algorithms and for the l1 distance, standard uniform β-stability
is a special case of distributional β-stability. It can be shown similarly that
l2(WU ,WU ′) = 1√

m(m−1)
.

4 Effect of Estimation Error for Kernel-Based
Regularization Algorithms

This section analyzes the effect of an error in the estimation of the weight of a
training example on the generalization error of the hypothesis h returned by a
weight-sensitive learning algorithm. We will examine two estimation techniques:
a straightforward histogram-based or cluster-based method, and kernel mean
matching (KMM) (Huang et al., 2006b).

4.1 Cluster-Based Estimation

A straightforward estimate of the probability of sampling is based on the ob-
served empirical frequencies. The ratio of the number of times a point x ap-
pears in S and the number of times it appears in U is an empirical estimate
of Pr[s = 1|x]. Note that generalization to unseen points x is not needed since
reweighting requires only assigning weights to the seen training points. However,
in general, training instances are typically unique or very infrequent since fea-
tures are real-valued numbers. Instead, features can be discretized based on a
partitioning of the input space X . The partitioning may be based on a simple
histogram buckets or the result of a clustering technique. The analysis of this
section assumes such a prior partitioning of X .

We shall analyze how fast the resulting empirical frequencies converge to the
true sampling probability. For x ∈ U , let Ux denote the subsample of U contain-
ing exactly all the instances of x and let n = |U | and nx = |Ux|. Furthermore,

46 C. Cortes et al.

let n′ denote the number of unique points in the sample U . Similarly, we define
Sx, m, mx and m′ for the set S. Additionally, denote by p0 = minx∈U Pr[x] �= 0.

Lemma 3. Let δ > 0. Then, with probability at least 1 − δ, the following in-
equality holds for all x in S:

∣∣∣Pr[s = 1|x] − mx

nx

∣∣∣ ≤
√

log 2m′ + log 1
δ

p0n
. (21)

Proof. For a fixed x ∈ U , by Hoeffding’s inequality,

Pr
U

���Pr[s = 1|x] − mx

nx

�� ≥ ε
�

=
n�

i=1

Pr
x

�
| Pr[s = 1|x] − mx

i
| ≥ ε | nx = i

�
Pr[nx = i]

≤
n�

i=1

2e−2iε2 Pr
U

[nx = i].

Since nx is a binomial random variable with parameters PrU [x] = px and n, this
last term can be expressed more explicitly and bounded as follows:

2

n�
i=1

e−2iε2 Pr
U

[nx = i] ≤ 2

n�
i=0

e−2iε2

�
n

i

�
pi

x(1 − px)n−i = 2(pxe−2ε2 + (1 − px))n

= 2(1 − px(1 − e−2ε2))n ≤ 2 exp(−pxn(1 − e−2ε2)).

Since for x ∈ [0, 1], 1 − e−x ≥ x/2, this shows that for ε ∈ [0, 1],

Pr
U

���Pr[s = 1|x] − mx

nx

�� ≥ ε
�

≤ 2e−pxnε2 .

By the union bound and the definition of p0,

Pr
U

�
∃x ∈ S :

��Pr[s = 1|x] − mx

nx

�� ≥ ε
�

≤ 2m′e−p0nε2 .

Setting δ to match the upper bound yields the statement of the lemma. �	

The following proposition bounds the distance between the distribution W cor-
responding to a perfectly reweighted sample (SW) and the one corresponding to
a sample that is reweighted according to the observed bias (S

�W). For a sampled
point xi = x, these distributions are defined as follows:

W(xi) =
1
m

1
p(xi)

and Ŵ(xi) =
1
m

1
p̂(xi)

, (22)

where, for a distinct point x equal to the sampled point xi, we define p(xi) =
Pr[s = 1|x] and p̂(xi) = mx

nx
.

Proposition 3. Let B = max
i=1,...,m

max(1/p(xi), 1/p̂(xi)). Then, the l1 and l2

distances of the distributions W and Ŵ can be bounded as follows,

l1(W , Ŵ) ≤ B2

√
log 2m′ + log 1

δ

p0n
and l2(W , Ŵ) ≤ B2

√
log 2m′ + log 1

δ

p0nm
. (23)

Sample Selection Bias Correction Theory 47

Proof. By definition of the l2 distance,

l22(W , Ŵ) =
1
m2

m∑
i=1

(
1

p(xi)
− 1

p̂(xi)

)2

=
1
m2

m∑
i=1

(
p(xi) − p̂(xi)
p(xi)p̂(xi)

)2

≤ B4

m
max

i
(p(xi) − p̂(xi))2.

It can be shown similarly that l1(W,�W) ≤ B2 maxi |p(xi) − p̂(xi)|. The application
of the uniform convergence bound of Lemma 3 directly yields the statement of
the proposition. �	

The following theorem provides a bound on the difference between the generaliza-
tion error of the hypothesis returned by a kernel-based regularization algorithm
when trained on the perfectly unbiased distribution, and the one trained on the
sample bias-corrected using frequency estimates.

Theorem 2. Let K be a PDS kernel such that K(x, x) ≤ κ<∞ for all x ∈ X.
Let hW be the hypothesis returned by the regularization algorithm based on N(·) =
‖·‖2

K using SW , and h
�W the one returned after training the same algorithm

on S
�W . Then, for any δ > 0, with probability at least 1 − δ, the difference in

generalization error of these hypotheses is bounded as follows

|R(hW) −R(h
�W)| ≤ σ2κ2B2

2λ

√
log 2m′ + log 1

δ

p0n

|R(hW) −R(h
�W)| ≤ σ2κλ

1
2
max(K)B2

2λ

√
log 2m′ + log 1

δ

p0nm
.

(24)

Proof. The result follows from Proposition 2, the distributional stability and the
bounds on the stability coefficient β for kernel-based regularization algorithms
(Theorem 1), and the bounds on the l1 and l2 distances between the correct
distribution W and the estimate Ŵ . �	

Let n0 be the number of occurrences, in U , of the least frequent training example.
For large enough n, p0n ≈ n0, thus the theorem suggests that the difference of
error rate between the hypothesis returned after an optimal reweighting versus
the one based on frequency estimates goes to zero as

√
log m′

n0
. In practice, m′ ≤

m, the number of distinct points in S is small, a fortiori, logm′ is very small,
thus, the convergence rate depends essentially on the rate at which n0 increases.
Additionally, if λmax(K) ≤ m (such as with Gaussian kernels), the l2-based
bound will provide convergence that is at least as fast.

4.2 Kernel Mean Matching

The following definitions introduced by Steinwart (2002) will be needed for the
presentation and discussion of the kernel mean matching (KMM) technique. Let

48 C. Cortes et al.

X be a compact metric space and let C(X) denote the space of all continuous
functions over X equipped with the standard infinite norm ‖ · ‖∞. Let K : X ×
X → R be a PDS kernel. There exists a Hilbert space F and a map Φ : X → F
such that for all x, y ∈ X , K(x, y) = 〈Φ(x), Φ(y)〉. Note that for a given kernel
K, F and Φ are not unique and that, for these definitions, F does not need to
be a reproducing kernel Hilbert space (RKHS).

Let P denote the set of all probability distributions over X and let µ : P → F
be the function defined by ∀p ∈ P , µ(p) = Ex∼p[Φ(x)]. A function g : X → R

is said to be induced by K if there exists w ∈ F such that for all x ∈ X ,
g(x) = 〈w,Φ(x)〉. K is said to be universal if it is continuous and if the set of
functions induced by K are dense in C(X).

Theorem 3 (Huang et al. (2006a)). Let F be a separable Hilbert space and
let K be a universal kernel with feature space F and feature map Φ : X → F .
Then, µ is injective.

Proof. We give a full proof of the main theorem supporting this technique in a
longer version of this paper. The proof given by Huang et al. (2006a) does not
seem to be complete. �	

The KMM technique is applicable when the learning algorithm is based on a uni-
versal kernel. The theorem shows that for a universal kernel, the expected value
of the feature vectors induced uniquely determines the probability distribution.
KMM uses this property to reweight training points so that the average value
of the feature vectors for the training data matches that of the feature vectors
for a set of unlabeled points drawn from the unbiased distribution.

Let γi denote the perfect reweighting of the sample point xi and γ̂i the esti-
mate derived by KMM. Let B′ denote the largest possible reweighting coefficient
γ and let ε be a positive real number. We will assume that ε is chosen so that
ε ≤ 1/2. Then, the following is the KMM constraint optimization

min
γ

G(γ) = ‖ 1
m

m∑
i=1

γiΦ(xi)−
1
n

n∑
i=1

Φ(x′
i)‖ s.t. γi ∈ [0, B′]∧

∣∣ 1
m

m∑
i=1

γi − 1
∣∣ ≤ ε.

Let γ̂ be the solution of this optimization problem, then 1
m

∑m
i=1 γ̂i = 1+ ε′ with

−ε ≤ ε′ ≤ ε. For i ∈ [1,m], let γ̂′
i = γ̂i/(1 + ε′). The normalized weights used in

KMM’s reweighting of the sample are thus defined by γ̂′
i/m with 1

m

∑m
i=1 γ′

i = 1.
As in the previous section, given x1, . . . , xm ∈ X and a strictly positive definite

universal kernel K, we denote by K ∈ Rm×m the kernel matrix defined by Kij =
K(xi, xj) and by λmin(K) > 0 the smallest eigenvalue of K. We also denote by
cond(K) the condition number of the matrix K: cond(K) = λmax(K)/λmin(K).
When K is universal, it is continuous over the compact X×X and thus bounded,
and there exists κ < ∞ such that K(x, x) ≤ κ for all x ∈ X .

Proposition 4. Let K be a strictly positive definite universal kernel. Then, for
any δ > 0, with probability at least 1−δ, the l2 distance of the distributions γ̂′/m
and γ/m is bounded as follows:

Sample Selection Bias Correction Theory 49

1
m
‖(γ̂′ − γ)‖2 ≤ 2εB′

√
m

+
2κ

1
2

λ
1
2
min(K)

√
B′2

m
+

1
n

(
1 +

√
2 log

2
δ

)
. (25)

Proof. Since the optimal reweighting γ verifies the constraints of the optimiza-
tion, by definition of γ̂ as a minimizer, G(γ̂) ≤ G(γ). Thus, by the triangle
inequality,

‖ 1
m

m∑
i=1

γ̂iΦ(xi) −
1
m

m∑
i=1

γiΦ(xi)‖ ≤ G(γ̂) + G(γ) ≤ 2G(γ). (26)

Let L denote the left-hand side of this inequality: L = 1
m‖

∑m
i=1(γ̂i − γi)Φ(xi)‖.

By definition of the norm in the Hilbert space, L = 1
m

√
(γ̂ − γ)
K(γ̂ − γ).

Then, by the standard bounds for the Rayleigh quotient of PDS matrices, L ≥
1
mλ

1
2
min(K)‖(γ̂ − γ)‖2. This combined with Inequality 26 yields

1
m
‖(γ̂ − γ)‖2 ≤ 2G(γ)

λ
1
2
min(K)

. (27)

Thus, by the triangle inequality,

1
m
‖(γ̂′ − γ)‖2 ≤ 1

m
‖(γ̂′ − γ̂)‖2 +

1
m
‖(γ̂ − γ)‖2 ≤ |ε′|/m

1 + ε′
‖γ‖2 +

2G(γ)

λ
1
2
min(K)

≤ 2|ε′|B′√m

m
+

2G(γ)

λ
1
2
min(K)

≤ 2εB′
√
m

+
2G(γ)

λ
1
2
min(K)

.

(28)

It is not difficult to show using McDiarmid’s inequality that for any δ > 0, with
probability at least 1− δ, the following holds (Lemma 4, (Huang et al., 2006a)):

G(γ) ≤ κ
1
2

√
B′2

m
+

1
n

(
1 +

√
2 log

2
δ

)
. (29)

This combined with Inequality 28 yields the statement of the proposition. �	

The following theorem provides a bound on the difference between the general-
ization error of the hypothesis returned by a kernel-based regularization algo-
rithm when trained on the true distribution, and the one trained on the sample
bias-corrected KMM.

Theorem 4. Let K be a strictly positive definite symmetric universal kernel. Let
hγ be the hypothesis returned by the regularization algorithm based on N(·) =
‖·‖2

K using Sγ/m and h
�γ′ the one returned after training the same algorithm on

S
�γ′/m. Then, for any δ > 0, with probability at least 1 − δ, the difference in

generalization error of these hypotheses is bounded as follows

|R(hγ) − R(h
�γ′)| ≤ σ2κλ

1
2
max(K)

λ

�� εB′
√

m
+

κ
1
2

λ
1
2
min(K)

	
B′2

m
+

1

n

1 +

	
2 log

2

δ

�� .

50 C. Cortes et al.

For ε = 0, the bound becomes

|R(hγ) −R(h
�γ′)| ≤ σ2κ

3
2 cond

1
2 (K)

λ

√
B′2

m
+

1
n

(
1 +

√
2 log

2
δ

)
. (30)

Proof. The result follows from Proposition 2 and the bound of Proposition 4. �	
Comparing this bound for ε = 0 with the l2 bound of Theorem 4, we first note
that B and B′ are essentially related modulo the constant Pr[s = 1] which is not
included in the cluster-based reweighting. Thus, the cluster-based convergence
is of the order O(λ

1
2
max(K)B2

√
log m′

p0nm) and the KMM convergence of the order

O(cond
1
2 (K) B√

m
). Taking the ratio of the former over the latter and noticing

p−1
0 ≈ O(B), we obtain the expression O

(√
λmin(K)B log m′

n

)
. Thus, for n >

λmin(K)B log(m′) the convergence of the cluster-based bound is more favorable,
while for other values the KMM bound converges faster.

5 Experimental Results

In this section, we will compare the performance of the cluster-based reweighting
technique and the KMM technique empirically. We will first discuss and analyze
the properties of the clustering method and our particular implementation.

The analysis of Section 4.1 deals with discrete points possibly resulting from
the use of a quantization or clustering technique. However, due to the relatively
small size of the public training sets available, clustering could leave us with
few cluster representatives to train with. Instead, in our experiments, we only
used the clusters to estimate sampling probabilities and applied these weights
to the full set of training points. As the following proposition shows, the l1 and
l2 distance bounds of Proposition 5 do not change significantly so long as the
cluster size is roughly uniform and the sampling probability is the same for all
points within a cluster. We will refer to this as the clustering assumption. In
what follows, let Pr[s = 1|Ci] designate the sampling probability for all x ∈ Ci.
Finally, define q(Ci) = Pr[s = 1|Ci] and q̂(Ci) = |Ci ∩ S|/|Ci ∩ U |.

Proposition 5. Let B = max
i=1,...,m

max(1/q(Ci), 1/q̂(Ci)). Then, the l1 and l2

distances of the distributions W and Ŵ can be bounded as follows,

l1(W,�W) ≤ B2

�
|CM |k(log 2k + log 1

δ
)

q0nm
l2(W, �W) ≤ B2

�
|CM |k(log 2k + log 1

δ
)

q0nm2
,

where q0 = min q(Ci) and |CM | = maxi |Ci|.
Proof. By definition of the l2 distance,

l22(W,�W) =
1

m2

k�
i=1

�
x∈Ci

1

p(x)
− 1

p̂(x)

�2

=
1

m2

k�
i=1

�
x∈Ci

1

q(Ci)
− 1

q̂(Ci)

�2

≤ B4|CM |
m2

k�
i=1

max
i

(q(Ci) − q̂(Ci))
2.

Sample Selection Bias Correction Theory 51

Table 1. Normalized mean-squared error (NMSE) for various regression data sets using
unweighted, ideal, clustered and kernel-mean-matched training sample reweightings

Data set |U | |S| ntest Unweighted Ideal Clustered KMM

abalone 2000 724 2177 .654±.019 .551±.032 .623±.034 .709±.122

bank32nh 4500 2384 3693 .903±.022 .610±.044 .635±.046 .691±.055

bank8FM 4499 1998 3693 .085±.003 .058±.001 .068±.002 .079±.013

cal-housing 16512 9511 4128 .395±.010 .360±.009 .375±.010 .595±.054

cpu-act 4000 2400 4192 .673±.014 .523±.080 .568±.018 .518±.237

cpu-small 4000 2368 4192 .682±.053 .477±.097 .408±.071 .531±.280

housing 300 116 206 .509±.049 .390±.053 .482±.042 .469±.148

kin8nm 5000 2510 3192 .594±.008 .523±.045 .574±.018 .704±.068

puma8NH 4499 2246 3693 .685±.013 .674±.019 .641±.012 .903±.059

The right-hand side of the first line follows from the clustering assumption and
the inequality then follows from exactly the same steps as in Proposition 5 and
factoring away the sum over the elements of Ci. Finally, it is easy to see that the
maxi(q(Ci) − q̂(Ci)) term can be bounded just as in Lemma 3 using a uniform
convergence bound, however now the union bound is taken over the clusters
rather than unique points. �	

Note that when the cluster size is uniform, then |CM |k = m, and the bound
above leads to an expression similar to that of Proposition 5.

We used the leaves of a decision tree to define the clusters. A decision tree
selects binary cuts on the coordinates of x ∈ X that greedily minimize a node
impurity measure, e.g., MSE for regression (Breiman et al., 1984). Points with
similar features and labels are clustered together in this way with the assumption
that these will also have similar sampling probabilities.

Several methods for bias correction are compared in Table 1. Each method
assigns corrective weights to the training samples. The unweighted method uses
weight 1 for every training instance. The ideal method uses weight 1

Pr[s=1|x] ,
which is optimal but requires the sampling distribution to be known. The clus-
tered method uses weight |Ci ∩ U |/|Ci ∩ S|, where the clusters Ci are regression
tree leaves with a minimum count of 4 (larger cluster sizes showed similar, though
declining, performance). The KMM method uses the approach of Huang et al.
(2006b) with a Gaussian kernel and parameters σ =

√
d/2 for x ∈ Rd, B = 1000,

ε = 0. Note that we know of no principled way to do cross-validation with KMM
since it cannot produce weights for a held-out set (Sugiyama et al., 2008).

The regression datasets are from LIAAD2 and are sampled with P [s = 1|x] =
ev

1+ev where v = 4w·(x−x̄)
σw·(x−x̄)

, x ∈ Rd and w ∈ Rd chosen at random from [−1, 1]d. In
our experiments, we chose ten random projections w and reported results with
the w, for each data set, that maximizes the difference between the unweighted
and ideal methods over repeated sampling trials. In this way, we selected bias
samplings that are good candidates for bias correction estimation.

2 www.liaad.up.pt/~ltorgo/Regression/DataSets.html

52 C. Cortes et al.

For our experiments, we used a version of SVR available from LibSVM3 that
can take as input weighted samples, with parameter values C = 1, and ε = 0.1
combined with a Gaussian kernel with parameter σ =

√
d/2. We report results

using normalized mean-squared error (NMSE): 1
ntest

∑ntest

i=1
(yi−ŷi)

2

σ2
y

, and provide
mean and standard deviations for ten-fold cross-validation.

Our results show that reweighting with more reliable counts, due to clustering,
can be effective in the problem of sample bias correction. These results also
confirm the dependence that our theoretical bounds exhibit on the quantity n0.
The results obtained using KMM seem to be consistent with those reported by
the authors of this technique.4

6 Conclusion

We presented a general analysis of sample selection bias correction and gave
bounds analyzing the effect of an estimation error on the accuracy of the hy-
potheses returned. The notion of distributional stability and the techniques pre-
sented are general and can be of independent interest for the analysis of learning
algorithms in other settings. In particular, these techniques apply similarly to
other importance weighting algorithms and can be used in other contexts such
that of learning in the presence of uncertain labels. The analysis of the discrim-
inative method of (Bickel et al., 2007) for the problem of covariate shift could
perhaps also benefit from this study.

References

Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing training and
test distributions. In: ICML 2007, pp. 81–88 (2007)

Bousquet, O., Elisseeff, A.: Stability and generalization. JMLR 2, 499–526 (2002)
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees.

CRC Press, Boca Raton (1984)
Cortes, C., Vapnik, V.N.: Support-Vector Networks. Machine Learning 20, 273–297

(1995)
Devroye, L., Wagner, T.: Distribution-free performance bounds for potential function

rules. IEEE Trans. on Information Theory, 601–604 (1979)
Dud́ık, M., Schapire, R.E., Phillips, S.J.: Correcting sample selection bias in maximum

entropy density estimation. In: NIPS 2005 (2006)
Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI, pp. 973–978 (2001)
Fan, W., Davidson, I., Zadrozny, B., Yu, P.S.: An improved categorization of classifier’s

sensitivity on sample selection bias. In: ICDM 2005, pp. 605–608. IEEE Computer
Society, Los Alamitos (2005)

Heckman, J.J.: Sample Selection Bias as a Specification Error. Econometrica 47, 151–
161 (1979)

3 www.csie.ntu.edu.tw/~cjlin/libsvmtools
4 We thank Arthur Gretton for discussion and help in clarifying the choice of the

parameters and design of the KMM experiments reported in (Huang et al., 2006b),
and for providing the code used by the authors for comparison studies.

Sample Selection Bias Correction Theory 53

Huang, J., Smola, A., Gretton, A., Borgwardt, K., Schölkopf, B.: Correcting Sample
Selection Bias by Unlabeled Data. Technical Report CS-2006-44). University of Wa-
terloo (2006a)

Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting sample
selection bias by unlabeled data. In: NIPS 2006, pp. 601–608 (2006b)

Kearns, M., Ron, D.: Algorithmic stability and sanity-check bounds for leave-one-out
cross-validation. In: COLT 1997, pp. 152–162 (1997)

Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data. John Wiley & Sons,
Inc., New York (1986)

Saunders, C., Gammerman, A., Vovk, V.: Ridge Regression Learning Algorithm in
Dual Variables. In: ICML 1998, pp. 515–521 (1998)

Steinwart, I.: On the influence of the kernel on the consistency of support vector ma-
chines. JMLR 2, 67–93 (2002)

Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P., Kawanabe, M.: Direct im-
portance estimation with model selection and its application to covariate shift adap-
tation. In: NIPS 2008 (2008)

Vapnik, V.N.: Statistical learning theory. Wiley-Interscience, New York (1998)
Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In: ICML

2004 (2004)

Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate ex-

ample weighting. In: ICDM 2003 (2003)

Exploiting Cluster-Structure to Predict the

Labeling of a Graph

Mark Herbster

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, England, UK
m.herbster@cs.ucl.ac.uk

Abstract. The nearest neighbor and the perceptron algorithms are in-
tuitively motivated by the aims to exploit the “cluster” and “linear sep-
aration” structure of the data to be classified, respectively. We develop a
new online perceptron-like algorithm, Pounce, to exploit both types of
structure. We refine the usual margin-based analysis of a perceptron-like
algorithm to now additionally reflect the cluster-structure of the input
space. We apply our methods to study the problem of predicting the la-
beling of a graph. We find that when both the quantity and extent of the
clusters are small we may improve arbitrarily over a purely margin-based
analysis.

1 Introduction

We study the problem of online learning over a graph. Consider the following
game for predicting the labeling of a graph. Nature presents a vertex vi1 ; the
learner predicts the label of the vertex ŷ1 ∈ {−1, 1}; nature presents a label y1;
nature presents a vertex vi2 ; the learner predicts ŷ2; and so forth. The learner’s
goal is minimize the total number of mistakes (|{t : ŷt �= yt}|). If nature is adver-
sarial, the learner will always mispredict; but if nature is regular or simple, there
is hope that a learner may make only a few mispredictions. Thus, a methodolog-
ical goal is to give learners whose total mispredictions can be bounded relative
to the “complexity” of nature’s labeling. In [16,15], the cut size (the number
of edges between disagreeing labels) and diameter were used as a measure of
the complexity of a graph’s labeling. We will show that such bounds may be
improved arbitrarily by also considering the cluster-structure of the graph.

The problem of labeling a graph online is not only of theoretical interest but
may also be practically motivated. For example, consider a system which serves
advertisements on web pages. The web pages may be identified with the vertices
of a graph and the edges as links between pages. The online prediction problem
is then that, at a given time t the system may receive a request to serve an
advertisement on a particular web page. For simplicity, we assume that there
are two alternatives to be served: either advertisement “A” or advertisement
“B”. The system then interprets the feedback as the label and then may use this

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 54–69, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exploiting Cluster-Structure to Predict the Labeling of a Graph 55

information in responding to the next request to predict an advertisement for a
requested web page.

Recently there has been extensive research into both transduction and semi-
supervised learning in the batch setting. A motivating hypothesis is that the
structure of the input space may be exploited to improve learning when either
the cluster or manifold condition [5] is satisfied; informally that is

Cluster Condition: If points are in the same cluster, they are likely to
be of the same class.
Manifold Condition: The (high-dimensional) data lie (roughly) on a
low-dimensional manifold.

In this paper we will give bounds for an online perceptron-like algorithm which
supports this hypothesis. In particular we will take advantage of “clumpiness”
in the input space; thus when the inputs are distributed uniformly over a sphere
we will find no advantage. However, if it is the case that the input space X is
such that it is concentrated into a few dense clusters or if it lies on a smooth
low-dimensional manifold, we can then cover the input space with a relatively
moderate number of balls of modest diameter with respect to the extent of X .

In Section 4 we give a new online algorithm Pounce with a mistake bound
based on the size of the cover of an input space X . The minimum number of
balls of (squared) diameter ρ that cover X is denoted as N (X, ρ). With the
assumption that the input space is a subset of an inner-product space which is
induced by a graph Laplacian, we refine the classical result of Novikoff [20] in
Theorem 2 by incorporating the cover size to give

|M| ≤ N (X, ρ) + ‖u‖2
ρ + 1 .

Here |M| is the cumulative mistakes of our algorithm, and ‖u‖2 is the squared
semi-norm of a separating classifier. This result significantly improves on the
Novikoff bound when the input space consists of a few dense clusters but not
uniformly as the squared diameter may be four times larger than the origin-based
squared radius of Novikoff bound and the additive constant “1”.

A key issue in graph-based transductive learning is how we should use the basic
inputs to build a graph for a given algorithm. In Section 5 we apply the previous
result in order to understand implications of using the exponential embedding
(“heat kernel” [2]) to build a graph. There we will additionally assume as with
the “cluster condition” that points in the same ball will have the same label.
In Figure 1 we illustrate our results with the classic two moons dataset [2].
Here each “moon” represents and contains points of only a single class. We can
characterize this dataset via two types of now label-dependent covers of the input
space. Their corresponding cover numbers N ◦ and C◦ differ from N in that each
set in these covers consist only of labeled points of the same class. The first kind
of cover is illustrated by the N ◦ = 42 balls which completely cover the input
space. The diameter ρ of these balls must be less than the minimal separation
between any two opposing labels δ. The second kind of cover C◦ assumes now
that we have particular knowledge of the unlabeled data. The second cover is

56 M. Herbster

+

+

+
+

+

+

+

+

- -

-

-

-
-

-
-

•

• •

•

•

• •

• •

•

•

• •

•

• •

•

••

•

•

••

••

•

•

••

•

••

Fig. 1. Covering the two moons

+

+

+

+

+

+

+

+

- -

- -

- -

- -

+

+

+

+

+

+

+

+

Fig. 2. Three clusters (one in isolation)

in terms of ρ-path-connected sets, i.e., every two points is connected by a path
of points for which every point in the path is no more than ρ distant from its
predecessor and successor in the path. Thus in Figure 1 the 30 black points cover
the input space and define a ρ-path-connected cover of size C◦ = 2. Given such
covers of the input space Theorem 8 then implies that there is an embedding of
the input space with a graph Laplacian such that the mistakes of our algorithm
may be then bounded by

|M| ≤ C◦ + 1 ≤ N ◦ + 1 .

This result gives an insight into the value of unlabeled data in transductive (semi-
supervised) learning within the context of our setting. From the bound above
we see that with no assumptions on the unlabeled data beyond the geometry of
the input space, a priori, our mistake bound is N ◦ + 1 whereas increasing the
quantity of unlabeled data may induce a cover via a few path-connected subsets
such that C◦ � N ◦, significantly decreasing the upper bound.

2 Background

Our research builds on the extensive literature concerned with algorithmic vari-
ants of the perceptron and their mistake bound analysis; a few recent examples
include [18,8,10,13,4,6]. Our particular concern is to factor into the usual margin-
based analyses a model which can capture simplifying elements of the cluster-
structure of the input space. A mistake bound analysis which also incorporates
the structure of the input space is that of the second-order perceptron [4]; those
results are based on the spectrum of the correlation matrix of the inputs. In the
algorithmic luckiness framework [12] an analysis of the max-margin classifier is
also given in terms of the cover number of the input space.

Semi-supervised and transductive learning methods suppose that unlabeled
data can aid the learner. Thus if the input space is benign as characterized by
the cluster and/or manifold conditions, it is expected that the unlabeled data

Exploiting Cluster-Structure to Predict the Labeling of a Graph 57

may be exploited. A common approach is to use the labeled and unlabeled data
to build a “graph” which is then used by the learning method. The seminal
approach in [3] is to predict with a labeling which is consistent with a minimum
label-separating cut. The approach which directly motivates our work is that
based on the semi-norm which is induced by the graph Laplacian [22,2,17] which
is either directly minimized subject to constraints, or used as a regularizer.

2.1 Prediction on a Graph with a Perceptron

In [16,15] the online graph labeling problem was studied. An aim of those pa-
pers was to provide a “natural” interpretation of the bound on the cumulative
mistakes of the kernel perceptron. Results were given when the basic kernel was
the pseudoinverse of the graph Laplacian. As the current work builds directly on
the results in [16,15] we will selectively summarize and elaborate on those prior
results.

The graph Laplacian is a positive semidefinite matrix which is defined from
the adjacency (weight) matrix of the graph. Let A be the n×n symmetric weight
matrix of the graph such that Aij ≥ 0, and define the edge set E(G) := {(i, j) :
0 < Aij}; note edges are unordered pairs thus (i, j) ≡ (j, i). The graph Laplacian
G is then the n× n matrix defined as

G := D − A, (1)

where Ddiag(d1, . . . , dn) and di is the weighted degree of vertex i, di

∑n
j=1 Aij .

The induced semi-norm is then

‖u‖2 := u�Gu =
∑

(i,j)∈E(G)

Aij(ui − uj)2. (2)

The graph is naturally interpreted as an n-vertex resistive network where each
edge (i, j) ∈ E(G) is viewed as a resistor with resistance 1

Aij
. Thus the effective

resistance rG(p, q) between vertex p and q is then the potential difference needed
to induce a unit current flow between p and q. The effective resistance may be
computed via [19],

rG(p, q) = (ep − eq)�G+(ep − eq), (3)

where “+” denotes the pseudoinverse and ep is the p-th coordinate vector of IRn.
The resistance diameter of a graph RG := max1≤p<q≤n rG(p, q) is the maximum
of the effective resistances between each of the pairs of vertices on the graph.
Surprisingly, both rG(·, ·) and

√
rG(·, ·) are metrics on the graph [19].

In [15, Theorem 4.2 (with b = RG; c = 0)] using the pseudoinverse of the
graph Laplacian mixed with the “constant” function as a kernel the cumulative
mistakes of the kernel perceptron was upper bounded by

|M| ≤ 2‖u∗‖2
RG + 2. (4)

58 M. Herbster

In the above u∗ is the optimal classifier which is correct on the examples; thus

u∗ := argmin
u∈IRn

{‖u‖2 : u1 = y1, . . . , u� = y�} (5)

where yi ∈ {−1, 1} is the true label of vertex i. Thus if we view the graph as
a resistive network and we fix the voltages at vertices i = 1, . . . , � to y1, . . . , y�,
respectively, then by Thomson’s principle [7] u∗ is then the vector of voltages
that minimizes the energy dissipation (power). On an unweighted graph (Aij ∈
{0, 1}) the energy dissipation and the resistance diameter may themselves be
bounded by

‖u∗‖2 ≤ 4Φ(u∗) and RG ≤ DG,

four times the separating cut size and the geodesic diameter of the graph, re-
spectively. The separating cut is the number of edges required to separate the
positive and negative labels, and the geodesic diameter of a graph is the maxi-
mum of the geodesic distances between each of the pairs of vertices on the graph.
In the central result of this paper, Theorem 2, we improve the leading term of
the bound (equation (4)) by a factor of two. More significantly, we will see in
the following subsection that we may improve over (4) without limit when the
graph consists of three or more “dense” clusters.

2.2 Three Clusters Are Hard for the Perceptron

First we will recall the analysis of a graph with two clusters as given in [15,
p. 7]; there it was found that the mistakes of the perceptron could be upper
bounded by a constant independent of the size of the clusters. Then we will
observe that the two-cluster result does not generalize to 3+ clusters. In this
discussion, for simplicity, we represent a “cluster” in an unweighted graph by an
m-vertex clique.

Following [15] consider two m-cliques (one labeled “+1”, one “-1”) with �
arbitrary edges (� < m) connecting the cliques. Note that between any two
vertices there are at least � edge-disjoint paths of length no more than five, and
therefore the resistance diameter RG is at most 5/� and the cut size is Φ(u∗) = �.
Hence by (4) the boundon the cumulative mistakes is the constant 42.

Now consider the addition of a third cluster (m-clique) such that the first
two cliques are connected by � edges in proportion to m (cm < � < m), but
the third cluster is connected to the initial two by a constant number of edges
independent of m and thus RG = Θ(1) (see Figure 2). Thus as m increases,
in relative terms the third cluster becomes increasingly remote, but counter to
geometric intuition the perceptron upper bound (4) increases as Θ(�). Whereas
with Pounce applied to the three cluster problem an upper bound on mistakes
is the constant 20 (Equation (10) with ρ = 2

m−1 , N (X, ρ) = 3, and Φ(u∗) <
2�). The difficulty of the three cluster problem for the perceptron is not only a
problem in upper bound but also in performance, as there exists a parameterized
three-example separable set such that the perceptron must incur mistakes linear
in the parameter. In contrast, the upper bound of Pounce is a constant. We
omit this example for reasons of space, however, see [14].

Exploiting Cluster-Structure to Predict the Labeling of a Graph 59

3 Preliminaries

We denote matrices (conventionally n × n) by capital bold letters and vectors
(conventionally n×1) by small bold case letters. So M denotes the n×n matrix
(Mij)n

i,j=1 and w the n-dimensional column vector (w1, . . . , wn)� also denoted
by (w(1), . . . ,w(n))� where “�” denotes transposition. The identity matrix is
denoted by I. We also let 0 and 1 be the n-dimensional vectors all of whose
components equal to zero and one respectively, and ei the i-th coordinate vector
of IRn. Let IN be the set of natural numbers and IN� := {1, . . . , �}. Let H denote
a Hilbert space. If A and B are sets then the set difference is denoted A\B and
the shorthand A\x := A\{x}.

A symmetric positive semidefinite matrix M induces a semi-inner product on
IRn which is defined as

〈u,w〉M := u�Mw,

where ‖w‖M := 〈w,w〉M denotes the associated semi-norm (note that the sub-
script “M” in both 〈·, ·〉M and ‖·‖M may be omitted when clear from the con-
text). The reproducing kernel [1] associated with the above semi-inner product
is K = M+, where “+” denotes the pseudoinverse. We also define the coordinate
spanning set

VM := {vi := M+ei : i = 1, . . . , n} (6)

and let H(M) : span(VM). The restriction of the semi-inner product 〈·, ·〉M to
H(M) is an inner product on H(M). The set VM acts as “coordinates” for H(M),
that is, if w ∈ H(M) we have

w(i) = e�
i M+Mw = v�

i Mw = 〈vi,w〉M, (7)

although the vectors {v1, . . . ,vn} are not necessarily normalized and are linearly
independent only if M is positive definite. We note that equation (7) is simply
the reproducing kernel property [1] for kernel M+.

A discrepancy function d : X × X → [0,∞] is symmetric d(x, y) = d(y, x)
and (d(x, y) = 0) ⇐⇒ (x = y). The diameter D(X, d) of a set X ⊆ X is
the maximum discrepancy between any two points in X , and thus D(X, d) :=
supx,x′∈X d(x, x′). The covering number N (X, ρ, d) is the minimal number of
sets of diameter ρ that contain set X . Thus

N (X, ρ, d) := min
{X′

i}k
i=1

{k ∈ IN+ : D(X ′
i, d) ≤ ρ, ∀i ∈ INk, ∪k

i=1X
′
i ⊇ X} ; (8)

if the minimum does not exist then N (X, ρ, d) := ∞. When X ⊆ H(M) we
assume a discrepancy which is a squared norm dM(x, y) := ‖x− y‖2

M for which
we define the abbreviated notation N (X, ρ) := N (X, ρ, dM).

3.1 The Signed Laplacian

The graph Laplacian (see (1)) is naturally generalized by the class of symmetric
diagonally dominant matrices with nonnegative diagonals which we will refer to

60 M. Herbster

as signed Laplacians. Recall that a matrix M is a symmetric diagonally dominant
iff |Mii| ≥

∑
j 	=i |Mij | for every i ∈ INn.

Goldberg et al. [11] introduced the use of the signed Laplacian into semi-
supervised learning to explicitly encode dissimilarity relations. The following
lemma decomposes the quadratic form u�Mu into edge and vertex contributions
enabling the interpretation of u�Mu as a smoothness measure of a labeling
u ∈ {−1, 1}n of an associated graph.

Lemma 1. If M is symmetric and u ∈ IRn then

u�Mu =
∑

(i,j)∈E+

|Mij |(ui−uj)2+
∑

(i,j)∈E−

|Mij |(ui+uj)2+
∑

i∈INn

[Mii−(D+
i +D−

i)]u2
i , (9)

where E+ := {(i, j) : Mij < 0, i < j} is the positive edge set and E− := {(i, j) :
Mij > 0, i < j} is the negative edge set and

D+
i :=

∑
j∈{k:Mik<0,k 	=i}

|Mij | , D−
i :=

∑
j∈{k:Mik>0,k 	=i}

|Mij |

are the positive and negative edge degrees of the ith vertex respectively. If for all
i ∈ INn the vertex weight Mii − (D+

i + D−
i) is nonnegative then M is positive

semidefinite.

Proof. SinceM is symmetric then u�Mu=2
∑n−1

i=1

∑n
j=i+1 Mijuiuj+

∑n
i=1 Miiu

2
i.

Therefore as

2Mijuiuj =

{
|Mij |(ui + uj)2− |Mij |(u2

i + u2
j) Mij ≥ 0

|Mij |(ui − uj)2− |Mij |(u2
i + u2

j) Mij ≤ 0

equation (9) follows immediately. Since the first two terms in (9) are nonnegative,
and the third is nonnegative if the vertex weight Mii−(D+

i +D−
i) is nonnegative

∀i ∈ INn, then u�Mu ≥ 0 for u ∈ IRn, and thus M is positive semidefinite. �	

Thus if all the vertex weights are nonnegative M is a signed Laplacian and
‖·‖M is a semi-norm. The “sign” of the edges reflect dissimilarity (similarity)
penalties as when two vertices are connected by a positive (negative) edge its
contribution to the semi-norm is zero if the labels are the same (different) and
positive otherwise. A matrix with a zero vertex weighting and an empty negative
edge set corresponds to the Laplacian matrix defined in (1). A matrix M is
irreducible iff there does not exist partitioning sets P,Q ⊂ INn, P ∪Q = INn such
that Mpq = 0 for each p ∈ P and q ∈ Q; this is equivalent to stating that the
associated graph is connected.

4 The Pounce Algorithm

In a mistake-driven algorithm the mistaken examples implicitly generate a cover
of the input space via the hypothesis vector. The motivating idea of the Pounce

Exploiting Cluster-Structure to Predict the Labeling of a Graph 61

Input: {(vit , yt)}�
t=1 ⊆ VM × {−1, 1}.

Initialization: w2 = 0; M = {1}.
for t = 2, . . . , 	 do

Receive: it ∈ {1, . . . , n}
ηt = arg minj∈M ‖vit − vij ‖

Predict: ŷt = sign(yηt + wt(it) − wt(iηt))
Receive: yt

if ŷt = yt then
wt+1 = wt

else
wt+1 = wt +

yt−yηt−(wt(it)−wt(iηt))

‖vit
−viηt

‖2 (vit − viηt
)

M = M ∪ {t}
end

Fig. 3. The Pounce Algorithm

(Projection-Orientated-Using-Nearby-Cover-Elements) algorithm (see Figure 3)
is to explicitly use that cover to design an algorithm whose analysis directly re-
flects both the margin of the separating hypothesis and the structure of the input
space. Although it may be possible to achieve similar bounds for a “second order”
algorithm our aim is to design an algorithm whose bound can improve on the ker-
nel perceptron in natural scenarios with no increase in the order of computational
complexity. Thus the time complexity of Pounce is identical to the kernel per-
ceptron that is O(mt) time required on trial t where mt is the current total of the
cumulative mistakes. Thus the total time required for � trials is O(m��). This is
assuming the kernel is provided in advance. However, if we are interested in pre-
dicting the labeling of a graph with a (signed) Laplacian we must calculate the
pseudoinverse of the (signed) Laplacian. The time required to initially compute
this kernel in the general case of an n-vertex graph is pragmatically O(n3); how-
ever, see [9] for a significant improvement when the graph is a tree. As computing
the kernel is a one-time cost, the existence of multiple problems or multiple vali-
dation experiments on the same graph may effectively offset this initial cost.

The input to Pounce is an online sequence of vertices and labels from a
graph with associated (signed) Laplacian M. The first trial is automatically
a mistake. On the tth trial vertex it ∈ INn is input to the algorithm as its
“cooordinate” vit ∈ VM (see (6)). In order to predict, Pounce finds the nearest
neighboring vertex vηt to vit , among those in the mistake set M, in norm ‖·‖M.
The prediction and update rule are based on both the vertex to be predicted
and its nearest neighbor. Intuitively, Pounce is thus a combination of a nearest
neighbors algorithm and a perceptron-like algorithm.

Theorem 2. Let M be either an irreducible Laplacian or a positive definite
signed Laplacian. If X := {vit}�

t=1 ∈ V�
M and Y := {yt}�

t=1 ∈ {−1, 1}� are the
sequences of inputs and associated labels and M is the set of trials in which the
Pounce algorithm predicted incorrectly, then the cumulative mistakes |M| are
upper bounded by

62 M. Herbster

|M| ≤ N (X, ρ) + ‖u‖2ρ + 1 , (10)

for all 0 < ρ, and for all u ∈ IRn such that u(it)yt ≥ 1 for all t ∈ M.

4.1 Proof of Theorem 2

The update step of Pounce is a projection. We recall the definition of projection.

Definition 3. The projection of a point w ∈ H onto a closed convex nonempty
set U ⊆ H is defined by

P (U ;w) := arg min
u∈U

‖u− w‖. (11)

We recall the following two facts about projection: the first is the pythagorean
theorem, and the second the explicit equation for the projection to a hyperplane.

Lemma 4. If U ⊆ H is an affine set and w ∈ H, u ∈ U then

‖u− w‖2 = ‖u− P (U ;w)‖2 + ‖P (U ;w) − w)‖2, (12)

and if (x, y) ∈ H\0× IR and w ∈ H then

P ({u : 〈u,x〉 = y};w) = w +
y − 〈w,x〉

‖x‖2 x . (13)

Inspired by the maximum principle [7, p. 7] for the graph Laplacian, we prove
the following theorem which holds for the more general signed Laplacian.

Theorem 5. If M is a signed Laplacian and y ∈ {−1, 1}� then

min
u∈Uy

u�Mu = min
u∈�Uy

u�Mu (14)

with

Uy :={u ∈ IRn :u1 =y1, . . . , u� =y�} and Ũy :={u ∈ IRn :u1y1 ≥ 1, . . . , u�y� ≥ 1}.

Proof. Equation (14) is trivially true if M = 0. Consider the case that M is
irreducible. Suppose (14) is false then there exists (see [21, Corollary 27.3.1]) a
possibly nonunique vector v ∈ Ũy, such that

v�Mv = min
u∈�Uy

u�Mu < min
u∈Uy

u�Mu .

Let ι = argmaxj∈INn
|vj | be the index of a component of v of maximal magni-

tude. By our supposition 1 < |vι|. Since the constraints are orthogonal we have
that

∂

∂uι
(u�Mu)|v = 0

Exploiting Cluster-Structure to Predict the Labeling of a Graph 63

otherwise v is not a minimum. Thus computing the partial and upper bounding
gives

|vι| = |
∑
j 	=ι

Mιjvj

Mιι
| ≤

∑
j 	=ι

|Mιj||vj |
|Mιι|

. (15)

Since M is a signed Laplacian it is diagonally dominant, and thus∑
j 	=ι

|Mιj|
|Mιι|

≤ 1 . (16)

Therefore as |vι| ≥ |vj | for each j ∈ INn inequalities (15) and (16) imply that
1 < |vι| = |vj | for each j ∈ J := {j ∈ INn : Mιj �= 0}.

For each j ∈ J the above argument may be iterated and then as we have
assumed M is irreducible we may continue iterating to conclude that

1 < |v1| = . . . = |vn| .

Thus v
|v1| ∈ Ũy and as v�

|v1|M
v

|v1| < v�Mv this contradicts the assumption that
v is minimal hence (14) follows for M irreducible.

Now, alternatively, suppose M is reducible then there exists k irreducible
matrices M(1), . . . ,M(k) such that

u�Mu = u(1)�
M(1)u(1) + . . . + u(k)�

M(k)u(k)

for all u ∈ IRn and u = (u(1)
1 , u

(1)
2 , . . . , u

(k)
1 , . . . , u

(k)
ik

) with i1 + · · · + ik = n. We
conclude by applying (14) to the k independent problems. �	

Proof of Theorem 2: From the algorithm we have that for each t ∈ M\1,

wt+1 := P (Ut;wt) = wt +
yt − yηt − (wt(it) − wt(iηt))

‖vit − viηt
‖2 (vit − viηt

) ,

which is the projection of wt to the hyperplane

Ut :={u ∈ H(M) :〈u,vit−viηt
〉=yt−yηt}={u ∈ H(M) :u(it)−u(iηt) =yt−yηt},

as follows from (13). Thus for every t ∈ {2, . . . , �}

‖wt − wt+1‖2 = ‖u− wt‖2 − ‖u− wt+1‖2, (u ∈ Ut)

by Lemma 4 for t ∈ M\1 and trivially otherwise. Summing these telescoping
equalities for t = 2, . . . , � then removing from the sum on the left hand side
the terms when t �∈ M as they are zero and on the right bounding the term
−‖u− w�+1‖2 by zero gives∑

t∈M\1
‖wt − wt+1‖2 ≤ ‖u‖2 for all u ∈ U∗ :=

⋂
t∈M\1

Ut . (17)

64 M. Herbster

Now if a mistake occurs on trial t �= 1 we have that 1 ≤ |yt − yηt − wt(it) +
wt(ηt)|. Since wt+1 ∈ Ut, then 1 ≤ |wt+1(it) − wt+1(ηt) − wt(it) + wt(ηt)| =
|〈wt+1 − wt,vit − viηt

〉|. We then apply the Cauchy-Schwarz inequality to ob-
tain that

1 ≤ ‖wt+1 − wt‖‖vit − viηt
‖. (18)

Now substituting (18) into (17) gives∑
t∈M\1

1
‖vit − viηt

‖2 ≤ ‖u‖2 (u ∈ U∗) . (19)

Given X ⊂ H and ρ > 0 such that there are N (X, ρ) < ∞ balls denoted
Z1, . . . , ZN (X,ρ) of diameter ρ which cover X then define F(X, ρ) to be the set
of the initial trial indices in which a mistake first occurred in a ball (excepting
t = 1) thus t ∈ F(X, ρ) if t ∈ M\1 and there exists a j such that vit ∈ Zj and
there does not exist an s < t such that vis ∈ Zj and s ∈ M\1. We lower bound
the left hand side of (19) by removing from sum over trials those trials which
are in F(X, ρ), hence∑

t∈(M\F(X,ρ))\1

1

‖vit − viηt
‖2 ≤ ‖u‖2 (u ∈ U∗) . (20)

Since for every two points v,v′ in the same ball we have that ‖v − v′‖2 ≤ ρ
then

‖vit − viηt
‖2 ≤ ρ

for t ∈ (M\F(X, ρ))\1. Thus substituting the equation above into (20) we have

|M| − |F(X, ρ)| − 1 ≤ ‖u‖2
ρ (u ∈ U∗) . (21)

Substituting the upper bound |F(X, ρ)| ≤ N (X, ρ) into (21) it follows that the
mistake bound (10) holds for u ∈ U∗. We proceed to show that if u �∈ U∗ and
u(it)yt ≥ 1 for all t ∈ M then there exists a proxy u′ ∈ U∗ with ‖u′‖2 ≤ ‖u‖2

which hence proves the theorem.
If u ∈ IRn and u(it)yt ≥ 1 for t ∈ M then by Theorem 5 there exists a

u′ ∈ IRn such that

(u′)�M(u′) ≤ u�Mu and u′(it) = yt for t ∈ M.

If M is positive definite then u′ ∈ U∗ ⊂ IRn = H(M) and we are done; otherwise
M is an irreducible Laplacian. If M is an irreducible Laplacian then from (2)
the vector 1 spans the null space of H(M) and thus

z ∈ IRn and 1�z = 0 =⇒ z ∈ H(M) . (22)

Set u′′ := u′ − 1(1�u′

n) then (22) implies u′′ ∈ H(M) and

(u′′)�M(u′′) = (u′)�M(u′) ≤ u�Mu .

Finally u′′ ∈ U∗ since u′′(it)−u′′(ηt) = u′(it) − (1�u′

n) − (u′(ηt) − (1�u′

n)) =
u′(it) − u′(ηt) = yt − yηt , holds for t ∈ M\1. �	

Exploiting Cluster-Structure to Predict the Labeling of a Graph 65

5 The Exponential Embedding

In transductive and semi-supervised learning if a graph is not inherent in the
problem it is necessary to build the graph from the data. The usual procedure
is to use a discrepancy function over the data and build a graph using edge
weights derived by the k-NN, ε-ball, or the exponential (also known as the heat
kernel [22,2]) embedding.

Our model here is that a learning problem is determined by a possibly infinite
set X and a label function Y : X → {−1, 1} which are both unknown to the
learner. Structure is imposed on X through a discrepancy d : X × X → [0,∞].
The learner is initially given a finite input set X ⊆ X and d(X,X). Subsequently,
the learner will predict a subset of the labels of X in an online fashion. In this
section we study the performance of Pounce if we predict by building a graph
Laplacian using the exponential embedding of X .

Definition 6. If X = {x1, . . . , xn} ⊆ X is an indexed finite set, d : X × X →
[0,∞] is a discrepancy function, and a > 0 is a scale parameter then the expo-
nential embedding of (X, d, a) is the map F(X,d,a) : X → H(Ga) constructed as
follows. First define the Laplacian matrix

Ga
ij :=

{
−e−ad(xi,xj) i �= j∑n

k 	=i e
−ad(xi,xk) i = j

(23)

then define the map from X to the coordinate spanning set VGa ⊂ H(Ga) (re-
call (6)),

F(X,d,a)(xi) := vi = (Ga)+ei . (24)

The bound in the following theorem is based on label-dependent cover numbers.
Thus we will require the following preliminary definitions. The points x, x′ ∈ X
are ρ-path-connected if d(x, x′) ≤ ρ or if there exists a point x′′ ∈ X such that
d(x, x′′) ≤ ρ and x′′, x′ are ρ-path-connected. The set X is ρ-path-connected if
all pairs of points in X are thus connected. A set X is connected if there exists
a ρ > 0 such that it is ρ-path-connected. The component covering number,
C(X, ρ, d) is the minimal number of ρ-path-connected subsets (components) of
X that cover X , thus

C(X, ρ, d) :=min
{X′

i}k
i=1⊆X

{
k∈IN+:X ′

i is ρ-path-connected for i∈INk,∪k
i=1X

′
i =X

}
. (25)

Observe thatC(X, ρ, d) ≤ N (X, ρ, d) and ifX ⊆ X ′ thenN (X, ρ, d) ≤ N (X ′, ρ, d)
but a superset of X may decrease or increase the component covering num-
ber. The label function Y : X → {−1, 1} maps the input set to label set.
The separating-cover (component separating-cover) number denoted N ◦(X,Y, d)
(C◦(X,Y, d)) is the minimal number of sets of maximum diameter ρ (ρ-path-
connected) that contain X such that every set contains points only with a single
label and every two points with differing labels are more than ρ distant.

66 M. Herbster

Definition 7. If X ⊆ X is a set, Y : X → {−1, 1} is a label function and
d :X ×X → [0,∞] is a discrepancy function then the separating-cover number is

N ◦(X,Y, d) := min
0<ρ<δ

N (X, ρ, d) (26)

and the component separating-cover number is

C◦(X,Y, d) := min
0<ρ<δ

C(X, ρ, d) (27)

with δ = inf{d(x+, x−) : x+ ∈ Y−1(1) ∩ X, x− ∈ Y−1(−1) ∩ X} and if the
infimum is zero then the cover numbers are ∞.

Given an exponential embedding F(X,d,a) we consider the performance of the
Pounce algorithm in the following theorem as the parameter a → ∞. This
“tuning” of a minimizes the margin term in (10) thus increasing the cover term.
Thus this tuning is optimized for the case in which the data is “aligned” with
a small component separating-cover. If the data is not well-aligned a less severe
tuning may be more useful in practice.

Theorem 8. If X ⊆ X is a finite set, d : X × X → [0,∞] is a discrepancy
function and X is connected then for any label function Y : X → {−1, 1} and
any sequence of labeled examples {(xit ,Y(xit))}�

t=1 ∈ (X×{−1, 1})� there exists
an a′ > 0 such that for all a > a′ the cumulative mistakes |M| of the Pounce

algorithm on the embedded sequence {(F(X,d,a)(xit),Y(xit))}�
t=1 are bounded by

|M| ≤ C◦(X,Y, d) + 1 ≤ N ◦(X ,Y, d) + 1 . (28)

Proof. As X is finite there exists ρ, ε > 0 and a component separating cover
C◦(X,Y, d) of X such that Y(x) �= Y(x′) → d(x, x′) > ρ+ ε. Define H(Ga) from
X via (23). Since X is connected, Ga is irreducible. Given xp, xq ∈X in the same
ρ-path-connected set, there exists a path P from xp to xq along fewer than |X |
edges such that the discrepancy on each edge is no more than ρ. Therefore the
resistance 1/Ga

ij on each edge (i, j) of the embedding of path P into H(Ga) is
smaller than eaρ; thus the effective resistance (recalling (3)) between vertex p

and q is upper bounded by ‖vp − vq‖2
Ga ≤ |X |eaρ , as follows from Rayleigh’s

monotonicity law (see [15, Corollary 3.1] also [7]). Thus we can cover VGa such
that

N (VGa , |X |eaρ) ≤ C◦(X,Y, d) . (29)

Therefore from Theorem 2 we may bound the mistakes of the algorithm by

|M| ≤ N (VGa , |X |eaρ) + ‖u∗‖2|X |eaρ + 1 , (30)

with u∗(i) = Y(xi) for i = 1, . . . , |X |. We upper bound ‖u∗‖2 using the fact that
x and x′ in the same ρ-path-connected set have the same label,

‖u∗‖2 =
∑

1≤i≤j≤n

(u∗
i − u∗

j)
2e−ad(xi,xj) =

∑
xi,xj∈X:Y(xi) 	=Y(xj)

4e−ad(xi,xj) ≤ 4|X |2e−a(ρ+ε).

(31)

Exploiting Cluster-Structure to Predict the Labeling of a Graph 67

We proceed by substituting the upper bounds (29) and (31) into (30) to give
|M| ≤ C◦(X,Y, d)+1, for all a > 3 ln 4|X|

ε as there cannot be a fractional mistake.
Finally the assumption X ⊆ X implies that C◦(X,Y, d) ≤ N ◦(X ,Y, d). �	

An interpretation of the above result is that the separating-cover number
N ◦(X ,Y, d) is an upper bound which is independent of prior knowledge of a
particular set X ′ to be predicted. However, a supersample X ⊇ X ′ may po-
tentially induce a component separating-cover (e.g., see Figure 1) such that
C◦(X,Y, d) � N ◦(X ,Y, d). Therefore the prior knowledge of X reduces the
mistake bound by N ◦(X ,Y, d) − C◦(X,Y, d) a possibly significant gain from
prior knowledge of the input space in this idealized learning scenario.

We observe that the separating-cover number N ◦ is also an upper bound on
the number of mistakes incurred by the online 1-“nearest neighbors” algorithm,
because once a mistake is made in a given ball, that mistaken point is always nearer
to any other point in that ball than to a point of an opposite label. Thus there
can be no more mistakes than balls in the cover. Given a discrepancy function d,
there then exists an a′ > 0 such that the component separating-cover number C◦ is
the mistake bound of graph geodesic 1-“nearest neighbors” for every discrepancy
d′a = ead with a > a′. These upper bounds are tight in so far as an adversary
may select a discrepancy such that a mistake is forced for every ball (component).
Thus the bounds in Theorem 8 are tight up to a single additional mistake.

The preceding analysis connects the mistake bound analysis of the exponential
embedding to graph geodesic nearest neighbors as a → ∞. For small a the com-
parison may mislead as there exists a family of unweighted graphs such that the
mistakes ofPounce is upper bounded by a constant, while the mistakes of geodesic
nearest neighbors is linear in the size of the graph as follows from [15, Section 5.1].

The Value of Unlabeled Data

Does unlabeled data help the learner in our framework? In the framework of this
section the initially unlabeled data is just the input set X and the discrepancy d
given to the learner before prediction. Can we obtain similar mistake bounds for
predicting in X if instead it is revealed to the learner sequentially as we predict?
In the following example we construct a problem for which any algorithm which
does not preview the unlabeled input set will incur mistakes linear in the data
set size in expectation whereas Pounce will make no more than three mistakes.

Consider the following learning task illustrated in Figure 4. The task is gen-
erated at random as follows. The n points from IR2 to be predicted are at
{(1, 1), (2, 1), . . . , (n, 1)}. An additional, 4n points are then situated at the loci
{(1, 0), (3/2, 0), . . . , (n, 0)} and at {(1, 2), (3/2, 2), . . . , (n, 2)}. Each of the initial
n points is labeled independently +1 or −1 with equal probability. We denote
the first-coordinates of the positively (negatively) labeled points {a+

1 , . . . , a+
k }

({a−1 , . . . , a−n−k}) and then generate points at {(a+
1 , 1/2), . . . , (a+

k , 1/2)} and also
generate the points {(a−1 , 3/2), . . . , (a−n−k, 3/2)} which path-connect to the their
labels. Thus our task has 6n points in total and we only consider prediction of
the initial n. Any algorithm which does not preview the initially unlabeled data

68 M. Herbster

+ + +- -

Fig. 4. Two (1/2)-Path-Connected Sets

must incur n/2 expected mistakes whereas using Euclidean distance as a dis-
crepancy the positively labeled and negatively labeled points are separated into
two (1/2)-path-connected components with no points of differing labels less than
a unit distant. Thus from Theorem 8, Pounce incurs no more than 3 mistakes.
Consequently, we observe that although there exists an algorithm that obtains
the bound |M| ≤ N ◦(X,Y, d) without prior knowledge of its input set X , no
algorithm may exist that obtains either |M| ≤ C◦(X,Y, d) + 1 or (10) without
a preview of X or equivalently M, respectively.

6 Discussion

We have presented a novel perceptron-like algorithm Pounce. We’ve given a
mistake bound analysis of Pounce which builds on the classic Novikoff analysis
via a cover number to provide a finer measure of the structure of the input space.
When the input space corresponds to an embedding via a signed Laplacian and
its cover is relatively “small,” we may significantly improve over the traditional
analysis. This work is a continuation of the researches begun in [16,15], and as
such it improves the previous bound [15, Theorem 4.2] at a minimum by a factor
two1 except for an additive constant of “1” even when we cover the space with
a single “ball.” The improvement in bound may be arbitrarily large as shown by
the three-cluster example in Section 2.2. Furthermore this improvement cannot
be obtained by the perceptron [14].

Although the bounds for predicting the online labeling of “small” diameter
graphs improve on those given by a straightforward application of the classical
halving algorithm, the bounds presented here are weaker than the halving algo-
rithm for “large” diameter graphs as exemplified by an n-vertex line graph (a
simple path) [15, p. 8]. Here we can see that a straightforward application of the
halving algorithm to the concept class of labelings of a line graph with a cut-
size of one leads to a mistake bound of O(log n). In contrast, the application of
Theorem 2 using a cover of O(

√
n) line segments each of diameter O(

√
n) gives

the suboptimal mistake bound for Pounce of O(
√
n); this however improves

on the bound for the perceptron of O(n) in [15]. Thus this leaves as an open
1 There are subtleties in an exact comparison, one of which is the issue of resistance

“radius” versus resistance diameter. Surprisingly these may be asymptotically equiv-
alent even in unweighted graphs (see the “flower” graph example of [15, p. 5]).

Exploiting Cluster-Structure to Predict the Labeling of a Graph 69

question whether there is an efficient algorithm which incorporates the strengths
of a halving algorithm based analysis along with the analysis presented here.

Acknowledgments. I would like to thank Massimiliano Pontil for useful dis-
cussions and anonymous referees for valuable comments.

References

1. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404
(1950)

2. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7,
2399–2434 (2006)

3. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph min-
cuts. In: Proc. 18th International Conf. on Machine Learning (2001)

4. Cesa-Bianchi, N., Conconi, A., Gentile, C.: A second-order perceptron algorithm.
SIAM J. Comput. 34(3), 640–668 (2005)

5. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

6. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

7. Doyle, P., Snell, J.: Random walks and electric networks. MAA (1984)
8. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-

rithm. Machine Learning 37(3), 277–296 (1999)
9. Galeano, S.R., Herbster, M.: A fast method to predict the labeling of a tree. In:

ECML 2007 Workshop on Graph Labeling (2007)
10. Gentile, C.: The robustness of the p-norm algorithms. Machine Learning 53(3),

265–299 (2003)
11. Goldberg, A., Zhu, X., Wright, S.: Dissimilarity in graph-based semi-supervised

classification. In: 11th Intl. Conf. on Artificial Intelligence and Statistics (2007)
12. Herbrich, R., Williamson, R.C.: Algorithmic luckiness. J. Mach. Learn. Res. 3,

175–212 (2003)
13. Herbster, M.: Learning additive models online with fast evaluating kernels. In:

Proc. of the 14th Annual Conf. on Computational Learning Theory (2001)
14. Herbster, M.: A linear lower bound for the perceptron for input sets of constant

cardinality. Research Note RN/08/03, University College London, London (2008)
15. Herbster, M., Pontil, M.: Prediction on a graph with a perceptron. In: Advances

in Neural Information Processing Systems 19, pp. 577–584. MIT Press, Cambridge
(2007)

16. Herbster, M., Pontil, M., Wainer, L.: Online learning over graphs. In: Proc. 22nd
Intl Conf. on Machine Learning, pp. 305–312. ACM Press, New York (2005)

17. Johnson, R., Zhang, T.: On the effectiveness of laplacian normalization for graph
semi-supervised learning. J. Mach. Learn. Res. 8, 1489–1517 (2007)

18. Kivinen, J., Warmuth, M.: Additive versus exponentiated gradient updates for
linear prediction. In: Proc. 27th Annu. ACM Symp. on Theory of Computing (1995)

19. Klein, D., Randić, M.: Resistance distance. J. of Math. Chem. 12(1), 81–95 (1993)
20. Novikoff, A.: On convergence proofs for perceptrons. In: Proc. Sympos. Math.

Theory of Automata, Polytechnic Press of Polytechnic Inst. of Brooklyn, NY (1963)
21. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)
22. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian

fields and harmonic functions. In: 20th Intl. Conf. on Machine Learning (2003)

A Uniform Lower Error Bound for Half-Space

Learning

Andreas Maurer1 and Massimiliano Pontil2

1 Adalbertstrasse 55
D-80799 München, Germany

andreasmaurer@compuserve.com
2 Dept. of Computer Science
University College London

Malet Pl., WC1E, London, UK
m.pontil@cs.ucl.ac.uk

Abstract. We give a lower bound for the error of any unitarily invari-
ant algorithm learning half-spaces against the uniform or related distri-
butions on the unit sphere. The bound is uniform in the choice of the
target half-space and has an exponentially decaying deviation probability
in the sample. The technique of proof is related to a proof of the John-
son Lindenstrauss Lemma. We argue that, unlike previous lower bounds,
our result is well suited to evaluate the benefits of multi-task or transfer
learning, or other cases where an expense in the acquisition of domain
knowledge has to be justified.

1 Introduction

We will prove the following lower bound for half-space learning from the uniform
distribution σ on the unit sphere S in RN .

Theorem 1. Let m < N and suppose that f : Sm × {−1, 1}m → S is any
learning algorithm such that

f (V x,y) = V f (x,y) , ∀unitary V on RN . (1)

Then for every u ∈ S

Pr
x∼σm

{
errσ,u (f (x, u (x))) <

1
π

√
N −m

N
− t

}
≤ e−N(tπ)2 .

Here u ∈ S defines the target function u (x) = sign〈u, x〉, x ∈ S and f (x, u (x))
is the hypothesis returned from the algorithm trained on the sample x =
(x1, ..., xm) labeled by u, where u (x) = (u (x1) , ..., u (xm)). The classification
error errσ,u (f (x, u (x))) is the σ-measure of the set of points x ∈ S where the
sign of 〈u, x〉 and that of 〈f (x, u (x)) , x〉 disagree.

The symmetry condition (1) plays an important role in the interpretation of
our result. For the proof we only use the fact that symmetry of f implies that

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 70–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Uniform Lower Error Bound for Half-Space Learning 71

f (x,y) lies in the subspace spanned by the sample x. Clearly equation (1) is
satisfied by all kernel-based algorithms which only depend on the Gramian of x.

Our bound appears weaker than existing lower bounds in [4] and [6] in the
sense that it only applies to symmetric algorithms. In another sense it is stronger,
because it applies uniformly to all target functions, not just to a target function
mischievously designed to make the algorithm f fail. It is precisely because of
these differences that our bound is suitable for the evaluation of transfer learning
or other methods to obtain domain knowledge, where the previous bounds in
[4] and [6] are not applicable. A lower bound which holds for all algorithms
cannot be used to justify the choice of any algorithm. A lower bound which holds
for all symmetric algorithms can justify the use of an asymmetric algorithm if
symmetry-breaking side information is available at a tolerable cost. This will be
explained in detail in Section 5.

Theorem 1 is weaker and stronger than the results in [4] and [6] in two other re-
spects. It is weaker, because it is restricted to small sample sizes m < N . When
we expect small sample sizes and high-dimensional phenomena, this is not a
problem. On the other hand Theorem 1 exhibits an exponential concentration
property. If the ambient dimension N is large, the quantity

√
(N −m) /N/π

becomes an effective performance barrier, as smaller errors have neglegible
probability.

A simple technique adapts our result to the case when the input marginal µ is
not equal to, but absolutely continuous with respect to σ. If the corresponding
density function η satisfies 0 < a ≤ η (x) ≤ b for almost all x ∼ σ, then the
above bound reads

Pr
x∼µm

{
errµ,u (f (x, u (x))) <

a

π

√
N −m

N
− t

}
≤ exp

(
−N

(
tπ

a

)2

+ m ln b

)
,

which reduces to the bound in Theorem 1 for η = 1, i.e. µ = σ. We will prove
this more general version below (Theorem 2).

We introduce some notation in the next section and give a proof of Theorem 1
in Section 3. Sections 4 and Section 5 briefly discuss previous work and the
application to the evaluation of domain knowledge.

2 Notation

We will work in the space RN with euclidean inner product 〈·, ·〉, norm ‖x‖ =√
〈x, x〉 and euclidean metric d (x, y) = ‖x− y‖. For x ∈ RN and F ⊆ RN we

write d (x, F) = inf {d (x, y) : y ∈ F} and we denote with F⊥ the subspace F⊥ =
{x : 〈x, y〉 = 0, ∀y ∈ F}. We write GN,m for the set of all linear m-dimensional
subspaces of RN . If M is a subspace of RN then PM is the orthogonal projection
operator onto M .

With S we denote the unit sphere in RN , that is S =
{
x ∈ RN : ‖x‖ = 1

}
.

If u, v ∈ S we denote with ρ (u, v) the (shortest) angle between u and v, so
that ρ (·, ·) is the geodesic metric on S. There is a unique unitarily invariant

72 A. Maurer and M. Pontil

probability measure σ (called the Haar measure) on S. If γ is a standard Gaussian
random variable (zero mean and unit variance), then σ is defined by

Ex∼σ [ψ (x)] = Ex∼γNψ

(
x

‖x‖

)
for every Borel function ψ on S.

An m-tuple x = (x1, . . . , xm) ∈ Sm is called a sample. A labeled sample is a
member (x,y) ∈ Sm ×{−1, 1}m. If x = (x1, . . . , xm) is a sample then we use [x]
to denote the linear span {x1, . . . , xm}, and if V is a unitary transformation on
RN , we denote with V x the sample V x = (V x1, . . . , V xm).

For labeling we use the sign function

sgn (t) =
{

1 if t > 0,
−1 otherwise

which differs from the usual definition, but this will simplify notation and oth-
erwise be immaterial in the following. If u, x ∈ S we let u (x) = sgn(〈u, x〉). The
target function u (·) defines the open half-space

{x : u (x) = 1} = {x : 〈u, x〉 > 0} .

If x ∈ Sm is a sample then we denote

u (x) = (u (x1) , . . . , u (xm)) ∈ {−1, 1}m .

Every u ∈ S induces a labeled sample (x, u (x)).
A learning algorithm is a function f : Sm × {−1, 1}m → S, which assigns to

every labeled sample (x,y) the hypothesis f (x,y) ∈ S. A learning algorithm is
called symmetric if

f (V x,y) = V f (x,y)

for all unitary V . A symmetric algorithm has no preferred coordinate system.
Note that all kernel-based algorithms are symmetric.

For u, v ∈ S we denote

∆ (u, v) = {x : u (x) �= v (x)} ⊆ S.

If µ is a probability measure on S and u, v ∈ S then

errµ,u (v) = µ (∆ (u, v))

is the error probability for the hypothesis v when the true half-space is u and
the underlying input probability is µ.

3 Proofs

In this section we prove the results announced in the introduction.
The idea is the following: The expected error of any hypothesis v is equal

to the geodesic distance from v to the target u, divided by π. The hypothesis

A Uniform Lower Error Bound for Half-Space Learning 73

generated by a symmetric algorithm lies in [x] , the span of the data, so the
error of this hypothesis is lower bounded by the euclidean distance from u to
[x], divided by π. This distance is sharply concentrated at

√
(N −m) /N , as

follows from a result of Dasgupta and Gupta [3], given in their proof of the
Johnson-Lindenstrauss Lemma.

Proposition 1. Let µ be a probability measure on S such that dµ (x) =
η (x) dσ (x) with 0 < a ≤ η (x) ≤ b for almost all x ∼ σ. Then for every
symmetric learning algorithm f , every u ∈ S and every t > 0 we have

Pr
x∼µm

{errµ,u (f (x, u (x))) < t} ≤ bm sup
M∈GN,m

Pr
w∼σ

{
d (w,M) <

tπ

a

}
.

Proof. For any v ∈ S we have

errµ,u (v) =
∫

∆(u,v)

ηdσ ≥ a σ (∆ (u, v)) .

Since σ is invariant under rotations in the u-v-plane, it is easily seen that
σ (∆ (u, v)) is just the angle between u and v in radians, divided by π, that
is σ (∆ (u, v)) = ρ (u, v) /π. Since ρ (u, v) ≥ d (u, v), it follows that

errµ,u (v) ≥ d (u, v)
a

π
. (2)

Let (x,y) be an arbitrary labeled sample and let V be the unitary map V = I on
[x] and V = −I on [x]⊥. By symmetry of f we must have f (x,y) = f (V x,y) =
V f (x,y), which clearly implies that f (x,y) ∈ [x]. Combining this observation
with (2), we have that

errµ,u (f (x, u (x))) ≥ d (u, [x])
a

π
.

We then have

Pr
x∼µm

{errµ,u (f (x, u (x))) < t} ≤ Pr
x∼µm

{
d (u, [x]) <

tπ

a

}
(3)

≤ bm Pr
x∼σm

{
d (u, [x]) <

tπ

a

}
,

where we used the upper bound on the density function η in the second inequality.
We now use the unitary symmetry of the Haar measure σ. For any w ∈ S we

denote with Vw→u the rotation which takes w to u and Vu→w its inverse. Then

Pr
x∼σm

{
d (u, [x]) <

tπ

a

}
= Ew∼σ Pr

x∼σm

{
d (u, Vw→u [x]) <

tπ

a

}
= Ew∼σ Pr

x∼σm

{
d (Vu→wu, [x]) <

tπ

a

}
= Ew∼σEx∼σm1

{
d (w, [x]) <

tπ

a

}
.

74 A. Maurer and M. Pontil

Exchanging the two expectations and bounding the expectation in x by a supre-
mum gives

Pr
x∼σm

{
d (u, [x]) <

tπ

a

}
≤ sup

M∈GN,m

Pr
w∼σ

{
d (w,M) <

tπ

a

}
,

which, together with (3), gives the conclusion. �	
In their proof of the Johnson-Lindenstrauss Theorem Dasgupta and Gupta [3,
Lemma 2.2] give the following lemma.

Lemma 1. Let k < N and M be a k-dimensional subspace of RN and β ∈ (0, 1).
Then

Pr
x∼σ

{
‖PMx‖2 ≤ βk

N

}
≤ exp

(
k

2
(1 − β + lnβ)

)
.

We bring this result into a weaker but simpler form which is better suited for
our purposes.

Lemma 2. Let k < N and M be a k-dimensional subspace of RN and t ∈(
0,
√

(N − k)/N
)
. Then

Pr
x∼σ

{
d (x,M) ≤

√
N − k

N
− t

}
≤ e−Nt2 .

Proof. For s ∈ (0, 1) let

g (s) = (1 − s)2 − 1 − 2 ln (1 − s) .

Now, if h (s) = g (s) − 2s2, then h (0) = 0 and h′ (s) = 2s2/ (1 − s) ≥ 0. This
shows that g (s) ≥ 2s2. Denote k′ = dimM⊥ = N − k and let s = t

√
N/k′.

Then (1 − s)2 ∈ (0, 1), so by Lemma 1 applied to M⊥ we get

Pr
x∼σ

{
d (x,M) ≤

√
k′

N
− t

}

= Pr
x∼σ

{
‖PM⊥x‖2 ≤ (1 − s)2

k′

N

}
≤ exp

(
k′

2

(
1 − (1 − s)2 + 2 ln (1 − s)

))
= exp

(
−k′g (s)

2

)
≤ e−k′s2

= e−Nt2 . �	

Now we can state and prove our main result.

Theorem 2. Let µ be a probability measure on S, such that dµ (x) = η (x) dσ (x)
with 0 < a ≤ η (x) ≤ b for almost all x ∼ σ. Then for every symmetric learning
algorithm f and for every target u ∈ S

Pr
x∼µm

{
errµ,u (f (x, u (x))) <

a

π

√
N −m

N
− t

}
≤ exp

(
−N

(
tπ

a

)2

+ m ln b

)
.

A Uniform Lower Error Bound for Half-Space Learning 75

Proof. We have

Pr
x∼µm

{
errµ,u (f (x, u (x))) <

a

π

√
N −m

N
− a

π
t

}

≤ bm sup
M∈GN,m

Pr
w∼σ

{
d (w,M) <

√
N −m

N
− t

}
≤ bme−Nt2 ,

where we used Proposition 1 in the first and Lemma 2 in the second inequality.
The result follows. �	

4 Previous Lower Bounds

In learning theory a lot of attention has been devoted to upper error bounds for
learning algorithms, and comparatively little work has been done on lower error
bounds. For a deeper understanding of the foundations of the subject, however,
lower bounds are interesting and they can serve to establish the tightness of
upper bounds.

Ehrenfeucht, Haussler, Kearns and Valiant [4] gave a lower bound on the
sample complexity of distribution free PAC learning of a function class F of VC-
dimension d on a domain X . They showed that there is a probability distribution
µ on X such that any learning algorithm requires

Ω

(
d

ε
+

1
ε

ln
1
δ

)
examples in order to learn every function in F , with an error at most ε (as
measured by µ) and probability at least 1− δ in the examples drawn i.i.d. from
µ. While this result is a milestone in statistical learning theory, the method
of proof, as in [4] or [1], constructs a special distribution µ concentrated in a
particularly mischievous way on a set shattered by F , and it can be expected that
the distributions underlying realistic learning problems are less pathological.

This deficiency motivated Phil Long [6] to prove the following result pertaining
to the learning of the class F of half-spaces in RN from the uniform distribution
σ on the unit sphere S ⊆ RN : For any learning algorithm it takes

Ω

(
N

ε
+

1
ε

ln
1
δ

)
examples in order to learn every half space on RN with an error at most ε (as
measured by µ) and probability at least 1− δ in the examples drawn i.i.d. from
σ. This result replaces the pathological distribution above by a particularly well
behaved one and is of considerable importance, because the notion of halfspace
learning is central to many learning techniques (support vector machines, per-
ceptron, etc.).

76 A. Maurer and M. Pontil

If the sample size m is smaller than the asserted complexity, then these results
can be reformulated as follows: For every algorithm f there exists a target vector
u ∈ S such that the probability, that the error of f with respect to u is less than
ε, is upper bounded by δ. This is substantially different from our result, which
restricts f to be symmetric but holds uniformly for all target vectors.

5 Evaluation of Domain Knowledge

We now return to the case, where the marginal distribution of the data is given
by the Haar measure σ and describe circumstances under which our bound is
preferable to the results above.

Complete ignorance of the nature of potential target functions can be ex-
pressed as a maximal entropy assumption, which in our case corresponds to the
uniform prior σ and assigns the same a-priori probability to all halfspaces. Un-
der this assumption it is reasonable to use an algorithm f∗ which is optimal in
the sense that it minimizes the expected error of the hypotheses it generates,
on average over all training samples and target functions drawn from the uni-
form distribution. This algorithm, which would correspond to the Bayes-point
algorithm as in [5], should therefore minimize the functional

E (f) = Eu∼σEx∼σmerrσ,u (f (x, u (x))) .

For a labeled sample (x,y) ∈ Sm × {−1, 1}m we denote

C (x,y) = {u ∈ S : u (x) = y} .

C (x,y) is thus the set of all hypotheses consistent with (x,y), sometimes also
called the version-space. Observe that, given x and u, there is exactly one y such
that y = u (x), that is u ∈ C (x,y). We therefore obtain

E (f) = π−1Eu∼σEx∼σmρ (f (x, u (x)) , u)

= π−1Ex∼σm

∑
y∈{−1,1}m

Eu∼σρ (f (x, u (x)) , u) 1C(x,y) (u)

= π−1Ex∼σm

∑
y∈{−1,1}m

Eu∼σρ (f (x,y) , u) 1C(x,y) (u) ,

and, so, the optimal algorithm is given by

f∗ (x,y) = arg min
w∈S

Eu∼σρ (w, u) 1C(x,y) (u) .

The minimizer exists and is unique [7], so that this algorithm is indeed well
defined. We also have, for any unitary matrix V , that

Eu∼σρ (w, u) 1C(V x,y) (u) = Eu∼σρ (w, u) 1C(x,y)

(
V −1u

)
= Eu∼σρ

(
V −1w, u

)
1C(x,y) (u) ,

A Uniform Lower Error Bound for Half-Space Learning 77

so that f∗ (V x,y) = V f∗ (x,y). The optimal algorithm f∗ is therefore symmet-
ric and the lower bound in Theorem 1 applies.

In summary these considerations show that in the absence of domain knowl-
edge one is led to the use of a symmetric algorithm, with the limitations implied
by Theorem 1. These limitations then also imply lower bounds on the functional
E , valid for every algorithm f , for example

E (f) ≥ E (f∗) ≥ 1
2π

(
1 − e−

N−m
4

)√N −m

N
,

as can be obtained by setting t = (1/2π)
√

(N −m) /N in Theorem 1. Similar
bounds cannot be derived from the results in [4] and [6], because they only hold
for single target functions constructed in response to the algorithm f .

We were led to the use of the symmetric algorithm f∗ by our ignorance of
the true distribution of target functions. Suppose now that this distribution,
rather than being uniform, is concentrated on a small subset M of the sphere.
An example would be the intersection of a low-dimensional subspace with the
sphere. As long as we do not know M the uniform prior still represents our
knowledge on the potential target functions, and therefore the optimal algorithm
is still given by f∗ as above. On the other hand, if we have knowledge of M , we
can adopt an algorithm f ′ which only searches M . Since M is small there will
be a considerable improvement incurred by replacing f∗ with f ′. A quantitative
guarantee on this improvement can be calculated by applying an upper error
bound (using standard techniques) to f ′, and by an application of Theorem 1
to f∗.

As a simple example, suppose that M is finite. Theorem 1, a standard result
and a union bound show the following: For every target function u ∈ M , with
probability at least 1 − δ in x ∼ σm, the difference of the errors of the two
algorithms satisfies

errσ,u (f∗ (x, u (x)))−errσ,u (f ′ (x, u (x))) ≥ 1
π

√
N −m− 2 ln 2

δ

2N
−

ln |M | + ln 2
δ

m
,

which can be rather large if ln |M | � m � N .
If M is infinite, similar high probability bounds for the difference between

the errors of the two algorithms can be derived using the VC-dimension of the
hypothesis class corresponding to M . Such results cannot be obtained from the
bounds in [4] and [6], because they do not hold for every u and may only be
valid for a target function outside M . Observe also that the classical lower bounds
cannot distinguish between f∗ and f ′, while Theorem 1 holds only for f∗ but
not for f ′, which is not symmetric.

In practice the symmetry breaking knowledge of M will not come for free,
but at a sometimes considerable cost. A case in point is multi-task or transfer-
learning (as in [2]), where knowledge of M is obtained from a large number of
tasks, with corresponding target functions drawn from M , and the cost of the
acquired knowledge takes the form of the sampling burden for these tasks and
the increased computational complexity of the transfer learning algorithm.

78 A. Maurer and M. Pontil

To justify such an expense it is necessary to compute the savings made in
moving from f∗ to f ′. A rigorous computation of the guaranteed savings is
possible only by comparing an upper error bound for f ′ to a lower error bound
for f∗, as described above.

Acknowledgments

This work was supported by EPSRC Grants GR/T18707/01 and EP/D071542/1
and by the IST Programme of the European Community, under the PASCAL
Network of Excellence IST-2002-506778.

References

[1] Anthony, M., Bartlett, P.: Learning in Neural Networks: Theoretical Foundations.
Cambridge University Press, Cambridge (1999)

[2] Baxter, J.: A model of inductive bias learning. Journal of Artificial Intelligence
Research 12, 149–198 (2000)

[3] Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lin-
denstrauss. Random Structures and Algorithms 22, 60–65 (2003)

[4] Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.G.: A general lower bound on
the number of examples needed for learning. Information and Computation 82(3),
247–251 (1989)

[5] Herbrich, R., Graepel, T., Campbell, C.: Bayes Point Machines. Journal of Machine
Learning Research 1, 245–279 (2001)

[6] Long, P.M.: On the sample complexity of PAC learning halfspaces against the uni-
form distribution. IEEE Transactions on Neural Networks 6(6), 1556–1559 (1995)

[7] Maurer, A.: An optimization problem on the sphere. Technical Report
arXiv:0805.2362

Generalization Bounds for K-Dimensional

Coding Schemes in Hilbert Spaces

Andreas Maurer1 and Massimiliano Pontil2

1 Adalbertstrasse 55
D-80799 München, Germany

andreasmaurer@compuserve.com
2 Dept. of Computer Science
University College London

Malet Pl., WC1E, London, UK
m.pontil@cs.ucl.ac.uk

Abstract. We give a bound on the expected reconstruction error for
a general coding method where data in a Hilbert space are represented
by finite dimensional coding vectors. The result can be specialized to K-
means clustering, nonnegative matrix factorization and the sparse coding
techniques introduced by Olshausen and Field.

1 Introduction

We consider the generalization performance of a general class of K-dimensional
coding schemes for data drawn from a distribution µ on the unit ball of a Hilbert
space H . These schemes encode a data point x ∼ µ as a vector ŷ ∈ RK , according
to the formula

ŷ = arg min
y∈A

(
‖x − Ty‖2 + g (y)

)
,

where A ⊆ RK is some set of codes (which we can always assume to span RK)
and g : RK → R+ is some regularizing function used to encourage or discourage
the use of certain codes, but g may also be chosen zero. The pair (A, g) defines
the particular coding scheme.

T : RK → H is a linear map, which defines a particular implementation of
the coding scheme. It embeds the set A of codes in H and yields the set T (A)
of exactly codable patterns. If ŷ is the code found for x then x̂ = T ŷ is the
reconstructed data point. The quantity

fT (x) = min
y∈A

(
‖x − Ty‖2 + g (y)

)
is the (regularized) reconstruction error.

Given a coding scheme (A, g) and a finite number of independent observations
x1, ..., xm ∈ H , a common sense approach searches for an implementation Topt

which is optimal on average over the observed points, that is

Topt = arg min
T∈C

1
m

m∑
i=1

fT (xi) , (1)

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 79–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 A. Maurer and M. Pontil

where C denotes some class of linear embeddings T : RK → H . As we shall
see, this framework is general enough to include principal component analysis,
K-means clustering, non-negative matrix factorization [9] and the sparse coding
schemes as proposed in [12].

To give a justification of this approach (which can be regarded as empirical
risk minimization) we require that the class of sets {T (A) : T ∈ C} is uniformly
bounded, or, equivalently, that the quantity

‖C‖A = sup
T∈C

‖T ‖A = sup
T∈C

sup
y∈A

‖Ty‖

is finite. We then have the following high probability bound on the expected
reconstruction error, uniformly valid for all T ∈ C.

Theorem 1. Assume that K > 1, ‖C‖A ≥ 1, that the functions fT for T ∈ C,
when restricted to the unit ball of H, have range contained in [0, b], and that the
measure µ is supported on the unit ball of H. Fix δ > 0.

Then with probability at least 1 − δ in the observed data x ∼ µm we have for
every T ∈ C that

Ex∼µfT (x)− 1
m

m∑
i=1

fT (xi) ≤
K√
m

(
20 ‖C‖A +

b

2

√
ln
(
16m ‖C‖2

A

))
+b

√
ln 1/δ

2m
.

If ‖C‖A < ∞ and b < ∞ our result immediately implies convergence in probabil-
ity, uniform in all possible implementations of the respective coding scheme. We
are not aware of other comparable results for nonnegative matrix factorization
[9] or the sparse coding techniques as in [12].

Before providing a proof of Theorem 1 we illustrate its implications in some
specific cases of interest.

2 Examples of Coding Schemes

Several coding schemes can be expressed in our framework. We briefly describe
these methods and how our result applies.

2.1 Principal Component Analysis

This classical method (PCA) seeks the K-dimensional orthogonal projection
which maximizes the projected variance and then uses this projection to encode
future data. Let TP be an isometry which maps RK to the range of a projection
P . Since

‖Px‖2 = ‖x‖2 − min
y∈RK

‖x − TP y‖2
,

finding P to maximize the true or empirical expectation of ‖Px‖2 is equivalent
to finding T to minimize the corresponding expectation of miny∈RK ‖x − Ty‖2. If
we use the projection P to encode a given x ∈ H then Px = TP ŷ where ŷ ∈ RK

Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces 81

is the minimizer ‖x − TP y‖2. We see that PCA is described by our framework
upon the identifications A = RK , g ≡ 0 where C is restricted to the class of
isometries T : RK → H . Given T ∈ C and x ∈ H the reconstruction error is

fT (x) = min
y∈RK

‖x − Ty‖2
.

If the data are constrained to be in the unit ball of H , as we generally assume,
then it is easily seen that we can take A to be the unit ball of RK without
changing any of the encodings. We can therefore apply our result with ‖C‖A = 1
and b = 1. This is besides the point however, because in the simple case of PCA
much better bounds are available ([13], [17]). In fact we will prove a bound of
order

√
K/m in the course of the proof of Theorem 1 (see Lemma 4 below).

In [17] local Rademacher averages are used to give faster rates under certain
circumstances.

An objection to PCA is, that generic codes have K nonzero components, while
for practical and theoretical reasons sparse codes with much less than K nonzero
components are preferable.

2.2 K-Means Clustering or Vector Quantization

Here A = {e1, ..., eK}, where the ek form an orthonormal basis of RK and
g ≡ 0. An implementation T now defines a set of centers {Te1, ..., T eK}, the
reconstruction error is minK

k=1 ‖x − Tek‖2 and a data point x is coded by the ek

such that Tek is nearest to x. The algorithm (1) becomes

Topt = argmin
T∈C

1
m

m∑
i=1

K
min
k=1

‖x − Tek‖2 .

It is clear that every center Tek has at most unit norm, so that ‖C‖A = 1. Since
all data points are in the unit ball we have ‖x − Tek‖2 ≤ 4 so we can set b = 4
and the bound on the estimation error becomes(

20 + 2
√

ln (16m)
) K√

m
+

√
8 ln (1/δ)

m
.

The order of this bound matches up to
√

ln m the order given in [3] or [14].
To illustrate our method we will also prove the bound

√
18π

K√
m

+

√
8 ln (1/δ)

m

(Theorem 5), which is slightly better than those in [3] or [14]. There is a lower
bound of order

√
K/m in [2], and it is unknown which of the two bounds (upper

or lower) is tight.
In K-means clustering every code has only one nonzero component, so that

sparsity is enforced in a maximal way. On the other hand this results in a weaker
approximation capability of the coding scheme.

82 A. Maurer and M. Pontil

2.3 Nonnegative Matrix Factorization

Here A is the cone A =
{∑K

k=1 λkek : λi ≥ 0
}

and g ≡ 0. A chosen embedding
T generates a cone T (A) ⊂ H onto which incoming data is projected. In the
original formulation by Lee and Seung [9] it is postulated that both the data and
the vectors Tek be contained in the positive orthant of some finite dimensional
space, but we can drop most of these restrictions, keeping only the requirement
that 〈Tek, T el〉 ≥ 0 for 1 ≤ k, l ≤ K.

No coding will change if we require that ‖Tek‖ = 1 for all 1 ≤ k ≤ K by a
suitable normalization. The set C is then given by

C = {T : RK → H : ‖Tek‖ = 1, 〈Tek, T el〉 ≥ 0, 1 ≤ k, l ≤ K}.

We can restrict A to its intersection with the unit ball in RK (see Lemma 2
below) and set ‖C‖A =

√
K. From Theorem 1 we obtain the bound

K√
m

(
20

√
K +

1
2

√
ln (16mK)

)
+

√
ln (1/δ)

2m

on the estimation error. We do not know of any other generalization bounds for
this coding scheme.

Nonnegative matrix factorization appears to encourage sparsity, but cases
have been reported where sparsity was not observed [10]. In fact this undesir-
able behaviour should be generic for exactly codable data. Various authors have
therefore proposed additional constraints ([10], [6]). It is clear that additional
constraints on C can only improve generalization and that the passage from A
to a subset can only improve our bounds.

2.4 Sparse Coding of Olshausen and Field

In the original formulation [12] A = RK but g is one of the functions g (y) =
−λ

∑
i e−y2

i , g (y) = λ
∑

i ln
(
1 + y2

i

)
or g (y) = λ

∑
i |yi| and λ > 0 is a regular-

ization parameter which controls how strongly sparsity is to be encouraged. To
see how our result applies, we focus on the last and most conventional regularizer
g (y) = λ ‖y‖1. If ŷ is a minimizer for ‖x − Ty‖2 + λ ‖y‖1 with ‖x‖ ≤ 1 then

λ ‖ŷ‖ ≤ λ ‖ŷ‖1 ≤ ‖x − T ŷ‖2 + λ ‖ŷ‖1

≤ ‖x − T 0‖2 + λ ‖0‖1 = ‖x‖2 ≤ 1,

so ‖ŷ‖ ≤ λ−1, which shows that we can equivalently set A to be the ball of
radius λ−1 in the definition of this coding scheme. We let C = {T : RK → H :
‖T ‖∞ ≤ c}. Then we have ‖C‖A ≤ λ−1c. By the same argument as above all
fT have range contained in [0, 1], so the Theorem can be applied with b = 1 to
yield the bound

K√
m

(
20c

λ
+

1
2

√
ln (16mλ−2c)

)
+

√
ln (1/δ)

2m

Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces 83

on the estimation error. It is interesting to observe that increasing the regular-
ization parameter λ, both encourages sparsity and improves estimation. With
similar but more complicated methods the Theorem can also be applied to the
other regularizers.

The method of Olshausen and Field [12] approximates with a compromise of
geometric proximity and sparsity and our result asserts that the observed value
of this compromise generalizes to unseen data if enough data have been observed.

3 Proofs

We first introduce some notation, conventions and auxiliary results. Then we set
about to prove our main result.

3.1 Notation, Definitions and Auxiliary Results

Throughout H denotes a Hilbert space. The term norm and the notation ‖·‖
and 〈·, ·〉 always refer to the euclidean norm and inner product on RK or on H .
Other norms are characterized by subscripts. If H1 and H2 are any Hilbert spaces
L (H1, H2) denotes the vector space of bounded linear transformations from H1

to H2. If H1 = H2 we just write L (H1) = L (H1, H1). With U (H1, H2) we
denote the set of isometries in L (H1, H2), that is maps U satisfying ‖Ux‖ = ‖x‖
for all x ∈ H1.

We use L2 (H) for the set of Hilbert-Schmidt operators on H , which becomes
itself a Hilbert space with the inner product 〈T, S〉2 =tr(T ∗S) and the corre-
sponding (Frobenius-) norm ‖·‖2.

For x ∈ H the operator Qx is defined by Qxz = 〈z, x〉. For any T ∈ L2 (H)
the identity

〈T ∗T, Qx〉2 = ‖Tx‖2 (2)

is easily verified.
Suppose that A ⊆ RK spans RK , that H ′ is any Hilbert space (which could

also be RK). It is easily verified that the quantity

‖T ‖A = sup
y∈A

‖Ty‖

defines a norm on L
(
RK , H ′).

We use the following well known result on covering numbers (e.g. Proposition 5
in [4]).

Proposition 1. Let B be a ball of radius r in an N -dimensional Banach space
and ε > 0. There exists a subset Bε ⊂ B such that |Bε| ≤ (4r/ε)N and ∀z ∈
B, ∃z′ ∈ Bε with d (z, z′) ≤ ε, where d is the metric of the Banach space.

The following concentration inequality, known as the bounded difference inequal-
ity [11], goes back to the work of Hoeffding [5].

84 A. Maurer and M. Pontil

Theorem 2. Let µi be a probability measure on a space Ωi, for i = 1, ..., m.
Let Ω =

∏m
i=1 Ωi and µ = ⊗m

i=1µi be the product space and product measure
respectively. Suppose the function Ψ : Ω → R satisfies

|Ψ (x) − Ψ (x′)| ≤ ci

whenever x and x′ differ only in the i-th coordinate. Then

Pr
x∼µ

{Ψ (x) − Ex′∼µΨ (x′) ≥ t} ≤ exp
(

−2t2∑m
i=1 c2

i

)
.

Throughout σi will denote a sequence of mutually independent random vari-
ables, uniformly distributed on {−1, 1} and γi, γij will be (multipled indexed)
sequences of mutually independent Gaussian random variables, with zero mean
and unit standard deviation.

If F is a class of real functions on a space X and µ a probability measure on
X then for m ∈ N the Rademacher and Gaussian complexities of F w.r.t. µ are
defined ([8],[1]) as

Rm (F , µ) =
2
m

Ex∼µmEσ sup
f∈F

m∑
i=1

σif (xi) ,

Γm (F , µ) =
2
m

Ex∼µmEγ sup
f∈F

m∑
i=1

γif (xi)

repectively.
Appropriately scaled Gaussian complexities can be substituted for Radema-

cher complexities, by virtue of the next Lemma. For a proof see, for example, [8,
p. 97].

Lemma 1. For A ⊆ Rk we have R (A) ≤
√

π/2 Γ (A).

The next result is known as Slepian’s lemma ([15], [8]).

Theorem 3. Let Ω and Ξ be mean zero, separable Gaussian processes indexed
by a common set S, such that

E (Ωs1 − Ωs2)
2 ≤ E (Ξs1 − Ξs2)

2 for all s1, s2 ∈ S.

Then
E sup

s∈S
Ωs ≤ E sup

s∈S
Ξs.

The following result, which generalizes Theorem 8 in [1], plays a central role in
our proof.

Theorem 4. Let {Fn : 1 ≤ n ≤ N} be a finite collection of [0, b]-valued function
classes on a space X , and µ a probability measure on X . Then ∀δ ∈ (0, 1) we
have with probability at least 1 − δ that

max
n≤N

sup
f∈Fn

[
Ex∼µf (x) − 1

m

m∑
i=1

f (xi)

]
≤ max

n≤N
Rm (Fn, µ) + b

√
ln N + ln (1/δ)

2m
.

Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces 85

Proof. Denote with Ψn the function on Xm defined by

Ψn (x) = sup
f∈Fn

[
Ex∼µf (x) − 1

m

m∑
i=1

f (xi)

]
, x ∈ Xm.

By standard symmetrization (see [16]) we have Ex∼µmΨn (x) ≤ Rm (Fn, µ) ≤
maxn≤N Rm (Fn, µ). Modifying one of the xi can change the value of any Ψn (x)
by at most b/m, so that by a union bound and the bounded difference inequality
(Theorem 2)

Pr
{

max
n≤N

Ψn > max
n≤N

Rm (Fn, µ) + t

}
≤
∑

n

Pr {Ψn > EΨn + t} ≤ Ne−2m(t/b)2 .

Solving δ = Ne−2m(t/b)2 for t gives the result. �	

The following lemma was used in Section 2.3.

Lemma 2. Suppose ‖x‖ ≤ 1, ‖ck‖ = 1, 〈ck, cl〉 ≥ 0, y ∈ RK , yi ≥ 0. If y
minimizes

h (y) =

∥∥∥∥∥x −
K∑

k=1

ykck

∥∥∥∥∥
2

,

then ‖y‖ ≤ 1.

Proof. Assume that y is a minimzer of h and ‖y‖ > 1.Then∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
2

= ‖y‖2 +
∑
k 	=l

ykyl 〈ck, cl〉 > 1.

Let the real function f be defined by f (t) = h (ty). Then

f ′ (1) = 2

⎛⎝∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
2

−
〈

x,

K∑
k=1

ykck

〉⎞⎠
≥ 2

⎛⎝∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
2

−
∥∥∥∥∥

K∑
k=1

ykck

∥∥∥∥∥
⎞⎠

= 2

(∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥− 1

)∥∥∥∥∥
K∑

k=1

ykck

∥∥∥∥∥
> 0.

So f cannot have a minimum at 1, whence y cannot be a minimizer of h. �	

86 A. Maurer and M. Pontil

3.2 Proof of the Main Results

We now fix a spanning set A ⊆ RK and a ”regularizer” g : A → R+. Recall that,
for T ∈ L

(
RK , H

)
, we had introduced the notation

fT (x) = inf
y∈A

(
‖x − Ty‖2 + g (y)

)
, x ∈ H .

Our principal object of study is the function class

F =
{

x �→ inf
y∈A

(
‖x − Ty‖2 + g (y)

)
: T ∈ C

}
= {fT : T ∈ C} ,

restricted to the unit ball in H , when C ⊂ L
(
RK , H

)
is some fixed set of candi-

date implementations of our coding scheme.
To illustrate our method we first consider the somewhat simpler special case

of K-means clustering, corresponding to the choices A = {e1, ..., eK}, g ≡ 0 and
C = {T : ‖T ‖A ≤ 1}, equivalent to the requirement that ‖Tek‖ ≤ 1 for all T ∈ C
and all k ∈ {1, ..., K}. As already noted in Section 2.2 the vectors Tek define the
cluster centers.

Theorem 5. For every δ > 0 with probability greater 1−δ in the sample x ∼ µm

we have for all T ∈ C

Ex∼µ

K
min
k=1

‖x − Tek‖2 ≤ 1
m

m∑
i=1

K
min
k=1

‖xi − Tek‖2 + K

√
18π

m
+

√
8 ln (1/δ)

m
.

Proof. According to [1] we need to bound the Rademacher complexity of the
function class F . By Lemma 1 it suffices to bound the corresponding Gaussian
complexity, which we shall do using Slepian’s Lemma (Theorem 3). We have

R (F , µ) ≤
√

π

2
Γ (F , µ) =

√
π

2
2
m

Ex∼µmEγ sup
T∈C

m∑
i=1

γi

K
min
k=1

‖xi − Tek‖2
. (3)

Now we fix a sample x and define Gaussian processes Ω and Ξ indexed by C

ΩT =
m∑

i=1

γi

K
min
k=1

‖xi − Tek‖2 and ΞT =
m∑

i=1

K∑
k=1

γik ‖xi − Tek‖2 .

Using orthonormality of the γi and γik we obtain for T1, T2 ∈ C

E (ΩT1 − ΩT2)
2 =

m∑
i=1

(
min

k
‖xi − T1ek‖2 − min

k
‖xi − T2ek‖2

)2

≤
m∑

i=1

max
k

(
‖xi − T1ek‖2 − ‖xi − T2ek‖2

)2

≤
m∑

i=1

K∑
k=1

(
‖xi − T1ek‖2 − ‖xi − T2ek‖2

)2

(*)

= E (ΞT1 − ΞT2)
2 .

Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces 87

By Slepian’s Lemma, the triangle inequality, Schwarz’ and Jensen’s inequalities

Eγ sup
T∈C

m∑
i=1

γi

K

min
k=1

‖xi − Tek‖2

= Eγ sup
T∈C

ΩT

≤ Eγ sup
T∈C

ΞT (Slepian)

= Eγ sup
T∈C

m∑
i=1

K∑
k=1

γik ‖xi − Tek‖2

≤ 2KEγ

∥∥∥∥∥
m∑

i=1

γixi

∥∥∥∥∥ + KEγ

∣∣∣∣∣
m∑

i=1

γi

∣∣∣∣∣ (triangle and Schwarz)

≤ 3K
√

m (Jensen).

Substitution in (3) yields R (F , µ) ≤ K
√

18π/m, which, using Theorem 4 with
N = 1 and b = 4 implies the result. �	

It is tempting to use the same technique in the general case. Unfortunately
an essential step in the application of Slepian’s Lemma, marked (*) above, is
impossible if A is infinite, so that a more devious path has to be chosen.

The idea is the following: Every implementing map T ∈ C can be factored as
T = U ◦ S, where S is a K ×K matrix, S ∈ L

(
RK

)
, and U is an isometry, U ∈

U(RK , H). Suitably bounded K×K matrices form a compact, finite dimensional
set, the complexity of which can be controlled using covering numbers, while the
complexity arising from the set of isometries can be controlled with Rademacher
and Gaussian averages. Theorem 4 then combines these complexity estimates.

For fixed S ∈ L
(
RK

)
we denote

GS =
{
fUS : U ∈ U

(
RK , H

)}
.

Recall the notation ‖C‖A = supT∈C ‖T ‖A = supT∈C supy∈A ‖Ty‖. With S we
denote the set of K × K-matrices

S =
{
S ∈ L

(
RK

)
: ‖S‖A ≤ ‖C‖A

}
.

Lemma 3. Assume ‖C‖A ≥ 1, that the functions in F , when restricted to the
unit ball of H, have range contained in [0, b], and that the measure µ is supported
on the unit ball of H. Then with probability at least 1 − δ for all T ∈ C

Ex∼µfT (x) − 1
m

m∑
i=1

fT (xi)

≤ sup
S∈S

Rm (GS , µ) +
bK

2

√√√√ ln
(
16m ‖C‖2

A

)
m

+
8 ‖C‖A√

m
+ b

√
ln (1/δ)

2m
.

88 A. Maurer and M. Pontil

Proof. Fix ε > 0. The set S is the ball of radius ‖C‖A in the K2-dimensional
Banach space

(
L
(
RK

)
, ‖.‖A

)
so by Proposition 1 we can find a subset Sε ⊂

S, of cardinality |Sε| ≤ (4 ‖C‖A /ε)K2

such that every member of S can be
approximated by a member of Sε up to distance ε in the norm ‖.‖A.

We claim that for all T ∈ C there exist U ∈ U(RK , H) and Sε ∈ Sε such that

|fT (x) − fUSε (x)| < 4 ‖C‖A ε,

for all x in the unit ball of H . To see this write T = US with U ∈ U(RK , H)
and S ∈ L(RK). Then, since U is an isometry, we have

‖S‖A = sup
y∈A

‖Sy‖ = sup
y∈A

‖Ty‖ = ‖T ‖A ≤ ‖C‖A

so that S ∈ S. We can therefore choose Sε ∈ Sε such that ‖Sε − S‖A < ε. Then
for x ∈ H , with ‖x‖ ≤ 1, we have

|fT (x) − fUSε (x)| = inf
y∈A

(
‖x − USy‖2 + g (y)

)
− inf

y∈A

(
‖x − USεy‖2 + g (y)

)
≤ sup

y∈A

(
‖x − USy‖2 − ‖x − USεy‖2

)
= sup

y∈A
〈USεy − USy, 2x− (USy + USεy)〉

≤ (2 + 2 ‖C‖A) sup
y∈A

‖(Sε − S) y‖ ≤ 4 ‖C‖A ε.

Apply Theorem 4 to the finite collection of function classes {GS : S ∈ Sε} to see
that with probability at least 1 − δ

sup
T∈C

Ex∼µfT (x) − 1
m

m∑
i=1

fT (xi)

≤ max
S∈Sε

sup
U∈U(RK ,H)

Ex∼µfUS (x) − 1
m

m∑
i=1

fUS (xi) + 8 ‖C‖A ε

≤ max
S∈Sε

Rm (GS , µ) + b

√
ln |Sε| + ln (1/δ)

2m
+ 8 ‖C‖A ε

≤ sup
S∈S

Rm (GS , µ) +
bK

2

√√√√ ln
(
16m ‖C‖2

A

)
m

+
8 ‖C‖A√

m
+ b

√
ln (1/δ)

2m
,

where the last line follows from the known bound on |Sε|, subadditivity of the
square root and the choice ε = 1/

√
m. �	

To complete the proof of Theorem 1 we now fix some S ∈ S and focus on the
corresponding function class GS . Observe that for an isometry U ∈ U(RK , H) the

Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces 89

operator U∗U is the identity on RK and that UU∗ is the orthogonal projection
onto the range of U . We therefore have, for x ∈ H ,

inf
y∈A

‖x − USy‖2 = ‖x − UU∗x‖2 + inf
y∈A

‖UU∗x − USy‖2

= ‖x‖2 − ‖UU∗x‖2 + inf
y∈A

‖U∗x − Sy‖2

so that GS = D + ES , where

D =
{

x �→ ‖x‖2 − ‖UU∗x‖2 : U ∈ U
(
RK , H

)}
ES =

{
x �→ inf

y∈A
‖U∗x − Sy‖2 + g (y) : U ∈ U

(
RK , H

)}
.

We will bound the Rademacher complexities of these two function classes in turn.
Observe that the function class D is the class of reconstruction errors of PCA,

so the next lemma and an application of Theorem 4 with N = 1 and b = 1 also
give a generalization bound for PCA of order

√
K/m.

Lemma 4. R (D, µ) ≤ 2
√

K/m.

Proof. For z ∈ H define the outer product operator Qz by Qzx = 〈x, z〉 z. With
〈., .〉2 and ‖.‖2 denoting the Hilbert-Schmidt inner product and norm respectively
we have for ‖xi‖ ≤ 1

Eσ sup
f∈D

m∑
i=1

σif (xi) = Eσ sup
U∈U

m∑
i=1

σi

(
‖xi‖2 − ‖UU∗xi‖2

)
= Eσ sup

U∈U

〈
m∑

i=1

σiQxi , UU∗
〉

2

≤ Eσ

∥∥∥∥∥
m∑

i=1

σiQxi

∥∥∥∥∥
2

sup
U∈U

‖UU∗‖2

≤
√

mK,

since the Hilbert-Schmidt norm of a K-dimensional projection is
√

K. The result
follows upon multiplication with 2/m and taking the expectation in µm. �	

Lemma 5. For any S ∈ L
(
RK

)
we have

R (ES , µ) ≤ 4 (1 + ‖S‖A)K√
m

√
π

2
.

Proof. Let ‖xi‖ ≤ 1 and define Gaussian processes ΩU and ΞU indexed by
U(RK , H)

ΩU =
m∑

i=1

γi inf
y∈A

(
‖U∗xi − Sy‖2 + g (y)

)
ΞU = 2 (1 + ‖S‖A)

K∑
k=1

m∑
i=1

γik 〈xi, Uek〉 ,

90 A. Maurer and M. Pontil

where the ek are the canonical basis of RK . For U1, U2 ∈ U(RK , H) we have

E (ΩU1 − ΩU2)
2 ≤

m∑
i=1

sup
y∈A

〈U∗
1 xi − U∗

2 xi, U
∗
1 xi + U∗

2 xi − 2Sy〉2

≤
m∑

i=1

‖U∗
1 xi − U∗

2 xi‖2 sup
y∈A

‖U∗
1 xi + U∗

2 xi − 2Sy‖2

≤ 4 (1 + ‖S‖A)2
m∑

i=1

K∑
k=1

(〈xi, U1ek〉 − 〈xi, U2ek〉)2

= E (ΞU1 − ΞU2)
2
.

It follows from Lemma 1 and Slepians lemma (Theorem 3) that

Rm (ES , µ) ≤ Ex∼µm

2
m

√
π

2
Eγ sup

U
ΞU ,

so the result follows from the following inequalities, using Schwarz’ and Jensens
inequality, the orthonormality of the γik and the fact that ‖xi‖ ≤ 1 on the
support of µ.

Eγ sup
U

ΞU = 2 (1 + ‖S‖A) E sup
U

K∑
k=1

〈
m∑

i=1

γikxi, Uek

〉

≤ 2 (1 + ‖S‖A)
K∑

k=1

E

∥∥∥∥∥
m∑

i=1

γikxi

∥∥∥∥∥
≤ 2 (1 + ‖S‖A)K

√
m. �	

Using the subadditivity of the Rademacher complexity, the last two results give
for K > 1 and ‖C‖A ≥ 1

sup
S∈S

Rm (GS , µ) ≤ Rm (D, µ) + sup
S∈S

Rm (ES , µ)

≤ 1√
m

(
2
√

K + 8K ‖C‖A

√
π

2

)
≤ 12K ‖C‖A√

m
,

and substitution in Lemma 3 gives Theorem 1.

Acknowledgments

This work was supported by EPSRC Grants GR/T18707/01 and EP/D071542/1
and by the IST Programme of the European Community, under the PASCAL
Network of Excellence IST-2002-506778.

References

[1] Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian Complexities: Risk
Bounds and Structural Results. Journal of Machine Learning Research 3, 463–
482 (2002)

[2] Bartlett, P., Linder, T., Lugosi, G.: The minimax distortion redundancy in em-
pirical quantizer design. IEEE Transactions on Information Theory 44, 1802–1813
(1998)

Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces 91

[3] Biau, G., Devroye, L., Lugosi, G.: On the performance of clustering in Hilbert
spaces. IEEE Transactions on Information Theory 54, 781–790 (2008)

[4] Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin of
the American Mathematical Society 39(1), 1–49 (2001)

[5] Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58, 13–30 (1963)

[6] Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Jour-
nal of Machine Learning Research 5, 1457–1469 (2004)

[7] Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the
generalization error of combined classifiers. The Annals of Statistics 30(1), 1–50
(2002)

[8] Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Springer, Heidelberg
(1991)

[9] Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix
factorization. Nature 401, 788–791 (1999)

[10] Li, S.Z., Hou, X., Zhang, H., Cheng, Q.: Learning spatially localized parts-based
representations. In: Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), Hawaii, USA, vol. I, pp. 207–212 (2001)

[11] McDiarmid, C.: Concentration. In: Probabilistic Methods of Algorithmic Discrete
Mathematics, pp. 195–248. Springer, Berlin (1998)

[12] Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607–609 (1996)

[13] Shawe-Taylor, J., Williams, C.K.I., Cristianini, N., Kandola, J.S.: On the eigen-
spectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE
Transactions on Information Theory 51(7), 2510–2522 (2005)

[14] Wigelius, O., Ambroladze, A., Shawe-Taylor, J.: Statistical analysis of clustering
with applications (preprint, 2007)

[15] Slepian, D.: The one-sided barrier problem for Gaussian noise. Bell System Tech.
J. 41, 463–501 (1962)

[16] van der Vaart, A.W., Wallner, J.A.: Weak Convergence and Empirical Processes.
Springer, Heidelberg (1996)

[17] Zwald, L., Bousquet, O., Blanchart, G.: Statistical properties of kernel principal
component analysis. Machine Learning 66(2-3), 259–294 (2006)

Learning and Generalization with the
Information Bottleneck

Ohad Shamir1, Sivan Sabato1,3, and Naftali Tishby1,2

1 School of Computer Science and Engineering
2 Interdisciplinary Center for Neural Computation,

The Hebrew University, Jerusalem 91904, Israel
3 IBM Research Laboratory in Haifa, Haifa 31905, Israel

{ohadsh,sivan_sabato,tishby}@cs.huji.ac.il

Abstract. The InformationBottleneck is an information theoretic frame-
work that finds concise representations for an ‘input’ random variable
that are as relevant as possible for an ‘output’ random variable. This
framework has been used successfully in various supervised and unsu-
pervised applications. However, its learning theoretic properties and jus-
tification remained unclear as it differs from standard learning models in
several crucial aspects, primarily its explicit reliance on the joint input-
output distribution. In practice, an empirical plug-in estimate of the
underlying distribution has been used, so far without any finite sample
performance guarantees. In this paper we present several formal results
that address these difficulties. We prove several finite sample bounds,
which show that the information bottleneck can provide concise repre-
sentations with good generalization, based on smaller sample sizes than
needed to estimate the underlying distribution. The bounds are non-
uniform and adaptive to the complexity of the specific model chosen.
Based on these results, we also present a preliminary analysis on the
possibility of analyzing the information bottleneck method as a learning
algorithm in the familiar performance-complexity tradeoff framework. In
addition, we formally describe the connection between the information
bottleneck and minimal sufficient statistics.

1 Introduction

The Information Bottleneck (IB) method, introduced in [23], is an information-
theoretic framework for extracting relevant components of an ‘input’ random
variable X , with respect to an ‘output’ random variable Y . This is performed
by finding a compressed, non-parametric and model-independent representation
T of X , that is most informative about Y . Formally speaking, the notion of
compression is quantified by the mutual information between T and X , while
the informativeness is quantified by the mutual information between T and Y .
A scalar Lagrange multiplier β smoothly controls the tradeoff between these two
quantities.

The method has proven to be useful for a number of important applications
(see [24, 8, 21] and references therein), but its learning theoretic justification has

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 92–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning and Generalization with the Information Bottleneck 93

remained unclear, for two main reasons: (i) The method assumes that the joint
distribution of X and Y is known, and uses it explicitly. This stands in contrast
to most finite-sample based machine learning algorithms. In practice, the em-
pirical co-occurrence distribution is used to calculate a plug-in estimate of the
IB functional, but without explicit regularization, finite-sample generalization
bounds or error guarantees of any kind. Moreover, it was not clear what is left
to be learned if it is assumed that this distribution is known. (ii) IB is formally
related to classical information theoretic problems, such as Rate-Distortion the-
ory and Coding with Side-Information. It is, however, unclear why maximizing
mutual information about Y is useful for any “natural” learning theoretic model,
and in particular how it is related to classification error.

In this paper we provide rigorous answers to some of the above issues con-
cerning the IB framework. We focus on a learning theoretic analysis of this
framework, where X and Y are assumed to be discrete, and the empirical dis-
tribution of p(x, y) is used as a plug-in for the true distribution. We develop
several finite sample bounds, and show that despite this use of plug-in estima-
tion, the IB framework can actually generalize quite well, with realistic sample
sizes that can be much smaller than the dimensionality of this joint distribution,
provided that we are looking for a reasonably simple representation T of our
data. In fact, it is exactly the reliance of the framework on explicit manipulation
of the joint distribution that allows us to derive non-uniform bounds that are
adaptive to the complexity of the specific model chosen. In addition, we present
a preliminary analysis regarding the question in which settings the information
bottleneck can be seen as a standard learning algorithm, trading off a risk-like
term and a regularization term controlling the generalization. Finally, we discuss
its utility as a natural extension of the concept of minimal sufficient statistics
for discrimination.

The paper is organized as follows. In Sec. 2, we formally present the informa-
tion bottleneck framework and the notation used in the paper. We then turn to
analyze its finite sample behavior in Sec. 3. Sec. 4 discusses the characteristics
of the information bottleneck as a learning algorithm, while its relation to mini-
mal sufficient statistics is considered in Sec. 5. Selected proofs are presented in
Sec. 6; Full proofs can be found in [19]. We finish with a discussion in Sec. 7.

2 The Information Bottleneck Framework

In this section we explain and formally describe the basic information bottleneck
(IB) framework. This framework has several variants and extensions, both to
multivariate variables and to continuous representations (see [20, 4] for more
details), but these are not the focus of this paper.

The IB framework attempts to find a simple representation of one random
variable X through an auxiliary variable T , which is relevant to another ran-
dom variable Y . Let us first exemplify how the IB method can be used for
both supervised and unsupervised learning. Consider the area of text analysis.
A typical unsupervised problem can be clustering documents based on their

94 O. Shamir, S. Sabato, and N. Tishby

word-statistics in order to discover similarities and relationships between them.
In this case the X variable is taken as the document identity (typically consid-
ered as “bags of words”) and the Y as the words in the documents. In this case,
the T variable will be clusters of documents with similar word-statistics, based,
for instance, on the “the two sample problem” [13] similarity measure.

In a typical supervised application in this domain, X can denote the words
while Y are topic-labels of the documents. Here T are clusters of words that are
(approximately) sufficient for document categorization [24]. In all the applica-
tions a variable β allows us to smoothly move between a low resolution - highly
compressed - solution, to a solution with higher resolution and more information
about Y . This form of dimensionality reduction, a special case of the information
bottleneck, was introduced under the name of distributional clustering in [16],
and has proven to be quite effective in analyzing high dimensional data [2, 9].

In this work, we assume that X and Y take values in the finite sets X and
Y respectively, and use x and y respectively to denote elements of these sets.
The basic quantity that is utilized in the IB framework is Shannon’s mutual
information between random variables, which for discrete variables is formally
defined as:

I(X ; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
.

Mutual information is well known to be the unique measure of informative-
ness, up to a multiplicative constant, under very mild assumptions [5]. The IB
functional is built upon the relationship between minimal sufficiency and infor-
mation. It captures a tradeoff between minimality of the representation of X ,
achieved by minimizing I(X ; T), and sufficiency of information on Y , achieved
by constraining the value of I(Y ; T). The auxiliary variable T is thus determined
by the minimization of the IB-Lagrangian

LIB[p(t|x)] = I(X ; T)− βI(Y ; T) (1)

with respect to the mapping p(t|x). T is subject to the Markovian relation
T − X − Y , and p(t|x) is subject to the obvious normalization constraints. The
tradeoff parameter β is a positive Lagrange multiplier associated with the con-
straint on I(Y ; T). Formally, T is defined over some space T , but the elements
of this space are arbitrary - only the probabilistic relationships between T and
X, Y are relevant.

The solutions of this constrained optimization problem are characterized by
the bottleneck equations,⎧⎨⎩p(t|x) = p(t)

Z(β,x) exp(−β DKL[p(y|x)‖p(y|t)])
p(t) =

∑
x∈X p(t|x)p(x)

p(y|t) =
∑

x∈X p(y|x)p(x|t) ,

(2)

where DKL is the Kullback-Leibler divergence and Z(β, x) is a normalization
function. These equations need to be satisfied simultaneously, given p(x, y) and
β. In [23] it is shown that alternating iterations of these equations converge - at

Learning and Generalization with the Information Bottleneck 95

least locally - to a solution for any initial p(t|x), similar to the Arimoto-Blahut
algorithm in information theory [5]. In [3] it is shown that the set of achievable
p(x, y, t) distributions form a strictly convex set in the (I(X ; T), I(Y ; T)) plane,
bounded by a smooth optimal function - the information curve - similar to the
rate-distortion function in source coding. By increasing the value of β one can
move smoothly along this curve from the trivial, I(X ; T) = I(Y ; T) = 0 solution
at the origin, all the way to the most complex solution where T captures all the
relevant information from X and I(X ; T) = H(X), H(X) denoting the entropy
of X . In addition, as β is increased, I(Y ; T) increases and T captures more
information on Y . Due to the data-processing inequality, I(Y ; T) ≤ I(X ; Y),
with equality only when T becomes an exact sufficient statistic for Y . The
tradeoff inherent in Eq. (1) forces us to find a simple representation T of X ,
which preserves only those aspects of X which are informative, i.e. relevant,
about Y .

It should be emphasized that despite superficial similarities, IB is not a hidden
variable model. In such models, we assume that the joint distribution p(x, y) can
be factorized using an auxiliary random variable T , forming a Markovian relation
X − T − Y . In IB, we make no generative assumption on the distribution, and
the Markovian relation is T − X − Y . Namely, T is a generic compression of
X , and the information-curve is characterized by the joint distribution p(x, y)
independently of any modeling assumptions.

An important observation is that the effective cardinality of an optimal T is
not fixed and depends on β. When β ≤ 1, even a trivial T of cardinality 1 will
optimize Eq. (1), since we always have I(Y ; T) ≤ I(X ; T). On the other hand,
as β increases, more emphasis is put on informativeness with respect to Y , and
the cardinality of T will increase, although the cardinality of an optimal T need
not exceed the cardinality of X , as proven in [10].

In order to optimize Eq. (1) we need to calculate the quantities I(X ; T) and
I(Y ; T) for any chosen T and β. Since T is defined only via X , we need to
know p(x, y) in order to calculate these two quantities. In most applications,
however, p(x, y) is unknown. Instead, we assume that we have an i.i.d sample
of m instances drawn according to p(x, y), and we use this sample to create
a maximum-likelihood estimate of the distribution using p̂(x, y), the empirical
distribution of the sample. Following current practice, this empirical estimate is
then plugged into the calculation of I(X ; T) and I(Y ; T) instead of the true joint
distribution, and Eq. (1) is optimized using this plug-in estimate. In general,
we use the ˆ symbol to denote quantities calculated using p̂(x, y) instead of
p(x, y). Thus, instead of calculating I(X ; T) and I(Y ; T) precisely, we rely on the
empirical estimates Î(X ; T) and Î(Y ; T) respectively. In this work we investigate
how much these empirical estimates can deviate from the true values when we
optimize for T - in other words, whether this plug-in practice is justified. Note
that the sample size m is often smaller than the number of bins |X ||Y|, and thus
p̂(x, y) can be a very poor approximation to p(x, y). Nevertheless, this is precisely
the regime we are interested in for many applications, text categorization to
name one.

96 O. Shamir, S. Sabato, and N. Tishby

3 Finite Sample Analysis

We begin our analysis by focusing on the finite-sample behavior of the IB frame-
work, and in particular on the relationship between I(X ; T) and I(Y ; T) that
appear in Eq. (1) and their empirical estimates Î(X ; T) and Î(Y ; T).

Our first result shows that for any fixed T defined as a random mapping of X
via p(t|x), it is possible to determine the value of the objective function Eq. (1)
within reasonable accuracy based on a random sample. The proof outline is
provided in Sec. 6.1. The full proof can be found in [19].

Theorem 1. Let T be a given probabilistic function of X into an arbitrary finite
target space, determined by p(t|x), and let S be a sample of size m drawn from the
joint probability distribution p(X, Y). For any confidence parameter δ ∈ (0, 1),
it holds with a probability of at least 1 − δ over the sample S that

|I(X ; T) − Î(X ; T)| ≤ (|T | log(m) + log(|T |))
√

log(4/δ)√
2m

+
|T | − 1

m
,

and that

|I(Y ; T) − Î(Y ; T)| ≤ (3|T | + 2) log(m)
√

log(4/δ)√
2m

+
(|Y| + 1)(|T | + 1) − 4

m
.

Note that the theorem holds for any fixed T , not just ones which optimize Eq. (1).
In particular, the theorem holds for any T found by an IB algorithm, even if T
is not a globally optimal solution.

The theorem shows that estimating the objective function for a certain so-
lution T is much easier than estimating p(x, y). Indeed, the bound does not
depend on |X |, which might even be countably infinite. In addition, it depends
on |Y| only as a second-order factor, since |Y| is multiplied by 1/m rather than
by 1/

√
m. The complexity of the bound is thus mainly controlled by |T |. By

constraining |T | to be small, or by setting β in Eq. (1) to be small enough so
that the optimal T has low cardinality, a tight bound can be achieved.

Thm. 1 provides us with a bound on a certain pre-specified T , where the
sample S is not part of the process of selecting T . The next theorem is a full
generalization bound, determined by the sample when it is used as a training
set by which T is selected.

For presenting the theorem compactly, we will use some extra notation. Let
x1, . . . , x|X | be some fixed ordering of the elements of X , and y1, . . . , y|Y| be an or-
dering of the elements of Y. We use the shorthand p(T = t|x) to denote the vector
(p(t|x1), . . . , p(t|x|X |)). Similarly, we denote the vector (Ĥ(T |y1), . . . , Ĥ(T |y|Y|))
by Ĥ(T |y) where Ĥ(T |yi) is the entropy of p̂(T |yi). Furthermore, the vector
(H(T |x1), . . . , H(T |xX)) is denoted by H(T |x), where H(T |xi) is the entropy of
p(T |xi). Note that p(T |xi) is known as it defines T , and thus does not need to
be estimated empirically.

Learning and Generalization with the Information Bottleneck 97

For any real-valued vector a = (a1, . . . , an), we define the function V (a) as
follows:

V (a) = ‖a − 1
n

n∑
j=1

aj‖2 �
n∑

i=1

⎛⎝ai −
1
n

n∑
j=1

aj

⎞⎠2

. (3)

Note that 1
nV (a) is simply the variance of the elements of a. In addition, we

define the real-valued function φ as follows:

φ(x) =

⎧⎪⎨⎪⎩
0 x = 0
x log(1/x) 0 < x ≤ 1/e

1/e x > 1/e.

(4)

Note that φ is a continuous, monotonically increasing and concave function.

Theorem 2. Let S be a sample of size m drawn from the joint probability dis-
tribution p(X, Y). For any confidence parameter δ ∈ (0, 1), it holds with a prob-
ability of at least 1 − δ over the sample S that for all T , |I(X ; T) − Î(X ; T)| is
upper bounded by√

C log(|Y|/δ) · V (H(T |x))
m

+
∑

t

φ

(√
C log(|Y|/δ) · V (p(T = t|x))

m

)
, (5)

and |I(Y ; T) − Î(Y ; T)| is upper bounded by√
C log(|Y|/δ) · V (Ĥ(T |y))

m
+ 2

∑
t

φ

(√
C log(|Y|/δ) · V (p(T = t|x))

m

)
, (6)

where V and φ are defined in Eq. (3) and Eq. (4), and C is a small constant.

As in Thm. 1, this theorem holds for all T , not just those optimizing Eq. (1).
Also, the bound enjoys the advantage of not being uniform over a hypothesis
class of possible T ’s, but rather depending directly on the T of interest. This
is achieved by avoiding standard uniform complexity tools (see the proof for
further details).

Intuitively, these bounds tell us that the ‘smoother’ T is with respect to X ,
the tighter the bound. To see this, assume that for any fixed t ∈ T , p(t|x) is more
or less the same for any choice of x. By definition, this means that V (p(T = t|x))
is close to zero. In a similar manner, if H(T |x) is more or less the same for any
x, then V (H(T |x)) is close to zero, and so is V (Ĥ(T |y)) if Ĥ(T |y) is more or
less the same for any y. In the extreme case, if T is independent of X , then
p(t|x) = p(t), H(T |x) = H(T) and Ĥ(T |y) = Ĥ(T) for any choice of x, y, and
the generalization bound becomes zero. This is not too surprising, since in this
case I(X ; T) = ˆI(X ; T) = 0 and I(Y ; T) = Î(Y ; T) = 0 regardless of p(x, y) or
its empirical estimate p̂(x, y).

98 O. Shamir, S. Sabato, and N. Tishby

This theorem thus suggests that generalization becomes better as T becomes
less statistically dependent on X , and so provides a more compressed probabilis-
tic representation of X . This is exactly in line with empirical findings [20], and
with the intuition that ‘simpler’ models should lead to better generalization.

A looser but simpler bound on Thm. 2 can be achieved by fixing the cardinality
of T , and analyzing the bound with worst-case assumptions on the statistical
dependency between X and T . The proof, which is rather technical, is omitted
in this version and may be found in [19].

Theorem 3. Under the conditions and notation of Thm. 2, we have that with
a probability of at least 1 − δ, for all T ,

|I(X ; T)− Î(X ; T)| ≤
1
2

√
C log(|Y|/δ)(

√
|T ||X | log(m)+|X | 12 log(|T |))+ 1

e |T |√
m

and

|I(Y ; T) − Î(Y ; T)| ≤

√
C log(|Y|/δ)

(√
|T ||X | log(m)+ 1

2 |Y|
1
2 log(|T |)

)
+ 2

e |T |
√

m
,

where C is the same constant as in Thm. 1.

Even with this much looser bound, if |Y| is large and |T | � |Y| the bound can be
quite tight, even with sample sizes which are in general insufficient to reasonably
estimate the joint distribution p(x, y). One relevant setting is in unsupervised
learning, when Y models the feature space.

In this section, we have shown that the quantities that make up the IB ob-
jective function can be estimated reliably from a sample of a reasonable size,
depending on the characteristics of T . In the next section we investigate the
motivation for using these quantities in the objective function in the first place.

4 A Learning Theoretic Perspective

The IB framework optimizes a trade-off between I(X ; T) and I(Y ; T). In this
section we provide a preliminary discussion of the learning theoretic proper-
ties of this tradeoff, investigating when mutual information provides reasonable
measures for both learning complexity and accuracy.

In an unsupervised setting, such as clustering, it is rather easy to see how
I(X ; T) and I(Y ; T) control the complexity and granularity of the clustering
by trading between homogeneity and resolution of the clusters; this has been
discussed previously in the literature (such as [24], [3]). Therefore, we will focus
here mainly on the use of this framework in supervised learning, where the
objectives are more well defined.

Most supervised learning algorithms are based on a tradeoff between two
quantities: a risk term, measuring the performance of a hypothesis on the sample
data, and a regularization term, which penalizes complex hypotheses and so

Learning and Generalization with the Information Bottleneck 99

ensures reasonable generalization to unseen data. In the following we argue that
under relevant settings it is reasonable to consider I(Y ; T) as a measure of risk
and I(X ; T) as a regularization term that controls generalization.

4.1 I(Y;T) as a Measure of Performance

In this section we investigate the plausibility of I(Y ; T) as a measure of perfor-
mance or risk in a supervised learning setting. We show that in those supervised
learning settings where IB was demonstrated to be highly effective, such as doc-
ument categorization [22], there is a strong connection between the classification
error and the mutual information I(Y ; T), especially when the categories are
uniformly spread. The discussion here is a first step towards a full analysis of
the IB classification performance in a more general setting, which we leave for
future work.

In a typical document classification task we model X as a random variable over
the set of possible words, and Y as a random variable over the set of document
categories or classes. Each document is treated as an i.i.d. sample of words drawn
from p(x|y), in accordance with the bag of words representation, where y is the
class of the document. Unlike the simple supervised learning settings, where each
example is described as a single data point, in this case each example (document)
to be labeled is described by a sample of points (words) of variable size (usually
large) and we seek the most probable class of the whole sample (document)
collectively.

IB is used in this setting to find T , a compressed representation of the words
in a document, which is as informative as possible on the categories Y . The
bottleneck equations Eq. (2) provide for each class y its conditional distribution
on T , via p̂(t|y) =

∑
x p(t|x)p̂(x|y). When a new document D = {x1, . . . , xn}

of size n is to be classified, the empirical distribution of T given D is p̃(t) =∑n
i=1 p(t|xi)p̂(xi). Assuming that the document is sampled according to p(t|y)

for some class y, the most probable class y∗ can be selected using the maximum
likelihood principle, namely y∗ = argminy DKL[p̃(t)‖p̂(t|y)].

We now show that Î(Y ; T) is indeed a reasonable objective function whenever
we wish to collectively label an entire set of sampled instances.

Assume that the true class for document D is y1, with its word distribu-
tion sampled via p(t|y1). The probability αn of misclassifying this sample as
y2 for some y2 �= y1 via the likelihood test decreases exponentially with the
sample size n. The rate of exponential decrease is larger if the two distri-
butions p(t|y1), p(t|y2) are more distinct. Formally, by Stein’s lemma [5], if
p̂(t|y1) = p(t|y1) and p̂(t|y2) = p(t|y2), then

lim
n→∞

1
n

log(αn) = DKL[p(t|y2)‖p(t|y1)]. (7)

When p̂(t|y1) and p̂(t|y2) deviate from the true conditional distributions, Stein’s
Lemma still holds up to an additive constant which depends on the amount of
deviation, and the exponent is still controlled mainly by DKL[p(t|y2)‖p(t|y1)]. In
the following we will assume for simplicity that Eq. (7) holds exactly.

100 O. Shamir, S. Sabato, and N. Tishby

The overall probability of misclassifying a document when there are more
than two possible classes is thus upper bounded by∑

y 	=y1

exp(−nDKL[p(t|y)‖p(t|y1)]). (8)

On the other hand, by the definition of mutual information and the convexity
of the Kullback-Leibler divergence we have that

I(Y ; T) = EyDKL[p(t|y)‖p(t)] = EyDKL[p(t|y)‖Ey′p(t|y′)] (9)
≤ Ey,y′DKL[p(t|y)‖p(t|y′)],

Hence −nI(Y ; T) is an upper bound on the expected value of the exponent in
Eq. (7), assuming that y1 and y2 are picked according to p(y). The relationship
between Eq. (9) on the one hand, and Eq. (7), Eq. (8) on the other hand, is not
direct. Nonetheless, these equations indicate that if the examples to classify are
represented by a large sample, as in the document classification setting, higher
values of I(Y ; T) should correspond to a reduced probability of misclassification.
For example, if DKL[p(t|y)‖p(t|y1)] is equal for every y �= y1, we have that Eq. (8)
is upper bounded by

(n − 1) exp
(
− nI(Y ; T)/ (|Y| − 1)

)
,

in which case the probability of misclassification is exponentially dominated by
I(Y ; T). This is the case when categories are uniformly spread, which happens
for many applications incidently or by design. In this case, when the bottleneck
variable T captures just a fraction α = I(Y ; T)/I(X ; Y) of the relevant infor-
mation, the test (document) size should increase only by a factor 1/α in order
to achieve a similar bound on the classification error.

4.2 I(X;T) as a Regularization Term

In this subsection we discuss the role of I(X ; T), the compression term in IB, as a
regularizer when maximizing I(Y ; T). Note that without regularization, I(Y ; T)
can be maximized by setting T = X . However, p(x|y) cannot be estimated
efficiently from a sample of a reasonable size; therefore the formal solution T =
X cannot be used to perform reliable classification. Moreover, in the context
of unsupervised learning, setting T = X is generally a meaningless operation,
corresponding to singleton clusters.

The bottleneck variable T must therefore be restricted to allow reasonable
generalization in a supervised setting and to generate a reasonable model in an
unsupervised setting. In the IB framework I(X ; T) can be viewed as a penalty
term that restricts the complexity of T . A more formal justification for this is
given in the following theorem, which is derived from Thm. 2. Since the proof is
quite technical, it is omitted in this version and may be found in [19].

Learning and Generalization with the Information Bottleneck 101

Theorem 4. For any probability distribution p(x, y), with a probability of at
least 1 − δ over the draw of the sample of size m from p(x, y), we have that for
all T ,

|I(Y ; T)− Î(Y ; T)| ≤
√

C log(|Y|/δ)
m

(
C1 log(m)

√
|T |I(X ; T)

+ C2|T |3/4(I(X ; T))1/4 + C3Î(X ; T)
)
,

where C is the same constant as in Thm. 1, and C1, C2, C3 depend only on p(x)
and p(y).

This bound is controlled by I(X ; T) and Î(X ; T), which are closely related as
Thm. 3 shows. This is not a fully empirical bound, as it depends on the unknown
quantity I(X ; T) and the marginal distributions of X, Y . The bound does how-
ever illustrate the relationship between the generalization error, as embodied in
the difference between I(Y ; T) and Î(Y ; T), and the mutual information I(X ; T).
This provides motivation for the use of I(X ; T) as a regularization term, beyond
its obvious description length interpretation or coding interpretation.

5 Relationship with Sufficient Statistics

A fundamental issue in statistics, pattern recognition, and machine learning is
the notion of relevance. Finding the relevant components of data is implicitly
behind the problems of efficient data representation, feature selection and di-
mension reduction for supervised learning, and is the essence of most unsuper-
vised learning problems. One of the earliest and more principled approaches to
relevance was the concept of sufficient statistics for parametric distributions, in-
troduced by Fisher [7] as function(s) of a sample that capture all the information
about the parameter(s). A sufficient statistic is defined as follows:

Definition 1 (Sufficient Statistic). Let Y be a parameter indexing a family
of probability distributions. Let X be random variable drawn from a probabil-
ity distribution determined by Y . Let T be a deterministic function of X. T is
sufficient for Y if

∀x ∈ X , t ∈ T , y ∈ Y p(x|t, y) = p(x|t).

Throughout this section we assume that it suffices that the equality holds almost
everywhere with respect to the probability of y and x.

In words, the sufficiency of T means that given the value of T , the distribution
of X does not depend on the value of Y .

In the parametric statistics setting, Y is a random variable that parameterizes
a family of probability distributions, and X is a data point drawn from p(x|y)
where x ∈ X and y ∈ Y. For example, the family of probability distributions
may be the set of Bernoulli distributions with success probability p determined

102 O. Shamir, S. Sabato, and N. Tishby

by y, with Y ⊆ [0, 1] and some prior distribution p(y). In this case, for a given
y, p(X = 1|y) = y, and p(X = 0|y) = 1 − y.

Y and X may be high dimensional. For instance, Y may determine the mean
and the variance of a normal distribution, or fully parameterize a multinomial
distribution. X may be a high dimensional data point. For any family of prob-
ability distributions, we can consider a sample of m i.i.d data points, all drawn
from the same distribution determined by a single draw of Y . In the context of
sufficient statistics, this is just a special case of a high dimensional X which is
drawn from the cross-product of m identical probability distributions determined
by the value of Y .

Just as X and Y may be high dimensional, so can T map X to a multidi-
mensional space. If X denotes an i.i.d sample, the number of dimensions in T
may depend on the size of the sample m. Specifically, T = X is always sufficient
for Y . To avoid trivial sufficient statistics such as this, Lehmann and Scheffé
[12] introduced the concept of a minimal sufficient statistic, which denotes the
coarsest sufficient partition of X , as follows:

Definition 2 (Minimal Sufficient Statistic). A sufficient statistic S is min-
imal if and only if for any sufficient statistic T , there exists a deterministic
function f such that S = f(T) almost everywhere w.r.t X.

For instance, for an i.i.d sample of size m of the Bernoulli distribution in the
example above, T = X is trivially a sufficient statistic, but the one-dimensional
T = 1

m

∑
i xi where x = (x1, . . . xm) is also sufficient. It can be shown that the

latter T (and any one-to-one function of it) is a minimal sufficient statistic.
By the Pitman-Koopman-Darmois theorem [17], sufficient statistics whose di-

mension does not depend on the sample size exist only for families of exponential
form. This makes the original concept of sufficiency rather restricted.

Kullback and Leibler [11] related sufficiency to Shannon’s information theory,
showing that sufficiency is equivalent to preserving mutual information on the
parameter, while minimal sufficient statistics minimize the mutual information
with the sample due to the data-processing inequality [5].

The IB framework allows us to naturally extend this concept of relevance to
any joint distribution of X and Y , not necessarily ones of exponential form, in
a constructive computational manner. In this framework, built on Kullback’s
information theoretic characterization of sufficiency [11], one can find compact
representations T of a sample X that maximize mutual information about the
parameter variable Y , corresponding to sufficiency for Y , and minimize I(X ; T),
corresponding to the minimality of the statistic. However, unlike the original
concepts of sufficient statistic and minimal sufficient statistic, the IB framework
provides a soft tradeoff between these two objectives.

It can easily be seen that as β grows to infinity, if T is not restricted then
I(Y ; T) converges to I(X ; Y) and T converges to a minimal sufficient statistic.
The following theorem formalizes this insight. Similar formulations of this theo-
rem can be gleaned from [11] and [5]. The full proof is presented for completeness
in [19].

Learning and Generalization with the Information Bottleneck 103

Theorem 5. Let X be a sample drawn according to a distribution determined
by the random variable Y . The set of solutions to

min
T

I(X ; T) s.t. I(Y ; T) = max
T ′

I(Y ; T ′)

is exactly the set of minimal sufficient statistics for Y based on the sample X.

The IB framework thus provides a natural generalization of the concept of a suf-
ficient statistic, where by setting β to lower values, different degrees of approx-
imate minimal sufficient statistics can be found, characterized by the fraction
of mutual information they maintain on the Y . Furthermore, such approximate
minimal sufficient statistics exist for any joint distribution p(X, Y) in a contin-
uous hierarchy that is fully captured by the set of optimal IB solutions for all
values of β. These solutions lie on the information curve of the distribution.

6 Proofs

6.1 Proof of Thm. 1

Let S be a sample of size m, and let T be a probabilistic function of X into an
arbitrary finite target space, defined by p(t|x) for all x ∈ X and t ∈ T .

To prove the theorem, we bound the deviations of the information estimations
from their expectation: |Î(X ; T) − E(Î(X ; T))| and |Î(Y ; T) − E(Î(Y ; T))|, and
then use a bound on the expected bias of entropy estimation.

To bound the deviation of the information estimates, we use McDiarmid’s
inequality [14], in a manner similar to [1]. For this we must bound the change in
value of each of the entropy estimates when a single instance in S is arbitrarily
changed. A useful and easily proven inequality in that regard is the following:
for any natural m and for any a ∈ [0, 1 − 1/m] and ∆ ≤ 1/m,∣∣∣(a + ∆) log(a + ∆) − a log (a)

∣∣∣ ≤ log(m)
m

. (10)

With this inequality, a careful application of McDiarmid’s inequality leads to
the following lemma. The proof of the lemma can be found in [19].

Lemma 1. For any δ1 > 0, with probability of at least 1 − δ1 over the sample,
we have that

|Î(X ; T)− E[Î(X ; T)] ≤ (|T | log(m) + log(|T |))
√

log(2/δ1)√
2m

. (11)

Similarly, with a probability of at least 1 − δ2,

|Î(Y ; T) − E[Î(Y ; T)]| ≤ (3|T | + 2) log(m)
√

log(2/δ2)√
2m

. (12)

104 O. Shamir, S. Sabato, and N. Tishby

Lemma 1 provides bounds on the deviation of the Î(X ; T), Î(Y ; T) from their
expected values. In order to relate these to the true values of the mutual infor-
mation I(X ; T) and I(Y ; T), we use the following bias bound from [15].

Lemma 2 (Paninski, 2003). For a random variable X, with the plug-in esti-
mate Ĥ(·) on its entropy, based on an i.i.d sample of size m, we have that

|E[Ĥ(X) − H(X)]| ≤ log
(

1 +
|X | − 1

m

)
≤ |X | − 1

m
.

From Lemma 2, we get that the quantities |E[H(T)−H(T)]|, |E[H(Y) − H(Y)]|,
and |E[H(Y, T) − H(Y, T)]| are upper bounded by (|T |− 1)/m, (|Y|− 1)/m and
(|Y||T | − 1)/m respectively. Combining these with Eq. (11) and Eq. (12), and
setting δ1 = δ2 = δ/2, we get the bounds in Thm. 1.

6.2 Proof of Thm. 2

The idea of the proof is as follows. We bound the quantities |I(X ; T)− Î(X ; T)|
and |I(Y ; T) − Î(Y ; T)| with deterministic bounds that depend on the empiri-
cal distribution and on the true underlying distribution. These bounds are fac-
torized, in the sense that quantities that depend on the empirical sample are
separated from quantities that depend on the characteristics of T . Quantities
of the first type can be bounded by concentration of measure theorems, while
quantities of the second type can be left dependent on the T we choose.

The deterministic bounds are summarized in the following lemma. The proof
of this lemma is purely technical, and may be found in [19].

Lemma 3. The following two inequalities hold:

|I(X ; T) − Î(X ; T)| ≤
∑

t

‖p(x) − p̂(x)‖ · φ
(√

V (p(T = t|x))
)

(13)

+ ‖p(x) − p̂(x)‖ ·
√

V (H(T |x)),

|I(Y ; T)− Î(Y ; T)| ≤
∑

t

‖p(x) − p̂(x)‖ · φ
(√

V (p(T = t|x))
)
) (14)

+
∑

y

p(y)
∑

t

φ
(
‖p̂(x|y) − p(x|y)‖ ·

√
V (p(T = t|x))

)
+ ‖p(y) − p̂(y)‖ ·

√
V (Ĥ(T |y)).

In order to transform the bounds in Eq. (13) and Eq. (14) to bounds that do not
depend on p(x), we can use concentration of measure arguments on L2 norms
of random vectors, such as the following one based on an argument in section
4.1 of [6]: Let ρ be a distribution vector of arbitrary (possible countably infinite)

Learning and Generalization with the Information Bottleneck 105

cardinality, and let ρ̂ be an empirical estimation of ρ based on a sample of size
m. Then with a probability of at least 1 − δ over the samples,

‖ρ − ρ̂‖2 ≤ 2 +
√

2 log(1/δ)√
m

. (15)

We apply this concentration bound to ‖p(x) − p̂(x)‖, ‖p(y) − p̂(y)‖, and to
‖p̂(x|y) − p(x|y)‖ for any y in Eq. (13) and Eq. (14). To make sure the bounds
hold simultaneously over these |Y| + 2 quantities, we replace δ in Eq. (15) by
δ/(|Y| + 2). Note that the union bound is taken with respect to the marginal
distributions of p̂(x), p̂(y) and p̂(x|y), which do not depend on the T chosen.
Thus, the following bounds hold with a probability of 1 − δ, for all T :

|I(X ; T)− Î(X ; T)| ≤ (2 +
√

2 log ((|Y| + 2)/δ))

√
V (H(T |x))

m

+
∑

t

φ

(
(2 +

√
2 log ((|Y| + 2)/δ))

√
V (p(T = t|x))

m

)
,

|I(Y ; T) − Î(Y ; T)| ≤ (2 +
√

2 log ((|Y| + 2)/δ))

√
V (Ĥ(T |y))

m

+ 2
∑

t

φ

(
(2 +

√
2 log ((|Y| + 2)/δ))

√
V (p(T = t|x))

m

)
.

To get the bounds in Thm. 2, we note that

2 +
√

2 log ((|Y| + 2)/δ) ≤
√

C log(|Y|/δ)

where C is a small constant.
It is interesting to note that these bounds still hold in certain cases even if

X is infinite. Specifically, suppose that for all t ∈ T , p(t|x) is some constant ct

for all but a finite number of elements of X . If the definition of V (·) is replaced
with V (p(T = t|x)) =

∑
x(p(T = t|x) − ct)2, Then V (p(T = t|x)) is finite and

the proof above remains valid. Therefore, under these restrictive assumptions
the bound is valid and meaningful even though X is infinite.

7 Discussion

In this paper we analyzed the information bottleneck framework from a learn-
ing theoretic perspective. This framework has been used successfully for finding
efficient relevant data representations in various applications, but this is its first
rigorous learning theoretic analysis. Despite the fact that the information bot-
tleneck is all about manipulating the joint input-output distribution, we show
that it can generalize quite well based on plug-in empirical estimates, even with

106 O. Shamir, S. Sabato, and N. Tishby

sample sizes much smaller than needed for reliable estimation of the joint distri-
bution. In fact, it is exactly the reliance on the joint distribution that allows us
to derive non-uniform and adaptive bounds.

Moreover, these bounds allow us to view the information bottleneck frame-
work in the more familiar learning theoretic setting of a performance-complexity
tradeoff. In particular, we provided a preliminary analysis of the role of mutual
information as both a complexity regularization term and as a bound on the
classification error for common supervised applications, such as document clas-
sification. This is the first step in providing a theoretical justification for many
applications of interest, including a characterization of the learning scenarios for
which this method is best suited. Finally, we showed how this framework extends
the classical statistical concept of minimal sufficient statistics.

References

[1] Antos, A., Kontoyiannis, I.: Convergence properties of functional estimates for dis-
crete distributions. Random Structures and Algorithms 19(3–4), 163–193 (2001)

[2] Baker, L.D., McCallum, A.K.: Distributional clustering of words for text classifi-
cation. In: Proceedings of SIGIR 1998, pp. 96–103 (1998)

[3] Gilad-Bachrach, R., Navot, A., Tishby, N.: An Information Theoretic Tradeoff
between Complexity and Accuracy. In: Proceedings of COLT 2003, pp. 595–609
(2003)

[4] Chechik, G., Globerson, A., Tishby, N., Weiss, Y.: Information Bottleneck for
Gaussian Variables. Journal of Machine Learning Research 6, 165–188 (2005)

[5] Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester
(1991)

[6] Cristianini, N., Shawe-Taylor, J.: Kernel Methods for Pattern Analysis. Cam-
bridge University Press, Cambridge (2004)

[7] Fisher, R.A.: On the Mathematical Foundation of Theoretical Statistics. Philos.
Trans. Roy. Soc. London Sec. A 222, 309–368 (1922)

[8] Friedman, N., Mosenzon, O., Slonim, N., Tishby, N.: Multivariate Information
Bottleneck. In: Proceedings of UAI 2001, pp. 152–161 (2001)

[9] Nikravesh, M., Guyon, I., Gunn, S., Zadeh, L.A. (eds.): Feature Extraction: Foun-
dations and Applications. Springer, Heidelberg (2006)

[10] Harremoës, P., Tishby, N.: The Information Bottleneck Revisited or How to
Choose a Good Distortion Measure. In: Proceedings of the IEEE Int. Symp. on
Information Theory, pp. 566–571 (2007)

[11] Kullback, S., Leibler, R.A.: On Information and Sufficiency. Ann. Math. Stat. 22,
79–86 (1951)

[12] Lehmann, E.L., Scheffé, H.: Completeness, Similar Regions and Unbiased Estima-
tion. Sankhya 10, 305–340 (1950)

[13] Lehmann, E.L.: Testing Statistical Hypotheses. Wiley, New-York (1959)
[14] McDiarmid, C.: On the Method of Bounded Differences. In: Siemons, J. (ed.)

Surveys in Combinatorics. London Mathematical Society Lecture Note Series,
vol. 141, pp. 148–188. Cambridge University Press, Cambridge (1989)

[15] Paninski, L.: Estimation of Entropy and Mutual Information. Neural Computa-
tion 15(6), 1191–1253 (2003)

[16] Pereira, F.C., Tishby, N., Lee, L.: Distributional Clustering of English Words. In:
Meeting of the Association for Computational Linguistics, pp. 183–190 (1993)

Learning and Generalization with the Information Bottleneck 107

[17] Koopman, B.: On Distributions Admitting a Sufficient Statistic. Trans. Amer.
math. Soc. 39, 399–409 (1936)

[18] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
[19] Shamir, O., Sabato, S., Tishby, N.: Learning and Generalization with the Infor-

mation Bottleneck,
www.cs.huji.ac.il/~ohads03/ShamirSabatoTishbyALT2008_full.pdf

[20] Slonim, N.: The Information Bottleneck: Theory and Applications. PhD thesis.
Hebrew University, Jerusalem (2003)

[21] Slonim, N., Singh, G., Atwal, S., Tkacik, G., Bialek, W.: Information-based Clus-
tering. Proc. Natl. Acad. Sci. U.S.A (December 2005)

[22] Slonim, N., Tishby, N.: The Power of Word Clusters for Text Classification. In:
23rd European Colloquium on Information Retrieval Research (2001)

[23] Tishby, N., Pereira, F.C., Bialek, W.: The Information Bottleneck Method. In: The
37th Allerton Conference on Communication, Control, and Computing (1999)

[24] Tishby, N., Slonim, N.: Data clustering by Markovian relaxation and the infor-
mation bottleneck method. In: Proceedings of NIPS 2000, pp. 640–646 (2000)

www.cs.huji.ac.il/~ohads03/ShamirSabatoTishbyALT2008_full.pdf

Growth Optimal Investment with Transaction
Costs�

László Györfi and István Vajda

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics,

Magyar Tudósok Körútja 2., Budapest, Hungary, H-1117
{gyorfi,vajda}@szit.bme.hu

Abstract. Discrete time infinite horizon growth optimal investment in
stock markets with transactions costs is considered. The stock processes
are modelled by homogeneous Markov processes. Assuming that the dis-
tribution of the market process is known, we show two recursive invest-
ment strategies such that, in the long run, the growth rate on trajectories
(in "liminf" sense) is greater than or equal to the growth rate of any other
investment strategy with probability 1.

1 Introduction

The purpose of this paper is to investigate sequential investment strategies for
financial markets such that the strategies are allowed to use information collected
from the past of the market and determine, at the beginning of a trading period,
a portfolio, that is, a way to distribute their current capital among the available
assets. The goal of the investor is to maximize his wealth on the long run. If
there is no transaction cost and the price relatives form a stationary and ergodic
process the best strategy (called log-optimum strategy) can be constructed in
full knowledge of the distribution of the entire process, see Algoet and Cover [2].

Papers dealing with growth optimal investment with transaction costs in dis-
crete time setting are seldom. Cover and Iyengar [13] formulated the problem of
horse race markets, where in every market period one of the assets has positive
pay off and all the others pay nothing. Their model included proportional trans-
action costs and they used a long run expected average reward criterion. There
are results for more general markets as well. Iyengar [12] investigated growth
optimal investment with several assets assuming independent and identically
distributed (i.i.d.) sequence of asset returns. Bobryk and Stettner [4] considered
the case of portfolio selection with consumption, when there are two assets, a
bank account and a stock. Furthermore, long run expected discounted reward
and i.i.d asset returns were assumed. In the case of discrete time, the most far
reaching study was Schäfer [16] who considered the maximization of the long
run expected growth rate with several assets and proportional transaction costs,
� This research was supported by the Computer and Automation Research Institute

of the Hungarian Academy of Sciences.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 108–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Growth Optimal Investment with Transaction Costs 109

when the asset returns follow a stationary Markov process. In contrast to the
previous literature we assume only that the stock processes are modelled by ho-
mogeneous (there is no requirement regarding the initial distribution) Markov
processes. We extend the usual framework of analyzing expected growth rate
by showing two recursive investment strategies such that, in the long run, the
growth rate on trajectories is greater than or equal to the growth rate of any
other investment strategy with probability 1.

The rest of the paper is organized as follows. In Section 2 we introduce the
market model and describe the modelling of transaction costs. In Section 3 we
formulate the underlying Markov control problem, and Section 4 defines optimal
portfolio selection strategies. Following the Summary in Section 5, the proofs
are given in Section 6.

2 Mathematical Setup: Investment with Transaction Cost

Consider a market consisting of d assets. The evolution of the market in time
is represented by a sequence of market vectors s1, s2, . . . ∈ Rd

+, where si =
(s(1)

i , . . . , s
(d)
i) such that the j-th component s

(j)
i of si denotes the price of the

j-th asset at the end of the i-th trading period. (s(j)
0 = 1.)

In order to apply the usual prediction techniques for time series analysis one
has to transform the sequence {si} into a more or less stationary sequence of

return vectors {xi} as follows: xi = (x(1)
i , . . . , x

(d)
i) such that x

(j)
i = s

(j)
i

s
(j)
i−1

. Thus,

the j-th component x
(j)
i of the return vector xi denotes the amount obtained

after investing a unit capital in the j-th asset on the i-th trading period.
The investor is allowed to diversify his capital at the beginning of each trading

period according to a portfolio vectorb = (b(1), . . . b(d))T . The j-th component b(j)
of b denotes the proportion of the investor’s capital invested in asset j. Through-
out the paper we assume that the portfolio vector b has nonnegative components
with

∑d
j=1 b(j) = 1. The fact that

∑d
j=1 b(j) = 1 means that the investment strat-

egy is self financing and consumption of capital is excluded. The non-negativity
of the components of b means that short selling and buying stocks on margin are
not permitted. To make the analysis feasible, some simplifying assumptions are
used that need to be taken into account. We assume that assets are arbitrarily di-
visible and all assets are available in unbounded quantities at the current price at
any given trading period. We also assume that the behavior of the market is not
affected by the actions of the investor using the strategies under investigation.

For j ≤ i we abbreviate by xi
j the array of return vectors (xj , . . . ,xi). Denote

by ∆d the simplex of all vectors b ∈ Rd
+ with nonnegative components summing

up to one. An investment strategy is a sequence B of functions

bi :
(
Rd

+

)i−1 → ∆d , i = 1, 2, . . .

so that bi(xi−1
1) denotes the portfolio vector chosen by the investor on the i-

th trading period, upon observing the past behavior of the market. We write
b(xi−1

1) = bi(xi−1
1) to ease the notation.

110 L. Györfi and I. Vajda

Let Sn denote the gross wealth at the end of trading period n, n = 0, 1, 2, · · · ,
where without loss of generality let the investor’s initial capital S0 be 1 dollar,
while Nn stands for the net wealth at the end of trading period n. Using the
above notations, for the trading period n, the net wealth Nn−1 can be invested
according to the portfolio bn, therefore the gross wealth Sn at the end of trading
period n is

Sn = Nn−1

d∑
j=1

b(j)n x(j)
n = Nn−1 〈bn , xn〉 ,

where 〈· , ·〉 denotes inner product.
At the beginning of a new market day n+1, the investor sets up his new port-

folio, i.e. buys/sells stocks according to the actual portfolio vector bn+1. During
this rearrangement, he has to pay transaction cost, therefore at the beginning of a
new market day n+1 the net wealth Nn in the portfolio bn+1 is less than Sn. The
rate of proportional transaction costs (commission factors) levied on one asset
are denoted by 0 < cs < 1 and 0 < cp < 1, i.e., the sale of 1 dollar worth of asset
i nets only 1− cs dollars, and similarly we take into account the purchase of an
asset such that the purchase of 1 dollar’s worth of asset i costs an extra cp dollars.
We consider the special case when the rate of costs are constant over the assets.
Let’s calculate the transaction cost to be paid when select the portfolio bn+1.
Before rearranging the capitals, at the j-th asset there are b

(j)
n x

(j)
n Nn−1 dollars,

while after rearranging we need b
(j)
n+1Nn dollars. If b

(j)
n x

(j)
n Nn−1 ≥ b

(j)
n+1Nn then

we have to sell and cs

(
b
(j)
n x

(j)
n Nn−1 − b

(j)
n+1Nn

)
is the transaction cost at the

j-th asset is, otherwise we have to buy and cp

(
b
(j)
n+1Nn − b

(j)
n x

(j)
n Nn−1

)
is the

transaction cost at the j-th asset.
Let x+ denote the positive part of x. Thus, the gross wealth Sn decomposes

to the sum of the net wealth and cost the following - self-financing - way Sn =

Nn+cs

∑d
j=1

(
b
(j)
n x

(j)
n Nn−1 − b

(j)
n+1Nn

)+

+cp

∑d
j=1

(
b
(j)
n+1Nn − b

(j)
n x

(j)
n Nn−1

)+

.

Dividing both sides by Sn and introducing the ratio wn = Nn

Sn
, 0 < wn < 1,

we get

1 = wn + cs

d∑
j=1

(
b
(j)
n x

(j)
n

〈bn , xn〉
− b

(j)
n+1wn

)+

+ cp

d∑
j=1

(
b
(j)
n+1wn − b

(j)
n x

(j)
n

〈bn , xn〉

)+

.(1)

Remark 1. Equation (1) is used in the sequel. Examining this cost equation, it
turns out, that for arbitrary portfolio vectors bn, bn+1, and return vector xn

there exists a unique cost factor wn ∈ [0, 1), i.e. the portfolio is self financing. The
value of cost factor wn at day n is determined by portfolio vectors bn and bn+1

as well as by return vector xn, i.e. wn = w(bn,bn+1,xn), for some function w. If
we want to rearrange our portfolio substantially, then our net wealth decreases
more considerably, however, it remains positive. Note also, that the cost does not
restrict the set of new portfolio vectors, i.e., the optimization algorithm searches
for optimal vector bn+1 within the whole simplex ∆d. The value of the cost
factor ranges between 1−cs

1+cp
≤ wn ≤ 1.

Growth Optimal Investment with Transaction Costs 111

Starting with an initial wealth S0 = 1 and w0 = 1, wealth Sn at the closing time
of the n-th market day becomes Sn = Nn−1〈bn , xn〉 = wn−1Sn−1〈bn , xn〉
=
∏n

i=1[w(bi−1,bi,xi−1) 〈bi , xi〉]. Introduce the notation

g(bi−1,bi,xi−1,xi) = log(w(bi−1,bi,xi−1) 〈bi , xi〉), (2)

then the average growth rate becomes

1
n

logSn =
1
n

n∑
i=1

log(w(bi−1,bi,xi−1) 〈bi , xi〉) =
1
n

n∑
i=1

g(bi−1,bi,xi−1,xi).(3)

Our aim is to maximize this average growth rate.
In the sequel xi will be random variable and is denoted by Xi. Let’s use the

decomposition
1
n

logSn = In + Jn, (4)

where In is 1
n

∑n
i=1(g(bi−1,bi,Xi−1,Xi) − E{g(bi−1,bi,Xi−1,Xi)|Xi−1

1 }) and
Jn = 1

n

∑n
i=1 E{g(bi−1,bi,Xi−1,Xi)|Xi−1

1 }. In is an average of martingale
differences. Under mild conditions on the support of the distribution of X,
g(bi−1,bi,Xi−1,Xi) is bounded, therefore In is an average of bounded mar-
tingale differences, which converges to 0 almost surely, since according to the
Chow Theorem (cf. Theorem 3.3.1 in Stout [18])

∑∞
i=1

E{g(bi−1,bi,Xi−1,Xi)
2}

i2 < ∞
implies that In → 0 almost surely. Thus, the asymptotic maximization of the
average growth rate 1

n logSn is equivalent to the maximization of Jn.
If the market process {Xi} is a homogeneous and first order Markov process

then, for appropriate portfolio selection {bi}, we have that

E{g(bi−1,bi,Xi−1,Xi)|Xi−1
1 }

= E{log(w(bi−1,bi,Xi−1) 〈bi , Xi〉)|Xi−1
1 }

= logw(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |Xi−1
1 }

= logw(bi−1,bi,Xi−1) + E{log 〈bi , Xi〉 |bi,Xi−1}
def= v(bi−1,bi,Xi−1),

therefore the maximization of the average growth rate 1
n logSn is asymptotically

equivalent to the maximization of

Jn =
1
n

n∑
i=1

v(bi−1,bi,Xi−1). (5)

Remark 2. Without transaction cost, the fundamental limits, determined in Al-
goet and Cover [2] reveal that the so-called log-optimum portfolio B∗ = {b∗(·)} is
the best possible choice. More precisely, in trading period n let b∗(·) be such that
b∗

n(Xn−1
1) = arg maxb(·) E

{
log

〈
b(Xn−1

1) , Xn

〉∣∣Xn−1
1

}
. If S∗

n = Sn(B∗) de-
notes the capital achieved by a log-optimum portfolio strategy B∗, after n trading
periods, then for any other investment strategy B with capital Sn = Sn(B) and

112 L. Györfi and I. Vajda

for any stationary and ergodic return process {Xn}∞−∞, lim infn→∞ 1
n log S∗

n

Sn
≥

0 almost surely. Note that for first order Markovian return process b∗
n(Xn−1

1) =
b∗

n(Xn−1) = argmaxb(·) E { log 〈b(Xn−1) , Xn〉|Xn−1} .

Before introducing to optimal strategies we show to empirical suboptimal algo-
rithms with some experimental results.

Algorithm 1. For transaction cost, one may apply the portfolio b∗
n(Xn−1),

and after calculating the portfolio subtract the transaction cost. Let’s consider
it’s empirical counterpart in case of unknown market process. Apply the kernel
based log-optimal portfolio selection introduced by Györfi, Lugosi and Udina
[8] as follows: define an infinite array of experts B(�) = {b(�)(·)}, where � is a
positive integer. For fixed positive integer �, choose the radius r� > 0 such that
lim�→∞ r� = 0. Then, for n > 1, define the expert b(�) as follows. Put

b(�)
n = arg max

b∈∆d

∑
{i<n:‖xi−1−xn−1‖≤r�}

ln 〈b , xi〉 , (6)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise, where ‖ · ‖ denotes
the Euclidean norm. These experts are aggregated as follows: let {q�} be a prob-
ability distribution over the set of all positive integers �. Consider two types of
aggregations: By aggregating with the wealth the initial capital S0 = 1 is distrib-
uted among the expert according to the distribution {q�}, and the expert makes
the portfolio selection and pays for transaction cost individually. If Sn(B(�)) is
the capital accumulated by the elementary strategy B(�) the investor’s wealth
after period n, aggregations Sn =

∑
� q�Sn(B(�)). In the second case the ag-

gregated portfolio pays for transaction cost. Here Sn(B(�)) is again the capital
accumulated by the elementary strategy B(�) after n periods. Then, after pe-
riod n, the investor’s aggregated portfolio becomes bn =

�
� q�Sn−1(B

(�))b(�)
n�

� q�Sn−1(B(�))
.The

investor’s capital is Sn = Sn−1〈bn , xn〉w(bn−1,bn,xn−1), so the aggregated
portfolio pays for the transaction cost.

Algorithm 2. Our second suboptimal strategy is a one-step optimization as
follows: put b1 = {1/d, . . . , 1/d} and for i ≥ 1, bi+1 = arg maxb′ v(bi,b′,Xi).
Obviously, this portfolio has no global optimality property. Let’s consider its
empirical counterpart in case of unknown distribution. Put b1 = {1/d, . . . , 1/d}
and for n ≥ 1,

b(�)
n = arg max

b∈∆d

∑
{i<n:‖xi−1−xn−1‖≤r�}

(ln 〈b , xi〉 + lnw(bn−1,b,xn−1)) , (7)

if the sum is non-void, and b0 = (1/d, . . . , 1/d) otherwise. These elementary
portfolios are mixed as in Algortihm1.

The investment strategies are tested on a data set containing 23 stocks and has
length 44 years - 11178 trading days ending in 2006 - achievable atwww.szit.bme.hu
/oti/portfolio. The proposed empirical portfolio selection algorithms use an in-
finite set of experts. In the experiment we selected L = 10. Choose {q�} = 1/L
over the experts in use, and the radius r2

� = 0.0001 · d · �, r2
� = 0.0002 · d +

Growth Optimal Investment with Transaction Costs 113

0.00002 · d · �, for � = 1, . . . , L . Table 1, [10] summarizes the average annual
yield achieved by each expert at the last period when investing one unit for the
kernel-based log-optimal portfolio. Experts are indexed by � = 1 . . . 10 in rows.
The second column contains the average annual yields of experts for kernel based
log-optimal portfolio if there is no transaction cost, and in this case the results of
the two aggregations are the same: 124%. The third and fourth columns contain
the average annual yields of experts for kernel based log-optimal portfolio if the
commission factor is c = 0.0015.

In the sequel we prove to optimal strategies in case of known distribution as
these algorithms were not optimal. The empirical optimal counterparts of them
are still missing.

3 The Related Markov Control Problem

The problem of optimal investment with proportional transaction costs has been
essentially formulated in continuous time only, in the classical articles Davis and
Norman [6], Taksar et al. [19] and Shreve and Soner [17], etc. Taksar, Klass and
Assaf [19] investigate optimal investment in a continuous time market with two
assets and with proportional transaction costs driven by a Wiener process and
using long run expected reward criteria. Akien, Sulem and Taksar [1] extend
these results to the case of several risky assets.

Most of the above mentioned papers use some kind of method from stochastic
optimal control theory. Without exception all the papers consider optimality in
expected reward. None of these papers give result on almost sure optimality.
In this paper we present two portfolio selection strategies, and for a Markovian
market we prove their almost sure optimality.

Discrete time portfolio optimization with transaction cost is a special case of the
general Markov control processes (MCP). A discrete time Markov control process

Table 1. The average annual yields of the individual experts and of the aggregations
with c = 0.0015

	 c = 0 Algorithm 1 Algorithm 2
1 68% -6% 27%
2 87% 3% 38%
3 94% 7% 45%
4 94% 6% 49%
5 108% 14% 54%
6 118% 19% 60%
7 122% 21% 69%
8 128% 25% 73%
9 131% 27% 71%

10 131% 28% 72%
Aggregation with wealth 124% 24% 68%

Aggregation with portfolio 124% 29% 73%

114 L. Györfi and I. Vajda

is defined by a five tuple (S,A,U(s), Q, r) (cf. [11]). S is a Borel space, called the
state space, the action space A is Borel, too, the space of admissible actions U(s)
is a Borel subset of A. Let the set K be {(s, a) : s ∈ S, a ∈ U(s)}. The transition
law is a stochastic kernel Q(.|s, a) on S given K, and r(s, a) is the reward function.

The evolution of the process is the following. Let St denote the the state at
time t, action At is chosen at that time. Let St = s and At = a , then the reward
is r(s, a), and the process moves to St+1 according to the kernel Q(.|s, a). A
control policy is a sequence π = {πn} of deterministic functions, which can also
be stochastic kernels on A given the past states and actions.

Two reward criteria are considered. The expected long run average reward for
π is defined by J(π) = lim infn→∞ 1

n

∑n−1
t=0 Eπr(St, At). The sample-path average

reward is defined as J(π) := lim infn→∞ 1
n

∑n−1
t=0 r(St, At). In the theory of MCP

most of the results correspond to expected long run average reward, while just
a few present result for the sample-path criterion. Such sample-path results can
be found in [3] for bounded rewards and in [20], [14] for unbounded rewards. For
Markov control processes, the main aim is to approach the maximum asymptotic
reward: J∗ = supπ J(π), which leads to a dynamic programming problem.

For portfolio optimization with transaction cost, we formulate the correspond-
ing Markov control problem. Assume that there exist 0 < a1 < 1 < a2 < ∞ such
that

Xi ∈ [a1, a2]
d
.

1. Let us define the state space as: S :=
{
(b,x)|b ∈ ∆d,x ∈ [a1, a2]

d
}
.

2. The action space is A := ∆d.
3. For the set of admissible actions we get U(b,x) := ∆d.
4. The stochastic kernel is Q(d(b′,x′)|(b,x),b′) := P (dx′|x) := P{dX2 =
dx′|X1 =x} the transition probability distribution of the Markov market process,
describing the asset returns. Note, that this corresponds to the assumption, that
the market behaviour is not affected by the investor.
5. The reward function is: r((b,x),b′) = v(b,b′,x).
6. The sample-path average reward criterion is the following:
lim infn→∞ 1

n

∑n
t=1 r((bt−1,xt−1),bt) = lim infn→∞ 1

n

∑n
t=1 v(bt−1,bt,xt−1)

= lim infn→∞ Jn.

Remark 3. It should be noted that the methods of MCP literature, more pre-
cisely the theorems in [3], [20], [14] can’t be applied in our case. However, we
do use the formalism, the results on the existence of the solution of discounted
Bellman equations, and the basic idea of vanishing discount approach.

4 Optimal Portfolio Selection Algorithms

We introduce two optimal portfolio selection strategies. Let 0 < δ < 1 denote a
discount factor. We apply a kind of vanishing discount approach, formulated by
the discounted Bellman equation:

Fδ(b,x) = max
b′

{v(b,b′,x) + (1 − δ)E{Fδ(b′,X2) | X1 = x}} . (8)

Growth Optimal Investment with Transaction Costs 115

It can be shown that this discounted Bellman equation has a solution (cf.
Hernández-Lerma, Lasserie [11], Schäfer [16]).

Strategy 1. Our first portfolio selection strategy is the following put b∗
1 =

{1/d, . . . , 1/d} and

b∗
i+1 = arg max

b′

{
v(b∗

i ,b
′,Xi) + (1 − δi)E{Fδi(b

′
,Xi+1)|Xi}}, (9)

for 1 ≤ i, where 0 < δi < 1 is a discount factor such that δi ↓ 0.

Remark 4. A strategy similar to (9) was defined by Schäfer [16]. He introduces an
additional asset to settle the transaction costs when the portfolio is restructured.

Remark 5. A portfolio selection {bi} is called recursive if it has the form bi =
bi(xi−1

1) = bi(bi−1,xi−1). Obviously, the portfolio {b∗
i } is recursive. The re-

cursion in the definition of the portfolio {b∗
i } is not time invariant, i.e., it is a

non-stationary portfolio selection rule.

Now, we claim our result on the optimality of Strategy 1 with respect to a
sample-path average criterion:

Theorem 1. Assume

(i) that {Xi} is a homogeneous and first order Markov process,
(ii) and there exist 0 < a1 < 1 < a2 < ∞ such that a1 ≤ X(j) ≤ a2 for all

j = 1, . . . , d.

Choose the discount factor δi ↓ 0 such that (δi − δi+1)/δ2
i+1 → 0 as i → ∞,

and
∑∞

n=1
1

n2δ2
n

< ∞. Then, for Strategy 1, the portfolio {b∗
i } with capital S∗

n is
optimal in the sense that for any portfolio strategy {bi} with capital Sn,

lim inf
n→∞

(
1
n

logS∗
n − 1

n
logSn

)
≥ 0 a.s.

Remark 6. lim infn→∞ E
{

1
n logS∗

n − 1
n logSn

}
≥ 0, according to Theorem 4.2.1

in Schäfer [16], i.e., the portfolio {b∗
i } is optimal in expectation. Theorem 1

states that the portfolio strategy {b∗
i } is sample-path optimal, too, i.e., it is

optimal with probability one.

Remark 7. For the choice δi = i−ε, with ε < 1/2, the conditions of Theorem 1
are satisfied.

Remark 8. For the standard stock market problems, the condition (i) is satisfied
with a1 = 0.9 and a2 = 1.1, (cf.Fernholz [7]).

Strategy 2. Next, we introduce a portfolio with stationary (time invariant)
recursion such that this portfolio is a sample-path optimal policy, too. For any
integer 1 ≤ k, put b(k)

1 = {1/d, . . . , 1/d} and

b(k)
i+1 = argmax

b′

{
v(b(k)

i ,b′,Xi) + (1 − δk)E{Fδk
(b

′
,Xi+1)|Xi}}, (10)

116 L. Györfi and I. Vajda

for 1 ≤ i. The portfolio B(k) = {b(k)
i } is called the portfolio of expert k with

capital Sn(B(k)). We combine the experts borrowing a current technique from
machine learning, the exponential weighing (cf. Cesa-Bianchi and Lugosi [5]).
Combine the experts as follows: let {qk} ≥ 0 be a probability distribution on 1 ≤
k and aggregate the experts with the wealth as described earlier by Algorithm1,
so S̃n(B̃) =

∑
k qkSn(B(k)).

Theorem 2. Assume (i) and (ii) of Theorem 1. Choose the discount factor
δi ↓ 0 as i → ∞. Then, for Strategy 2,

lim
n→∞

(
1
n

logS∗
n − 1

n
log S̃n

)
= 0 a.s.

5 Summary

We considered discrete time infinite horizon growth optimal investment with
several assets in stock markets with proportional transactions costs. The as-
set returns followed homogeneous Markov processes. Using techniques from dy-
namic programming and machine learning two recursive investment strategies
were shown, such that, in the long run, the growth rate on trajectories were
greater than or equal to the growth rate of any other investment strategy with
probability 1. An important direction of our future work is to construct an em-
pirical version of the second stationary rule, i.e., to get a data driven portfolio
selection (cf. Györfi et al.[8], Györfi and Schäfer [9]) when the distribution of the
market process is unknown.

6 Proofs

Proof of Theorem 1. Introduce the following notation: Fi(b,x) = Fδi(b,x).
We have to show that

lim inf
n→∞

1
n

n∑
i=1

(g(b∗
i ,b

∗
i+1,Xi,Xi+1) − g(bi,bi+1,Xi,Xi+1)) ≥ 0

a.s. Because of the martingale difference argument in Section 2, one has

lim inf
n→∞

1
n

n∑
i=1

(g(b∗
i ,b

∗
i+1,Xi,Xi+1) − g(bi,bi+1,Xi,Xi+1))

= lim inf
n→∞

1
n

n∑
i=1

(v(b∗
i ,b

∗
i+1,Xi) − v(bi,bi+1,Xi))

a.s. therefore we have to prove that

lim inf
n→∞

(
1
n

n∑
i=1

v(b∗
i ,b

∗
i+1,Xi) −

1
n

n∑
i=1

v(bi,bi+1,Xi)

)
≥ 0 (11)

Growth Optimal Investment with Transaction Costs 117

a.s. (9) implies that

Fi(b∗
i ,Xi) = v(b∗

i ,b
∗
i+1,Xi) + (1 − δi)E{Fi(b∗

i+1,Xi+1)|b∗
i+1,Xi}, (12)

while for any portfolio {bi},

Fi(bi,Xi) ≥ v(bi,bi+1,Xi) + (1 − δi)E{Fi(bi+1,Xi+1)|bi+1,Xi}. (13)

Because of (12) and (13), we get that 1
n

∑n
i=1 v(b∗

i ,b
∗
i+1,Xi)

=
1
n

n∑
i=1

(
Fi(b∗

i ,Xi) − (1 − δi)E{Fi(b∗
i+1,Xi+1)|b∗

i+1,Xi}
)

=
1
n

n∑
i=1

(
Fi(b∗

i ,Xi) − (1 − δi)E{Fi(b∗
i+1,Xi+1)|Xi

1}
)

and

1
n

n∑
i=1

v(bi,bi+1,Xi) ≤
1
n

n∑
i=1

(Fi(bi,Xi) − (1 − δi)E{Fi(bi+1,Xi+1)|bi+1,Xi})

=
1
n

n∑
i=1

(
Fi(bi,Xi) − (1 − δi)E{Fi(bi+1,Xi+1)|Xi

1}
)
,

therefore

1
n

n∑
i=1

v(b∗
i ,b

∗
i+1,Xi) −

1
n

n∑
i=1

v(bi,bi+1,Xi)

≥ 1
n

n∑
i=1

(
Fi(b∗

i ,Xi) − (1 − δi)E{Fi(b∗
i+1,Xi+1)|Xi

1}
)

− 1
n

n∑
i=1

(
Fi(bi,Xi) − (1 − δi)E{Fi(bi+1,Xi+1)|Xi

1}
)
.

Apply the following identity

(1 − δi)E{Fi(bi+1,Xi+1)|Xi
1} − Fi(bi,Xi)

= E{Fi(bi+1,Xi+1)|Xi
1} − Fi(bi+1,Xi+1)

+ Fi(bi+1,Xi+1) − Fi(bi,Xi)
− δiE{Fi(bi+1,Xi+1)|Xi

1}
= ai + bi + ci.

Because of Fi(b,x) = maxb′ {v(b,b′,x) + (1 − δi)E(Fi(b′,Xi+1)|Xi = x), } we
have that ‖Fi‖∞ ≤ ‖v‖∞ + (1 − δi)‖Fi‖∞, therefore ‖Fi‖∞ ≤ ‖v‖∞

δi
(cf. Lemma

4.2.3 in Schäfer [16]). As {ai} is a sequence of martingale differences such that

118 L. Györfi and I. Vajda

|ai| ≤ 2‖Fi‖∞ ≤ 2
δi
‖v‖∞, therefore, because of

∑
n

1
n2δ2

n
< ∞, the Chow Theo-

rem implies that 1
n

∑n
i=1 ai → 0 (14) a.s. (cf. Stout [18]).

Similarly to the bounding above, we have the equality

Fi(b,x) = max
b′

{v(b,b′,x) + (1 − δi)E(Fi(b′,Xi+1)|Xi = x)}

and the inequality

Fi+1(b,x) = max
b′′

{v(b,b′′,x) + (1 − δi+1)E(Fi+1(b′′,Xi+2)|Xi+1 = x)}

≥ v(b,b′,x) + (1 − δi+1)E(Fi+1(b′,Xi+1)|Xi = x)

with arbitrary b′. Taking difference

Fi(b,x) − Fi+1(b,x)
≤ max

b′
{(1 − δi)E(Fi(b′,Xi+1|Xi = x))

− (1 − δi+1)E(Fi+1(b′,Xi+1)|Xi = x))}
≤ (1 − δi)‖Fi − Fi+1‖∞ + (δi+1 − δi)max

b′
E(Fi+1(b′,Xi+1)|Xi = x)

≤ (1 − δi)‖Fi − Fi+1‖∞ + (δi+1 − δi)‖Fi+1‖∞.

So we have ‖Fi − Fi+1‖∞ ≤ δi−δi+1
δi

‖Fi+1‖∞. Using that ‖Fi+1‖∞ ≤ ‖v‖∞
δi+1

and

assumption on δi’s, we get that ‖Fi − Fi+1‖∞ ≤ ‖v‖∞ δi−δi+1

δ2
i

(cf. Lemma 4.2.3
in Schäfer [16]). Concerning {bi},∣∣∣∣∣ 1n

n∑
i=1

bi

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑

i=1

(Fi(bi+1,Xi+1) − Fi(bi,Xi))

∣∣∣∣∣
≤
∣∣∣∣∣ 1n

n∑
i=1

(Fi(bi+1,Xi+1) − Fi+1(bi+1,Xi+1))

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

(Fi+1(bi+1,Xi+1) − Fi(bi,Xi))

∣∣∣∣∣
≤ 1

n

n∑
i=1

‖Fi − Fi+1‖∞ +
∣∣∣∣ 1n(Fn+1(bn+1,Xn+1) − F1(b1,X1))

∣∣∣∣
≤ 1

n

n∑
i=1

‖Fi − Fi+1‖∞ +
‖Fn+1‖∞ + ‖F1‖∞

n

≤ ‖v‖∞
1
n

n∑
i=1

|δi+1 − δi|
δ2
i+1

+ ‖v‖∞
1/δn+1 + 1/δ1

n
→ 0 (14)

by conditions. Concerning the proof of (11) what is left to show that

lim sup
n→∞

1
n

n∑
i=1

δi(E{Fi(b∗
i+1,Xi+1)|Xi

1} − E{Fi(bi+1,Xi+1)|Xi
1}) ≤ 0

Growth Optimal Investment with Transaction Costs 119

a.s. The definition of Fi implies that

Fi(b∗
i+1,Xi+1) − Fi(bi+1,Xi+1)

= max
b′

{
v(b∗

i+1,b
′,Xi+1) + (1 − δi)E{Fi(b

′
,Xi+2)|Xi+1}

}
− max

b′′

{
v(bi+1,b′′,Xi+1) + (1 − δi)E{Fi(b′′,Xi+2)|Xi+1}

}
≤ max

b′

{
v(b∗

i+1,b
′,Xi+1) + (1 − δi)E{Fi(b

′
,Xi+2)|Xi+1}

−v(bi+1,b′,Xi+1) − (1 − δi)E{Fi(b′,Xi+2)|Xi+1}
}

≤ max
b′

{
v(b∗

i+1,b
′,Xi+1) − v(bi+1,b′,Xi+1)

}
≤ 2‖v‖∞,

therefore

1
n

n∑
i=1

δiE{Fi(b∗
i+1,Xi+1) − Fi(bi+1,Xi+1)|Xi

1} ≤ 2‖v‖∞
n

n∑
i=1

δi → 0. (15)

(6), (14) and (15) imply (11).

Proof of Theorem 2
Theorem 1 implies that lim infn→∞

(
1
n logS∗

n − 1
n log S̃n

)
≥ 0 a.s.. We have to

show that
lim inf
n→∞

(
1
n

log S̃n − 1
n

logS∗
n

)
≥ 0 (16)

a.s. By definition, 1
n log S̃n = 1

n log
∑∞

k=1 qkSn(B(k)) ≥ 1
n log supk qkSn(B(k)) =

supk

(
log qk

n + 1
n logSn(B(k))

)
, therefore (16) follows from the following:

lim infn→∞
(

supk

(
log qk

n + 1
n

∑n
i=1 g(b(k)

i ,b(k)
i+1,Xi,Xi+1)

)
− 1

n

∑n
i=1 g(b∗

i ,b
∗
i+1,Xi,Xi+1)

)
≥ 0 a.s. which is equivalent to

lim inf
n→∞ sup

k

(log qk

n
+

1
n

n∑
i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

)
≥ 0 (17)

a.s. (10) implies that

Fk(b(k)
i ,Xi) = v(b(k)

i ,b(k)
i+1,Xi) + (1 − δk)E{Fk(b(k)

i+1,Xi+1)|b(k)
i+1,Xi}, (18)

while for any portfolio {bi},

Fk(bi,Xi) ≥ v(bi,bi+1,Xi) + (1 − δk)E{Fk(bi+1,Xi+1)|bi+1,Xi},

thus for the portfolio {b∗
i }

Fk(b∗
i ,Xi) ≥ v(b∗

i ,b
∗
i+1,Xi) + (1 − δk)E{Fk(b∗

i+1,Xi+1)|b∗
i+1,Xi}. (19)

120 L. Györfi and I. Vajda

Because of (18) and (19), we get that 1
n

∑n
i=1 v(b∗

i ,b
∗
i+1,Xi) ≤

≤ 1
n

n∑
i=1

(
Fk(b∗

i ,Xi) − (1 − δk)E{Fk(b∗
i+1,Xi+1)|b∗

i+1,Xi}
)

=
1
n

n∑
i=1

(
Fk(b∗

i ,Xi) − (1 − δk)E{Fk(b∗
i+1,Xi+1)|Xi

1}
)

and 1
n

∑n
i=1 v(b(k)

i ,b(k)
i+1,Xi) =

=
1
n

n∑
i=1

(
Fk(b(k)

i ,Xi) − (1 − δk)E{Fk(b(k)
i+1,Xi+1)|b(k)

i+1,Xi}
)

=
1
n

n∑
i=1

(
Fk(b(k)

i ,Xi) − (1 − δk)E{Fk(b(k)
i+1,Xi+1)|Xi

1}
)
,

therefore

1
n

n∑
i=1

v(b(k)
i ,b(k)

i+1,Xi) −
1
n

n∑
i=1

v(b∗
i ,b

∗
i+1,Xi)

≥ 1
n

n∑
i=1

(
Fk(b(k)

i ,Xi) − (1 − δk)E{Fk(b(k)
i+1,Xi+1)|Xi

1}
)

− 1
n

n∑
i=1

(
Fk(b∗

i ,Xi) − (1 − δk)E{Fk(b∗
i+1,Xi+1)|Xi

1}
)
.

Apply the following identity

(1 − δk)E{Fk(bi+1,Xi+1)|Xi
1} − Fk(bi,Xi)

= E{Fk(bi+1,Xi+1)|Xi
1} − Fk(bi+1,Xi+1) + Fk(bi+1,Xi+1) − Fk(bi,Xi)

− δkE{Fk(bi+1,Xi+1)|Xi
1}

= ai + bi + ci.

Similarly to the proof of Theorem 1, the averages of ai’s and bi’s tend to zero
a.s., so concerning (17) we have that, with probability one,

lim inf
n→∞ sup

k

(log qk

n
+

1
n

n∑
i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

)
≥ sup

k
lim inf
n→∞

(log qk

n
+

1
n

n∑
i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

)
= sup

k
lim inf
n→∞

1
n

n∑
i=1

(v(b(k)
i ,b(k)

i+1,Xi) − v(b∗
i ,b

∗
i+1,Xi))

= sup
k

lim inf
n→∞

δk

n

n∑
i=1

(E{Fk(b(k)
i+1,Xi+1)|Xi

1} − E{Fk(b∗
i+1,Xi+1)|Xi

1}).

Growth Optimal Investment with Transaction Costs 121

The problem left is to show that the last term is non negative a.s. Using the
definition of Fk

Fk(b(k)
i+1,Xi+1) − Fk(b∗

i+1,Xi+1)

= max
b′

{
v(b(k)

i+1,b
′,Xi+1) + (1 − δk)E{Fk(b

′
,Xi+2)|Xi+1}

}
− max

b′′

{
v(b∗

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}
= max

b′
min
b′′

{{
v(b(k)

i+1,b
′,Xi+1) + (1 − δk)E{Fk(b

′
,Xi+2)|Xi+1}

}
−
{
v(b∗

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}}
≥ min

b′′

{{
v(b(k)

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}
−
{
v(b∗

i+1,b
′′,Xi+1) + (1 − δk)E{Fk(b′′,Xi+2)|Xi+1}

}}
= min

b′′

{
v(b(k)

i+1,b
′′,Xi+1) − v(b∗

i+1,b
′′,Xi+1)

}
≥ −2‖v‖∞,

therefore

sup
k

lim inf
n→∞

δk

n

n∑
i=1

E{Fk(b(k)
i+1,Xi+1) − Fk(b∗

i+1,Xi+1)|Xi
1} ≥ sup

k
δk(−2‖v‖∞)

= 0

a.s., and (17) is proved.

References

[1] Akien, M., Sulem, A., Taksar, M.I.: Dynamic Optimization of Long-term Growth
Rate for a Portfolio with Transaction Costs and Logaritmic Utility. Mathematical
Finance 11, 153–188 (2001)

[2] Algoet, P., Cover, T.: Asymptotic Optimality Asymptotic Equipartition Proper-
ties of Log-optimum Investments. Annals of Probability 16, 876–898 (1988)

[3] Arapostathis, A., Borkar, V.S., Fernandez-Gaucherand, E., Ghosh, M.K., Marcus,
S.I.: Discrete-time Controlled Markov Processes with Average Cost Criterion: a
Survey. SIAM J. Control Optimization 31, 282–344 (1993)

[4] Bobryk, R.V., Stettner, L.: Discrete Time Portfolio Selection with Proportional
Transaction Costs. Probability and Mathematical Statistics 19, 235–248 (1999)

[5] Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

[6] Davis, M.H.A., Norman, A.R.: Portfolio Selection with Transaction Costs. Math-
ematics of Operations Research 15, 676–713 (1990)

[7] Fernholz, E.R.: Stochastic Portfolio Theory. Springer, New York (2000)
[8] Györfi, L., Lugosi, G., Udina, F.: Nonparametric Kernel-based Sequential Invest-

ment Strategies. Mathematical Finance 16, 337–357 (2006)
[9] Györfi, L., Schäfer, D.: Nonparametric Prediction. In: Suykens, J.A.K., Horváth,

G., Basu, S., Micchelli, C., Vandevalle, J. (eds.) Advances in Learning Theory:
Methods, Models and Applications, pp. 339–354. IOS Press, Amsterdam (2003)

122 L. Györfi and I. Vajda

[10] Györfi, L., Ottucsák, G.: Empirical log-optimal portfolio selections: a survey, man-
uscript (2007),
http://www.szit.bme.hu/oti/portfolio/articles/tgyorfi.pdf

[11] Hernández-Lerma, L., Lasserre, J.B.: Discrete-Time Markov Control Processes:
Basic Optimality Criteria. Springer, New York (1996)

[12] Iyengar, G.: Discrete Time Growth Optimal Investment with Costs. Working Pa-
per (2002), http://www.columbia.edu/gi10/Papers/stochastic.pdf

[13] Iyengar, G., Cover, T.: Growth Optimal Investment in Horse Race Markets with
Costs. IEEE Transactions on Information Theory 46, 2675–2683 (2000)

[14] Lasserre, J.B.: Sample-path Average Optimality for Markov Control Processes.
IEEE Transactions on Automatic Control 44, 1966–1971 (1999)

[15] Palczewski, J., Stettner, L.: Optimisation of Portfolio Growth Rate on the Market
with Fixed Plus Proportional Transaction Cost. CIS to Appear a Special Issue
Dedicated to Prof. T. Duncan (2006)

[16] Schäfer, D.: Nonparametric Estimation for Finantial Investment under Log-
Utility. PhD Dissertation, Mathematical Institute, University Stuttgart. Shaker
Verlag, Aachen (2002)

[17] Shreve, S.E., Soner, H.M.: Optimal Investment and Consumption with Transac-
tion Costs. Annals of Applied Probability 4, 609–692 (1994)

[18] Stout, W.F.: Almost Sure Convergence. Academic Press, New York (1974)
[19] Taksar, M., Klass, M., Assaf, D.: A Diffusion Model for Optimal Portfolio Selection

in the Presence of Brokerage Fees. Mathematics of Operations Research 13, 277–
294 (1988)

[20] Vega-Amaya, O.: Sample-path Average Optimality of Markov Control Processes
with Strictly Unbounded Costs. Applicationes Mathematicae 26, 363–381 (1999)

http://www.szit.bme.hu/oti/portfolio/articles/tgyorfi.pdf
http://www.columbia.edu/gi10/Papers/stochastic.pdf

Online Regret Bounds for Markov Decision

Processes with Deterministic Transitions

Ronald Ortner

University of Leoben, A-8700 Leoben, Austria
ronald.ortner@unileoben.ac.at

Abstract. We consider an upper confidence bound algorithm for Mar-
kov decision processes (MDPs) with deterministic transitions. For this
algorithm we derive upper bounds on the online regret (with respect to
an (ε-)optimal policy) that are logarithmic in the number of steps taken.
These bounds also match known asymptotic bounds for the general MDP
setting. We also present corresponding lower bounds. As an application,
multi-armed bandits with switching cost are considered.

1 Introduction

1.1 MDPs with Deterministic Transitions

A Markov decision process (MDP) can be specified as follows. First, there is a
finite set S of states and a finite set of actions A such that for each state s there
is a nonempty set A(s) ⊂ A of actions that are available in s. We assume that
A(s)∩A(s′) = ∅ for s �= s′, and that A =

⋃
s∈S A(s).1 For a state s ∈ S and an

action a ∈ A(s), a reward function r gives the mean r(s, a) of the random rewards
for choosing a in s. We assume that these random rewards are bounded in [0, 1].
Further, transition probability distributions p(·|s, a) determine the probability
p(s′|s, a) that choosing an action a in state s leads to state s′.

A policy is a function π : S → A that assigns each state s a fixed action
π(s) ∈ A(s). The average reward of a policy π is defined as

ρπ(s0) := lim
t→∞

1
t · r

(
st, π(st)

)
,

where the process starts in s0, and generally, st is a random variable for the
state at step t.

In MDPs with deterministic transitions, for all states s and all a ∈ A(s)
we assume that p(s′|s, a) = 1 for a unique s′ ∈ S, while p(s′′|s, a) = 0 for all
s′′ �= s′. Thus each action leads deterministically from one state to another (or
the same) one, so that the transition structure may be considered as a directed
graph (loops allowed) with vertex set S and edge set

⋃
s∈S A(s) = A. As we

assume that the action sets A(s) are pairwise disjoint, the mean reward depends

1 Actually, it is more usual to assume that the sets A(s) coincide for all states s, yet
for our purposes it is more useful to consider distinct action sets.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 123–137, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

124 R. Ortner

only on the action (or edge2) in this transition (di)graph, so that we will write
r(a) for the mean reward of edge a. Thus summarizing, a deterministic MDP
may be considered as a directed graph where the edges are labeled with the
respective mean rewards.

We introduce some terminology from graph theory. Given a graph with vertex
set V and a set E ⊆ V 2 of directed edges, an edge (v, v′) ∈ E is said to start in
its initial vertex v and end in its terminal vertex v′. We also say that (v, v′) is
an outgoing edge of v. A (directed) path is a sequence of edges e1, e2, . . . , e� such
that for 2 ≤ i ≤ � the edge ei starts in the same vertex in which edge ei−1 ends.
Such a path is called a (directed) cycle, if the initial vertex of e1 is identical to
the terminal vertex of e�. Paths and cycles are called simple, if the initial vertices
of all edges are pairwise distinct. In the following, we will often sloppily identify
a simple cycle with the set of its edges.

As we assumed that A(s) �= ∅ for all s ∈ S, each state has at least one
outgoing edge, so that playing an arbitrary but fixed policy π eventually leads
into a directed simple cycle aπ

1 , aπ
2 , . . . , aπ

� . A policy may induce more than one
such cycle, and the cycle that is eventually reached depends on the initial state.
Generally, any policy π will partition the edge set A into one or more cycles
and a (possible empty) set of transient edges not contained in any cycle. Start-
ing in a transient edge a leads to a cycle, so that each edge can uniquely be
assigned to an induced cycle. Consequently, depending on the initial state s0,
the average reward ρπ of a policy π can be written as ρπ(s0) = 1

�

∑�
i=1 r(aπ

i),
where aπ

1 , aπ
2 , . . . , aπ

� is the respective induced cycle of π. We are interested in the
optimal policy π∗ that gives maximal reward ρ∗,3 which basically means that
we are looking for a cycle with maximal mean reward.

The first algorithm for finding the optimal cycle mean has been suggested by
Karp [2].His algorithmhas run-timeO(|A||S|).As the run-timeofKarp’s algorithm
is alsoΩ(|A||S|), otheralgorithmshavebeenproposed [3,4, 5, 6]which in somecases
are faster. Value iteration on deterministic MDPs has been studied as well [7].

We consider the learning setting when the MDP is not known, and a learner
can only observe her current state and the actions she may choose in this state.
As a measure how well a learning algorithm works, we consider its regret after
a finite number of T steps with respect to an optimal policy, defined as

RT := Tρ∗ −
T∑

t=1

rt,

where rt is the random reward received at step t. When the learner does not
compete with the optimal average reward ρ∗ but only with ρ∗ − ε for some
ε > 0, one considers the regret Rε

T with respect to an ε-optimal policy.
Note that if the transition graph of the MDP is not strongly connected4, the

achievable optimal reward ρ∗ will depend on the initial state (as the optimal
2 In the following, we will use the terms action and edge synonymously.
3 It can be shown that allowing time-dependent policies does not increase the achiev-

able maximal reward. This also holds in the general MDP setting (see [1]).
4 A digraph is called strongly connected if there is a directed path between any two

vertices.

Online Regret Bounds for MDPs with Deterministic Transitions 125

cycle may not be reachable from each initial state). Even if the learner may in
principle reach an optimal cycle from her initial state, as she has first to explore
the transition structure of the MDP, choosing a wrong action may lead into a
suboptimal part of the state space that cannot be left anymore. In this case it
seems fair to compete at each step with the optimal reward achievable in the
strongly connected part containing the learner’s current state.5 As we assume
deterministic transitions, any learner that explores all actions (which obviously
is necessary) will eventually reach a strongly connected part that cannot be left
anymore. Since our proposed learning algorithm will have explored all actions
after at most |S||A| steps (see Proposition 1 below), in the following we may
simply assume that the transition graph is strongly connected, so that ρ∗ depends
only on the MDP, and we may sloppily identify optimal policies with optimal
cycles. The additional regret in the general case is at most |S||A|.

1.2 General Remarks

After exploring the transition structure, the remaining problem is to deal with
the exploitation-exploration problem concerning the rewards. The situation is
similar to a multi-armed bandit problem. However, dealing with deterministic
MDPs that way does not give any satisfying bounds, as in general the number of
cycles is exponential in |S|. In the following, we present an algorithm (a simple
generalization of the UCB1 algorithm of Auer et al. [9]) that achieves logarithmic
regret in the number of steps taken. More precisely, after T steps the regret is
O
(λ|A| log T

∆

)
for an MDP dependent parameter λ ≤ |S| and a gap of ∆ between

ρ∗ and the second-best average reward of a cycle. Apart from the parameter
λ, this bound corresponds to the bound in the original bandit setting as given
in [9].

On the other hand, there are logarithmic regret bounds for the general (aver-
age reward) MDP setting as well. These bounds usually hold under the assump-
tion that the MDP is ergodic, i.e., any two states are connected by any policy.6

The first of these bounds due to Burnetas and Katehakis [10] was recently gener-
alized by Tewari and Bartlett [11]. This latter bound is of order7 O

(κ2
1|A||S| log T

∆

)
for an MDP dependent parameter κ1, but — as the original bound of [10] —
it holds only asymptotically. Finite horizon bounds have been achieved in [12].
However, as the bound is O

(κ2κ2
3|A||S|5 log T

∆2

)
with MDP dependent parameters

κ2 > κ1 and κ3 < κ2, the dependence on the parameters is worse than in the

5 This basically has been suggested as one possible approach for learning in multichain
MDPs in [8]. By the way, the alternative suggestion of [8] to compete with mins ρ∗(s),
where ρ∗(s) is the highest achievable reward when starting in s, seems to be too weak.
A lucky learner may reach a part of the MDP in which the reward is larger than
mins ρ∗(s) for any policy. In that case, it seems to be more natural to compete with
the highest reward achievable in that part.

6 Note that this assumption does not hold in our setting.
7 In these bounds for general MDPs, A is the set of actions available in each state, so

that the |A| in our bound corresponds rather to |S||A| in the general MDP setting.

126 R. Ortner

bounds of [11].8 Here we achieve finite horizon bounds that basically correspond
to the bounds of [11] in the simpler setting of deterministic MDPs, yet without
the ergodicity assumption.

1.3 Outline

We proceed by introducing the upper confidence bound algorithm UCycle for
the deterministic MDP setting. In Section 3, we prove a logarithmic bound on
the expected regret of UCycle and complement it with a bound that holds
with high probability. Lower bounds are derived as well. Finally, in Section 4 we
consider the setting of multi-armed bandits with switching cost as a special case
of deterministic MDPs.

2 An Upper Confidence Bound Algorithm

As algorithm for the deterministic MDP setting we suggest a simple adaptation
of known upper confidence bound algorithms such as UCB1 [9] (for multi-armed
bandits) or UCRL [12] (for ergodic MDPs). The common idea of such algorithms
is to choose an optimal policy in an optimistic but plausible model of the situa-
tion, where plausibility is represented by confidence intervals for the estimated
parameters (rewards, transition probabilities) of the system.

In the case of deterministic MDPs, the upper confidence bound strategy will
be applied only to the rewards. As the transitions are assumed to be determin-
istic (and the learner is aware of this fact), they can easily be determined with
certainty. Thus, our suggested algorithm UCycle first investigates the transi-
tion structure of the MDP by playing each available action in each state once.
Then an upper confidence bound strategy is applied to the rewards associated
with each action in order to determine the cycle C̃ with the highest average
plausible reward. Here again, plausibility means that the reward is contained in
some suitable confidence interval. The optimal cycle can be computed efficiently
by any of the algorithms from the literature mentioned in the introduction. Af-
ter computing the optimal cycle C̃, the algorithm chooses the shortest route
to a state in C̃ and remains in C̃ for an appropriate number of time steps (cf.
discussion below). The algorithm is depicted in Figure 1 in detail.

Note that UCycle proceeds in episodes of increasing length. In fact, it is a
tempting but bad idea to switch the cycle whenever another cycle looks more
promising. The following example demonstrates that there are very simple cases
where this strategy leads to linear regret.

8 In fact, the exponent of |S| in the bounds of [12] can be reduced by using the
perturbation bounds of [13] (as applied e.g. in [14]) instead of those given in [15].
Moreover the exponent of the “gap” in the denominator can be reduced as well by
using the “fillet” technique demonstrated in the proof of Theorem 2 below. Still, the

improved bound of O
� κ2κ2

3|A||S|3 log T

∆

�
usually remains worse than that of [11].

Online Regret Bounds for MDPs with Deterministic Transitions 127

Input: A confidence parameter δ ∈ (0, 1).

Initialization and determination of transition structure:

While some action has not been sampled yet do:

� If there is an unsampled action a ∈ A(s) in the current state s, choose a.

� Otherwise choose shortest path to a state s′ that has already been visited
before and in which there is an unsampled action.9

For episodes m = 1, 2, . . . do

� Calculate optimal cycle for episode m:
Determine an optimal cycle C̃m in the deterministic MDP with transition struc-
ture as determined and whose rewards for an action a are given by

r̃t(a) := r̂t(a) +

�
log |A|t4

δ

2nt(a)
, (1)

where t is the overall number of steps taken so far, r̂t(a) is the average reward
obtained from action a, and nt(a) is the number of times action a was chosen.

� Transition phase: Take the shortest path to a state in the cycle C̃m.

� Cycle phase: Play each action in C̃m for the next mina∈C̃m
nt(a) time steps,10when

episode m is terminated.

Fig. 1. The UCycle algorithm

Example 1. Consider the MDP shown in Figure 2, where not only the transitions
but also all the rewards are assumed to be deterministic. There are obviously
two optimal cycles, viz. the loops in each of the two states with optimal average
reward of 1

2 . If we would take our upper confidence bound approach and choose
the better loop at each step, then each loop would be played only twice, before
the other loop has a higher upper confidence bound (due to the larger confidence
interval). As switching (which hence happens each third step) gives no reward,
the average reward after T steps will be at most 2

3 ·
1
2T = 1

3T , so that the regret

0

0

0.50.5

Fig. 2. Switching policies too often may lead to linear regret

9 The first condition guarantees that the learner need not know the state space in
advance. Note that due to the condition of strong connectivity, the transition graph
will be completely determined as soon as there is no such state s′. That way, only
unsampled actions in the current and already visited states need to be considered in
the loop, so that it is not necessary that the learner knows the number of actions in
advance either.

10 That way, each action in the selected cycle C̃m is chosen the same number of times.

128 R. Ortner

of this strategy is Ω(T). Note that our UCycle algorithm also keeps switching
between the two optimal loops, but the number of switches is O(log T).

3 Online Regret Bounds

3.1 Logarithmic Upper Bounds

We start with some properties of UCycle. First, we bound the number of
episodes and the time spent on the determination of the transition graph. Then
we bound the probability that at a given step t a confidence interval fails.

Proposition 1. It takes at most |A||S| steps until UCycle has determined the
transition structure of any deterministic MDP.

Proof. It takes at most |S| − 1 steps to reach a state in which there is an action
to explore, and playing that action takes another step. Thus, |A| distinct actions
can be explored in at most |A||S| steps. �	

While this bound is not sharp for arbitrary |S|, it is easy to give examples where
it is sharp at least asymptotically (for arbitrary |S| and |A| → ∞).

Proposition 2. The number of episodes up to some step T > |A| is upper
bounded by |A| log2

2T
|A| .

Proof. First note that a new episode starts only after the number of visits in one
edge a ∈ A has been doubled. Let Ma be the number of episodes which ended
after the number of visits in a has been doubled,11 and let Ta be the number
of steps in these episodes. It is easy to see that Ma ≤ 1 + log2 Ta = log2 2Ta.
Further,

∑
a log2 2Ta is maximal under the constraint

∑
a Ta = T when Ta = T

|A|
for all a, which gives the claimed bound. �	

Lemma 1. At each step t, the probability that some true mean reward is larger
than the upper confidence bound value given in (1) is at most δ

t3 , that is,

P
{
r̃t(a) ≤ r(a) for some a ∈ A

}
<

δ

t3
.

Proof. For fixed a ∈ A and n(a) ≤ t, a standard Chernoff-Hoeffding bound (see
e.g. Fact 1 in [9]) shows that

P

{
r̂t(a) +

√
log |A|t4

δ

2nt(a)
≤ r(a)

}
<

δ

|A|t4 .

A union bound over all actions in A and all possible values of n(a) proves the
lemma. �	
11 Actually, it may happen that in an episode the number of visits is doubled in more

than one edge. We assume that Ma counts only the episodes where a is the first edge
for which this happens.

Online Regret Bounds for MDPs with Deterministic Transitions 129

The error bound of Lemma 1 allows to derive the following sample complexity
bound on the number of steps taken in suboptimal cycles.

Theorem 1. The number of steps up to step T which UCycle in the cycle
phase spends in cycles whose average reward is smaller than ρ∗ − ε is upper
bounded by

6λ|A| log |A|T 4

δ

ε2

with probability at least 1 − 5
2δ, where λ is the length of the largest simple cycle

in the transition graph of the MDP.

Proof. Let C∗ be an optimal cycle in the MDP, and let C̃m be the cycle chosen
by UCycle in the current episode m. Denote the average reward of a cycle C
in the original MDP (with the real rewards) with ρ(C) and its average reward
in the optimistic MDP (with rewards r̃) with ρ̃(C). We assume throughout the
proof that the confidence intervals given in (1) hold for all t, which by Lemma 1
is true with probability at least 1 −

∑
t

δ
t3 > 1 − 5

4δ. Then

ρ∗ − ρ(C̃m) = ρ(C∗) − ρ(C̃m) ≤ ρ̃(C∗) − ρ(C̃m) ≤ ρ̃(C̃m) − ρ(C̃m)

with probability 1 − 5
4δ. Thus, if at the beginning of an episode the estimation

error ρ̃(C̃m)− ρ(C̃m) is upper bounded by ε, UCycle will choose an ε-optimal
cycle. This will happen in particular if r̃t(a) − r(a) < ε for all actions a ∈ A.
On the other hand, this means that whenever UCycle chooses a cycle C̃m for
which ρ(C̃m) < ρ∗ − ε, then there is an edge a in C̃m for which r̃t(a) − r(a) ≥ ε
at the initial step t of episode m. Now when each edge a was visited sufficiently
often, that is, when for all a ∈ A

nt(a) >
2 log |A|T 4

δ

ε2
, (2)

then r̃t(a) − r̂t(a) < ε
2 and (by a Chernoff-Hoeffding bound analogously to

Lemma 1) also r̂t(a) − r(a) < ε
2 for all a, each with error probability at most

5
4δ. Hence, in this case r̃t(a) − r(a) < ε with probability 1− 5

2δ, and the chosen
cycle is ε-optimal. We are going to determine how many steps in ε-suboptimal
cycles are taken at most, until (2) holds for all actions a.

If UCycle chooses an ε-suboptimal cycle of length |C̃m| in an episode m,
then each edge is visited exactly τm

|C̃m| times, where τm is the length of episode
m. For a fixed action a, let M(a) be the number of episodes i in which a is
part of the chosen, ε-suboptimal cycle C̃i(a), and (2) does not hold for a at the
beginning of the episode. Further, let τi(a) be the length of the i-th respective
episode. Then denoting the largest simple cycle length in the MDP by λ, we
have that after the last step t′ of episode M(a) − 1,

M(a)−1∑
i=1

τi(a)
λ

≤
M(a)−1∑

i=1

τi(a)
|C̃i(a)|

≤ nt′(a) ≤
2 log |A|T 4

δ

ε2
. (3)

130 R. Ortner

Within the M(a)-th episode, a is finally visited sufficiently often so that (2)
holds. Thus at the first step t′′ of this final episode (note that a may have been
played in the meantime in an optimal episode or in a transition phase)

nt′′(a) ≤
2 log |A|T 4

δ

ε2
.

By the criterion when an episode ends, the number of visits in a (and indeed in all
other edges as well) in this final episode can be upper bounded by 2· 2 log(|A|T 4/δ)

ε2 ,
so that together with (3),

M(a)∑
i=1

τi(a)
λ

≤
M(a)−1∑

i=1

τi(a)
λ

+
4 log |A|T 4

δ

ε2
≤

6 log |A|T 4

δ

ε2
.

Consequently,
M(a)∑
i=1

τi(a) ≤
6λ log |A|T 4

δ

ε2
,

and summing over all actions a ∈ A finishes the proof. �	

Together with Proposition 2, Theorem 1 is sufficient to yield a high probability
bound on the regret (Theorem 3 below). For the following bound on the expected
regret we deal with the error probabilities in a slightly more sophisticated way.

Theorem 2. The expected regret of UCycle after T steps with respect to an
ε-optimal policy can be upper bounded as

E(Rε
T) ≤

48λ|A| log |A|T 4

δ

ε
+
(
D + 10

3 δ
)
|A| log2

2T
|A| + |S||A|,

where λ is the largest simple cycle length and D the diameter of the transition
graph, i.e. the length of the longest simple path between two vertices.

Proof. First, according to Proposition 2, the regret accumulated in the transition
phases caused by switching from one cycle to another one can be upper bounded
by D|A| log2

2T
|A| , using that by assumption at each step we suffer a loss of at

most ρ∗ ≤ 1.
For the cycle phases, Theorem 1 bounds the number of steps taken in ε-

suboptimal cycles with high probability. Note that the expected regret accumu-
lated in a cycle phase of length τ when C̃m is an ε-optimal cycle is at most τε
(this is due to the fact that episodes end only after all edges in the cycle have
been visited equally often). Now we fix an ε > 0 and partition all suboptimal
episodes12 with respect to their expected regret:13 we summarize all episodes
12 When speaking of an (ε-)suboptimal episode m we mean that the respective chosen

cycle C̃m is (ε-)suboptimal.
13 The following technique was suggested to me by Peter Auer.

Online Regret Bounds for MDPs with Deterministic Transitions 131

whose expected regret in the cycle phase is in the same interval [2−i, 2−i+1).
For each ε′ ∈ [2−i, 2−i+1), the number of steps in ε′-suboptimal cycles is upper
bounded by 6λ|A| log(|A|T 4/δ)

ε′2 according to Theorem 1,14 so that the expected
regret in the cycle phases of these episodes is upper bounded by

6λ|A| log |A|T 4

δ

2−2i
· 2−i+1.

Let k ∈ N be such that 2−k ≤ ε < 2−k+1. Then summing up over all i = 0, . . . , k
allows to upper bound the regret by

k∑
i=0

6λ|A| log |A|T 4

δ

2−2i
· 2−i+1 < 12λ|A| log

(
|A|T 4

δ

)
2k+1 ≤

48λ|A| log |A|T 4

δ

ε
.

Finally, we have to consider the error probability with which the confidence
intervals do not hold. Writing tm for the beginning of the m-th episode, the
regret for a failing confidence interval at tm is at most (tm+1 − tm) ≤ 2tm (this
inequality holds due to the episode termination criterion). Hence, by Lemma 1
and the bound on the number M of episodes of Proposition 2, the expected
regret accumulated due to failing confidence intervals is at most

2
M∑

m=1

tm · P{confidence interval fails at tm}

≤ 2
M∑

m=1

T∑
t=1

t · P{tm = t and confidence interval fails at t}

≤ 2
M∑

m=1

T∑
t=1

t · δ

t3
= 2

M∑
m=1

T∑
t=1

δ

t2
< 2

M∑
m=1

5
3δ ≤ 10

3 δ|A| log2
2T
|A| .

Summarizing we obtain

E(Rε
T) ≤

48λ|A| log |A|T 4

δ

ε
+
(
D + 10

3 δ
)
|A| log2

2T
|A| + |S||A|,

now also taking into account the regret caused in the exploration phase of the
transition structure according to Proposition 1. �	

In order to obtain high probability bounds on the regret from Theorem 1, we
have to consider deviations from the average reward in each cycle.

Theorem 3. With probability 1 − 9
2δ, the regret of UCycle with respect to an

ε-optimal policy after T steps can be upper bounded as

Rε
T ≤

96λ|A| log |A|T 4

δ

ε
+ D|A| log2

2T
|A| + |S||A| +

16λ|A| log |A|
δ

ε
.

14 Actually, we do not use Theorem 1 itself, but rather refer to its proof, as we deal
slightly differently with the error probabilities here.

132 R. Ortner

Proof. We basically repeat the proof of Theorem 2, but in order to achieve high
probability bounds on the regret with respect to an ε-optimal cycle, we consider
ε
2 -optimal cycles and reserve ε

2 for the deviation from the average reward. Thus,
another application of Chernoff-Hoeffding shows that in a cycle phase of length
τ the probability that the random average reward is worse than the expected
average reward minus ε

2 can be upper bounded by exp
(
− ετ

2

)
. Now we book

all episodes that are shorter than τ0 := 2 log(|A|/δ)
ε (which corresponds to error

probability δ
|A|) as having maximal possible regret. Similarly to Proposition 2,

the number of episodes of length < τ0 in which the number of visits of a fixed
action a is doubled (cf. footnote 11) can be upper bounded by log2 2τ0. By the
criterion for episode termination (first, visits in an action are doubled, then the
cycle is completed), we may upper bound the total number of steps taken in
these short episodes (and consequently also the respective regret) by

|A|
�log2 2τ0�∑

i=0

λ · 2i ≤ 8λ|A|τ0 =
16λ|A| log |A|

δ

ε
. (4)

Similarly, the error probabilities of all longer episodes can be (by the doubling
criterion for episode termination) summed up and bounded by

|A|
�log2

2T
|A| �∑

i=0

exp
(
− ε2iτ0

2

)
= |A|

�log2
2T
|A| �∑

i=0

(
δ

|A|

)2i

< 2δ.

The rest of the proof is as for Theorem 2, only with ε replaced with ε
2 and

without the error term, so that one obtains including (4) the claimed regret
bound, which holds with probability 1 − 9

2δ. �	

Note that due to the different handling of the error probabilities in the proofs
of Theorems 2 and 3, Theorem 3 only makes sense for sufficiently small δ < 2

9 ,
while Theorem 2 remains sensible also for larger values of δ.

When ε is chosen sufficiently small, any ε-optimal policy will be optimal,
which yields the following corollary from Theorems 2 and 3.

Corollary 1. Let ∆ := ρ∗−maxπ:ρπ<ρ∗ ρπ be the difference between the average
reward of an optimal cycle and the average reward of the best suboptimal cycle.
Then

E(RT) ≤
48λ|A| log |A|T 4

δ

∆
+
(
D + 10

3 δ
)
|A| log2

2T
|A| + |S||A|, and

RT ≤
96λ|A| log |A|T 4

δ

∆
+ D|A| log2

2T
|A| + |S||A| +

16λ|A| log |A|
δ

∆
,

the latter with probability 1 − 13
2 δ.

Proof. The bound on the expected regret is straightforward from Theorem 2.
For the high probability bound one also has to consider episodes that are ∆-good

Online Regret Bounds for MDPs with Deterministic Transitions 133

without being optimal (which causes additional regret with respect to an opti-
mal policy). This may happen if the random reward the learner obtains for a
suboptimal cycle is higher than the expected reward. However, this problem can
be solved using a similar strategy as in the proof of Theorem 3. We consider
∆
2 -optimal episodes and reserve ∆

2 for the confidence interval of the random av-
erage reward of a suboptimal cycle. Note that this is different from what we did
in the proof of Theorem 3. There we had to deal with episodes in which the
performance was below the average reward of the played cycle, while here we
have to consider episodes where the performance is above the average reward.

Still, the argument is symmetric to the one given in the proof of Theorem 3.
We consider that episodes shorter than 2 log(|A|/δ)

∆2 have maximal possible regret,
while the random reward of all longer episodes is larger than their expected
reward by at most ∆

2 with a total error probability < 2δ. Together with Theo-
rem 3, this results in the claimed bound which holds with probability at least
1 − 13

2 δ. �	

3.2 Lower Bounds

There are two kinds of lower bounds (on the expected regret) in the multi-armed
bandit setting (cf. Section 4.1 below). First, there is a lower bound due to Mannor
and Tsitsiklis [16] of Ω(|B| log T

∆) where B is the set of given arms and ∆ is the
difference between the best and the second-best average reward of an arm. For
the case where the reward distribution is allowed to depend on the horizon T , a
lower bound of Ω(

√
|B|T) has been derived in [17].

It is easy to reproduce these bounds for the deterministic MDP scenario with
|B| being replaced with |A|, when there are |S| ≥ 3 states15 and |A| ≥ 3(|S|−1)
actions (i.e., edges in the transition graph). This is done simply by inflating the
respective multi-armed bandit problem. Figure 3 shows the basic construction
of the transition graph with |A| = 3(|S| − 1). Further actions may be added in
each of the states. The rewards for the loops are chosen as for the arms in the
multi-armed bandit problems that give the lower bounds mentioned above.

...

Fig. 3. The transition graph for the lower bound deterministic MDPs

15 For |S| = 1 one has an ordinary multi-armed bandit problem, while for |S| = 2 a
deterministic MDP with transitions as in Figure 2 works instead of the construction
given here.

134 R. Ortner

All other rewards (for the transitions to different states) are set to 0. Ob-
viously, learning such a deterministic MDP is equally hard as learning the
corresponding bandit, while the regret is actually larger due to the 0-reward
transitions. As the total number of edges |A| is three times the number of loops
|B| (corresponding to the number of arms in the bandit setting), this gives the
claimed lower bounds for deterministic MDPs.

4 An Application: Bandits with Switching Cost

4.1 Setting

A special case of practical relevance is the setting of (stochastic) multi-armed
bandits with switching cost. In ordinary multi-armed bandit problems, a learner
has to choose an arm from a (usually finite) set B. Choosing b ∈ B gives random
reward ∈ [0, 1] with mean r(b), and the learner tries to maximize her accumulated
rewards. This corresponds to a (trivially deterministic) single state MDP.

It is a natural constraint to assume that the learner may switch arms not for
free, but that she has to pay a fixed cost of γ > 0 when switching from an arm
a to an arm a′ �= a. This can be interpreted as a negative reward of −γ for
switching arms.

Bandit settings with switching cost have mainly been considered in the eco-
nomics literature (for an overview see [18]). Even though most of this literature
deals with the optimization problem when the whole setting is known, there
is also some work on the problem when the learner has no primary knowledge
of the payoffs of the individual arms. In the wake of the seminal paper of Lai
and Robbins [19], which dealt with the ordinary multi-armed bandit problem,
there was an adaptation of their approach to the setting with switching costs by
Agrawal et al. [20]. Their bounds later were improved by Brezzi and Lai [21].
However, as the original bounds of [19], the bounds given in [20, 21] are only
asymptotic in the number of steps. From our results for deterministic MDPs it
is easy to obtain logarithmic bounds that hold uniformly over time.

4.2 Bandits with Switching Cost as Deterministic MDPs

Translated into the deterministic MDP setting a multi-armed bandit problem
with arm set B and switching cost γ corresponds to a complete digraph with |B|
vertices, each with loop. These loops have mean rewards according to the actions
in B, while all other edges in the graph have deterministic negative reward of
−γ. Note that the situation in Example 1 is an MDP corresponding to a bandit
problem with switching cost. Hence, switching arms too often is also harmful in
the simpler setting of bandits with switching cost.

In fact, the situation is a little bit different to the deterministic MDP setting,
as in the bandit setting it is assumed that the learner knows the cost for switch-
ing. With this knowledge, it is obviously disadvantageous to choose a cycle that is
not a loop in some state. Hence, a sensible adaptation of UCycle would choose
the loop in the state that has the highest upper confidence bound value. This

Online Regret Bounds for MDPs with Deterministic Transitions 135

corresponds to the UCB1 algorithm of Auer et al. [9] with the only difference
being that increasing episodes are used (which is necessary to obtain sublinear
regret as Example 1 shows). Indeed, Auer et al. [9] have already proposed an
algorithm called UCB2 that also works in episodes and whose regret (including
switching costs) is also logarithmic in T .

Although due to the negative switching costs, the rewards are not in [0, 1], it
is easy to adapt the bounds we have derived in the deterministic MDP setting.
We have already argued that it is sufficient to look for optimal cycles among the
loops in each state, so that λ can be chosen to be 1. Moreover, D = 1. However,
as switching costs γ, the transition term in the bounds has to be multiplied by
γ. This yields the following bounds.

Corollary 2. The regret of UCycle in the multi-armed bandit setting with |B|
arms and switching cost γ can be upper bounded as

E(RT) ≤
48|B| log |B|T 4

δ

∆
+
(
γ + 10

3 δ
)
|B| log2

2T
|B| , and

RT ≤
96|B| log |B|T 4

δ

∆
+ γ|B| log2

2T
|B| +

16|B| log |B|
δ

∆
,

the latter with probability 1 − 13
2 δ.

Indeed, in the bandit setting a more refined analysis is possible, so that one
easily achieves bounds of the form

∑
b∈B:r(b)<r∗

const · log T
δ

r∗ − r(b)
+ γ|B| log2

2T
|B| , where r∗ := maxb∈B r(b)

as given in [9] (apart from the switching cost term) by adapting the proof to
the episode setting (which gives slightly worse constants in the main term than
in [9]). As all this is straightforward, we neither bother to give the precise bounds
nor further details concerning the proof.

Of course, the deterministic MDP setting also allows to deal with settings with
individual switching costs or where switching between certain arms is not al-
lowed. In these more general settings one trivially obtains corresponding bounds
with γ replaced by the cost of the most expensive switch between any two arms.
This switch need not be performed in a single step, as it may be cheaper to
switch from b to b′ via a sequence of other arms.16

16 Note however, that when not switching directly, the learner not only has to pay
switching costs but also loses time and reward by choosing the probably suboptimal
intermediate arms. There is a similar problem in the original UCycle algorithm, as
taking the shortest path to the assumed best cycle may not be optimal. Generally, in
order to solve this problem one has to consider bias- or Blackwell-optimal policies [1].
However, as this has no influence on the regret bounds, we do not consider this
further.

136 R. Ortner

Finally, we would like to remark that the episode strategy also works well
in more general bandit settings, such as continuous bandits with Lipschitz con-
dition. Such settings were considered e.g. in [22, 23], and it is easy to modify
e.g. the proposed algorithm CAB of [22] to achieve bounds when switching costs
are present. As in the settings mentioned above, the main term of the bounds
remains basically the same with slightly worse constants. We note that these
bounds are not logarithmic anymore and neither is the switching cost term.

5 Conclusion

Although usually there is some kind of transition (or mixing time) parameter in
regret bounds for general MDPs (e.g. the κi in the bounds of [12, 11] mentioned
above), it is not clear whether the largest simple cycle length parameter λ is
necessary in regret bounds for deterministic MDPs. Interestingly, the parameter
λ and the diameter D (which may be considered as an alternative transition
parameter of the MDP) are in general not comparable to each other. On the
one hand, complete graphs have largest possible λ = |S| and smallest possible
diameter D = 1. On the other hand, there are also graphs with large diameter
and small λ as Figure 4 shows.

...

Fig. 4. Graph with λ = 3 and diameter D = |S|−1
2

A related question is what optimal bounds look like in the case of general
MDPs with known transition probabilities. In particular, also in this setting it
is an interesting question whether in such bounds the appearance of a transition
parameter is necessary. A similar scenario has already been considered in [24].
However, in [24] the rewards are allowed to change over time, which makes learn-
ing more difficult, so that the achieved O(

√
T) bounds (including a transition

parameter) are best possible.

Acknowledgements. The author would like to thank the reviewers for pointing
out some errors and for other valuable comments. This work was supported in
part by the Austrian Science Fund FWF (S9104-N13 SP4). The research leading
to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreements n◦ 216529 and
n◦ 216886. This publication only reflects the authors’ views.

References

[1] Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994)
[2] Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete

Math. 23(3), 309–311 (1978)

Online Regret Bounds for MDPs with Deterministic Transitions 137

[3] Dasdan, A., Gupta, R.: Faster maximum and minimum mean cycle algorithms for
system performance analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 17(10), 889–899 (1998)

[4] Dasdan, A., Irani, S.S., Gupta, R.K.: Efficient algorithms for optimum cycle mean
and optimum cost to time ratio problems. In: Proc. 36th DAC, pp. 37–42. ACM,
New York (1999)

[5] Hartmann, M., Orlin, J.B.: Finding minimum cost to time ratio cycles with small
integral transit times. Networks 23(6), 567–574 (1993)

[6] Young, N.E., Tarjan, R.E., Orlin, J.B.: Faster parametric shortest path and
minimum-balance algorithms. Networks 21(2), 205–221 (1991)

[7] Madani, O.: Polynomial value iteration algorithms for deterministic MDPs. In:
Proc. 18th UAI, pp. 311–318. Morgan Kaufmann, San Francisco (2002)

[8] Kearns, M.J., Singh, S.P.: Near-optimal reinforcement learning in polynomial
time. Mach. Learn. 49, 209–232 (2002)

[9] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multi-armed
bandit problem. Mach. Learn. 47, 235–256 (2002)

[10] Burnetas, A.N., Katehakis, M.N.: Optimal adaptive policies for Markov decision
processes. Math. Oper. Res. 22(1), 222–255 (1997)

[11] Tewari, A., Bartlett, P.L.: Optimistic linear programming gives logarithmic regret
for irreducible MDPs. In: Proc. 20th NIPS (to appear)

[12] Auer, P., Ortner, R.: Logarithmic online regret bounds for undiscounted reinforce-
ment learning. In: Proc. 19th NIPS, pp. 49–56. MIT Press, Cambridge (2006)

[13] Hunter, J.J.: Mixing times with applications to perturbed Markov chains. Linear
Algebra Appl. 417, 108–123 (2006)

[14] Ortner, R.: Pseudometrics for state aggregation in average reward Markov decision
processes. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS
(LNAI), vol. 4754, pp. 373–387. Springer, Heidelberg (2007)

[15] Cho, G.E., Meyer, C.D.: Markov chain sensitivity measured by mean first passage
times. Linear Algebra Appl. 316, 21–28 (2000)

[16] Mannor, S., Tsitsiklis, J.N.: The sample complexity of exploration in the multi-
armed bandit problem. J. Mach. Learn. Res. 5, 623–648 (2004)

[17] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM J. Comput. 32, 48–77 (2002)

[18] Jun, T.: A survey on the bandit problem with switching costs. De Economist 152,
513–541 (2004)

[19] Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. in
Appl. Math. 6, 4–22 (1985)

[20] Agrawal, R., Hedge, M.V., Teneketzis, D.: Asymptotically efficient adaptive allo-
cation rules for the multiarmed bandit problem with switching cost. IEEE Trans.
Automat. Control 33(10), 899–906 (1988)

[21] Brezzi, M., Lai, T.L.: Optimal learning and experimentation in bandit problems.
J. Econom. Dynam. Control 27, 87–108 (2002)

[22] Kleinberg, R.D.: Nearly tight bounds for the continuum-armed bandit problem.
In: Proc. 17th NIPS, pp. 697–704. MIT Press, Cambridge (2004)

[23] Auer, P., Ortner, R., Szepesvári, C.: Improved rates for the stochastic continuum-
armed bandit problem. In: Bshouty, N.H., Gentile, C. (eds.) COLT 2007. LNCS
(LNAI), vol. 4539, pp. 454–468. Springer, Heidelberg (2007)

[24] Even-Dar, E., Kakade, S.M., Mansour, Y.: Experts in a Markov decision process.
In: Proc. 17th NIPS, pp. 401–408. MIT Press, Cambridge (2004)

On-Line Probability, Complexity and
Randomness

Alexey Chernov1, Alexander Shen2, Nikolai Vereshchagin3, and Vladimir Vovk1

1 Royal Holloway, University of London, Egham, Surrey,
TW20 0EX, UK

{chernov,vovk}@cs.rhul.ac.uk
2 LIF (Université Aix-Marseille & CNRS), Marseille and Institute

of Information Transmission Problems, Moscow
alexander.shen@lif.univ-mrs.fr

3 Moscow State University
nikolay.vereshchagin@gmail.com

Abstract. Classical probability theory considers probability distribu-
tions that assign probabilities to all events (at least in the finite case).
However, there are natural situations where only part of the process is
controlled by some probability distribution while for the other part we
know only the set of possibilities without any probabilities assigned.

We adapt the notions of algorithmic information theory (complexity,
algorithmic randomness, martingales, a priori probability) to this frame-
work and show that many classical results are still valid.

1 On-Line Probability Distributions

Consider the following “real-life” situation. There is a tournament (say, chess or
football); before each game the referee tosses a coin to decide which player will
start the next game. Assuming the referee is honest, we would be surprised to
learn that, say, all 100 coin tosses have produced a tail. We would be surprised
also if the result of the coin tossing always turned out to be equal to some (simple)
function of the results of previous games. However, it is quite possible that the
results of coin tossing can be easily computed from the results of subsequent
games. Indeed, it may well happen that the coin bit influences the results of the
subsequent games and therefore can be reconstructed if these results are known.

Another similar example: if there were a rule that predicts the lucky numbers
in a lottery using the previous day newspaper, we would not trust the lottery
organizers. However, for the next day newspaper the situation is different (e.g.,
the newspaper may publish the results of the lottery).

Let Xi be the information string available before the start of ith game (say,
the text of the newspaper printed just before the game) and let the bit bi be
the result of coin tossing at the start of ith game. We would like to say that for
every function f and for every i the probability of the event bi = f(Xi) is 1/2,
assuming the referee is honest. And for N games the probability of the event
∀i (bi = f(Xi)) equals 2−N .

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 138–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On-Line Probability, Complexity and Randomness 139

X1, no distribution

b1, uniform distribution

X2, no distribution

b2, uniform distribution

. . .

Fig. 1. The tree of possibilities

However, we cannot directly refer to classical probability theory framework
in this example. Indeed, when speaking about probability of some event, one
usually assumes that some probability distribution is fixed, and this distribu-
tion assigns probabilities to all possible events (at least in the finite case). In
our example we do not have a probability distribution for Xi; the only thing
we have is the “conditional probability” of the event bi = 1 for any condition
X1, b1, . . . , Xi−1, bi−1, Xi; this conditional probability equals 1/2.

Formally speaking, we get a “tree of possibilities”. The sons of the root are
possible values of X1. Each of them has two sons that correspond to two possible
outcomes of the first coin tossing (b1 = 0 or 1). Next level branching corresponds
to the values of X2, then each vertex has two sons (b2 = 0 or 1), etc.

In other words, tree vertices are finite sequences (X1, b1, . . . , Xk, bk) for even
layers and (X1, b1, . . . , Xk, bk, Xk+1) for odd layers; Xi are binary strings and bi

are bits. We may consider a finite tree with 2N layers; its leaves are sequences
(X1, b1, . . . , XN , bN). Or we may consider an infinite tree whose vertices are
sequences of any length.

What we have is not a probability distribution but something that can be
called an on-line probability distribution on this tree. By definition, to specify
an on-line probability distribution one must fix, for each i and for all values of
X1, b1, . . . , Xi, two non-negative reals with sum 1. They are called conditional
probabilities of 0 and 1 after X1, b1, . . . , Xi and denoted by

Pr[bi = 0 or 1|X1, b1, . . . , Xi−1, bi−1, Xi].

For the case of a fair coin all these conditional probabilities are equal to 1/2.
As usual, we can switch to unconditional probabilities (i.e., can multiply con-

ditional probabilities on the path from the tree root). Then we arrive to the
following version of the definition: an on-line probability distribution is a func-
tion P defined on tree vertices such that P (Λ) = 1 (Λ is the tree root),

P (X1, b1, . . . , Xi, bi, Xi+1) = P (X1, b1, . . . , Xi, bi)

140 A. Chernov et al.

(on vertices where no random choice is made, the function propagates without
change), and

P (X1, b1, . . . , Xi, bi, Xi+1) =
= P (X1, b1, . . . , Xi, bi, Xi+1, 0) + P (X1, b1, . . . , Xi, bi, Xi+1, 1).

The intuitive meaning of P (v) is the probability to arrive at v if the environment
(that chooses X1, X2, . . .) wants this and makes suitable moves in its turn.

This definition makes sense both for finite and infinite trees.

Remark. A technical problem arises when some values of an on-line probabil-
ity distribution are zeros: in this case conditional probabilities cannot be recon-
structed from the products. However, in this case they are usually not important,
so we can mostly ignore this problem.

Similar on-line probability distributions can be considered for more general
trees where on the odd levels, instead of 0 and 1, we have a (countable) list of
possible values of bi.

Now let us assume that the tree is finite (has finite height and finite number
of vertices on every level). Consider an event E, i.e., some set of tree leaves.
We cannot define the probability of an event under a given on-line probability
distribution P . However, we can define an upper probability of E. (It may be
called a “worst case probability” if the event E is considered undesirable.) This
notion can be defined in several (equivalent) ways.

Definition
(1) Consider all probability distributions on the leaves of the tree. Some of

them are consistent with the given on-line probability distribution (i.e., give
the same conditional probabilities for bi when X1, b1, . . . , Xi are given). Upper
probability of E is a maximum of Pr[E] under all these distributions.

(2) Consider the following probabilistic game: a player (“adversary”, if the
event is undesirable) chooses some X1, then b1 is chosen at random with pre-
scribed probabilities (condition X1), then player chooses X2, then b2 is chosen at
random (according to the conditional probabilities with condition X1, b1, X2),
etc. The player wins if the resulting leaf belongs to the event E. The upper
probability of E is the maximal probability that player wins (maximum is taken
over all deterministic strategies).

(3) Let us define the cost of a vertex in the tree inductively starting from
the leaves. For a leaf in E the cost is 1, for a leaf outside E the cost is zero.
For a non-leaf vertex v where the choice of Xi is performed, the cost of v is
the maximal cost of its sons; for a vertex that corresponds to the choice of bi,
the cost is the weighted sum of the sons’ costs where weights are conditional
probabilities. Upper probability of E is the cost of the tree root.

(4) Let us consider on-line martingales with respect to P , i.e., non-negative
functions V defined on tree vertices such that

V (X1, b1, . . . , Xi, bi) = V (X1, b1, . . . , Xi, bi, Xi+1); (1)

On-Line Probability, Complexity and Randomness 141

V (X1, b1, . . . , Xi) = V (X1, b1, . . . , Xi, 0) · Pr[bi = 0|X1, b1, . . . , Xi]+
+ V (X1, b1, . . . , Xi, 1) · Pr[bi = 1|X1, b1, . . . , Xi]; (2)

these functions correspond to the player’s capital in a fair game (when player
observes Xi, the capital does not change; when player splits the capital be-
tween bets on bi = 0 and bi = 1, the winning bet is rewarded according to
the conditional probabilities determined by the on-line distribution). The upper
probability of E is the minimal value of V (Λ) over all V such that V ≥ 1 for all
leaves that belong to E. In other terms, the upper probability of E is 1 divided
by the fair price of the option to play such a game with initial capital 1 knowing
in advance that the sequence of outcomes belongs to E.

Remark. As we have mentioned, we need some precautions for the case when
some values of P are zeros, since in this case conditional probabilities are not
uniquely defined. However, it is easy to see that all choices of conditional prob-
abilities compatible with P will lead to the same value of upper probability.

Theorem 1. All four definitions are equivalent.

Proof. Note that player’s strategy in the second definition determines a distri-
bution on the leaves (Xi is chosen deterministically according to the strategy
while bi is chosen according to the prescribed conditional probabilities). This
distribution is consistent with the given on-line distribution. So the upper prob-
ability as defined in (2) does not exceed the upper probability as defined in (1).
On the other hand, any probability distribution can be considered as a mixed
strategy in the game (player chooses her moves randomly using independent
random bits), and the winning probability of a mixed strategy is the weighted
average of the winning probabilities for pure strategies, so we get the reverse
inequality. The inductive definition (3) computes the winning probability for the
optimal strategy (induction on tree height).

The equivalence with the martingale definition can be proved in the same way
as for the classical off-line setting (this argument goes back to Ville, see, e.g., [7]).
If a martingale V starts with capital p and achieves 1 on every leaf in E, then for
every probability distribution compatible with P and for every tree vertex the
current value of V is an upper bound for the expectation of V if the game starts
at this vertex. Therefore, V (Λ) is an upper bound for the probability to end
the game in E for every probability distribution compatible with P . The reverse
inequality: the vertex cost (defined inductively) satisfies the conditions in the
definition of a martingale if we replace = by ≥ in the condition (1). Increasing
this function, we can get a martingale. �	
Remarks

1. Note that upper probability is not additive: e.g., both the event and its
negation can have upper probabilities 1, just the strategies to achieve them are
different. However, it is sub-additive: the upper probability of A ∪ B does not
exceed the sum of upper probabilities of A and B.

2. We can define supermartingales in the same way as martingales replacing
= by ≥ in (2). We relax the requirement (2) and not (1) since it is more natural

142 A. Chernov et al.

from the game viewpoint: getting information about Xi does not change the
player’s capital. It is easy to see that supermartingales may be used instead of
martingales in the the definition of upper probability.

3. Proving Theorem 1, we assumed that the tree is finite. However, the same
argument shows that it is valid for infinite trees of finite height (and even for
the trees having no infinite branches), if we use supremum instead of maximum.

Classical probability theory says that events with very small probability can be
safely ignored (and when they happen, we have to reconsider our assumptions
about the probability distribution). In the on-line setting we can say the same
about events that have very small upper probability: believing in the proba-
bilistic assumption, we may safely ignore the possibilities that have negligible
upper probabilities, and if such an event happens, we have to reconsider the
assumption.

Remarks
1. In fact upper probability (though not with this name) is used in the def-

inition of the Arthur – Merlin class in computational complexity theory where
a tree of polynomial height and a polynomially decidable event are considered
and we distinguish between events of low and high upper probability.

2. It is easy to see that on-line martingales with respect to on-line probability
distribution P are just the ratios Q/P where Q is some other on-line probability
distribution. (Some evident precautions are needed if P can be zero somewhere.)

2 On-Line Kolmogorov Complexity KR

We can adapt the standard definition of Kolmogorov complexity (see, e.g., [3, 5]
for the definition and discussion of different versions of Kolmogorov complexity)
for the on-line setting. Consider a sequence X1, b1, X2, b2, . . . , Xn, bn where Xi

are binary strings and bi are bits. Look for a shortest interactive program that
after getting input X1 produces b1, then after getting X2 (in addition to X1) pro-
duces b2, then after getting X3 produces b3 etc. We call its length the on-line de-
cision complexity with respect to the programming language π used, and denote
it by KRπ(X1 → b1;X2 → b2; . . . ;Xn → bn). The reason for the name “decision
complexity”: if all Xi are empty, we get the standard notion of decision complex-
ity of a bit string b1 . . . bn (the length of the shortest program that generates bi

given i). It is easy to see that a natural version of optimality theorem holds (there
exists an optimal “programming language”), so the on-line decision complexity
(for an optimal programming language) KR(X1 → b1;X2 → b2; . . . ;Xn → bn)
is well defined (up to an additive O(1)-term).

Theorem 2. The on-line complexity KR(X1 → b1; . . . ;Xn → bn) does not
exceed the decision complexity KR(b1b2 . . . bn) and is greater than the conditional
complexity KS(b1b2 . . . bn|X1, X2, . . . , Xn) up to O(1) terms.

In other terms, knowing Xi in an on-line setting may help to describe b1, . . . , bn,
but knowing all Xi in advance is even better. (The proof is straight forward.)

On-Line Probability, Complexity and Randomness 143

3 On-Line A Priori Probability and KA

It is well known that Kolmogorov complexity is related to the a priori probabil-
ity (maximal lower semicomputable semimeasure). The latter can be naturally
defined in the on-line setting. Let us give two equivalent definitions.

Consider an interactive probabilistic machine T that has internal random bit
generator. This machine gets some binary string X1 (say, on the tape where the
end of X1 is marked by a special separator), performs a computation that uses X1

and random bits and may produce bit b1 (or hang). After b1 is produced, T gets
the second input string X2, continues its work (using fresh random bits) and may
produce second output bit b2, etc. In other words, we write X1#X2# . . .#Xn

on the input tape, but T cannot get access to Xi before it produces i− 1 output
bits b1, . . . , bi−1.

For a given T consider a function MT : Let MT (X1, b1, . . . , Xn, bn) be the
probability that T outputs b1, . . . , bn getting X1, X2, . . . , Xn as input (with re-
strictions described above). We extend the function MT to the sequences of odd
length: MT (X1, b1, . . . , Xn, bn, Xn+1) is equal to MT (X1, b1, . . . , Xn, bn). We let
MT (Λ) = 1. It is easy to see that if T never hangs (or hangs with zero probabil-
ity), then MT is an on-line probability distribution. In general, MT is an on-line
semimeasure in the sense of the following

Definition. An on-line semimeasure is a function M that maps tree ver-
tices to non-negative reals such that M(Λ) = 1, M(X1, b1, . . . , Xi, bi, Xi+1) =
M(X1, b1, . . . , Xi, bi) (on vertices where no random choice is made, the function
propagates without change), and the inequality M(X1, b1, . . . , Xi, bi, Xi+1) ≥
M(X1, b1, . . . , Xi, bi, Xi+1, 0)+M(X1, b1, . . . , Xi, bi, Xi+1, 1) holds. (We have re-
placed “=” by “≥” in the definition of an on-line probability distribution.)

It is easy to see that semimeasure MT that corresponds to a probabilistic
machine T of described type is a lower semicomputable function, i.e., there is
an algorithm that gets its input and produces an increasing sequence of rational
numbers that converges to the value of the function.

Theorem 3. Every lower semicomputable on-line semimeasure corresponds to
some probabilistic machine.

Proof is similar to the off-line case. For an on-line semimeasure M we perform
a “memory allocation”, so that for each finite sequence X1, b1, . . . an open subset
of [0, 1] that has measure M(X1, b1, . . .) is allocated. Adding Xi to the end of
the sequence does not change the set; adding bits 0 and 1 replaces the corre-
sponding set by two its disjoint subsets. (Note that these subsets may depend
not only on bi, but also on Xi.) If M is lower semicomputable, these sets can
be made uniformly effectively open. Then we consider a machine T that gen-
erates a uniformly distributed random real number α ∈ [0, 1] bit by bit and
generates T (X1, b1, . . . , Xi) = bi if the effectively open set that corresponds to
X1, b1, . . . , Xi, bi contains α. �	

144 A. Chernov et al.

Theorem 4. There exists the largest (up to O(1)-factor) lower semicomputable
on-line semimeasure.

Proof. Again we can use standard trick: a universal machine first generates
randomly a machine of described type in such a way that every machine appears
with a positive probability, and then simulates this machine. �	

We call this maximal semimeasure an on-line a priori probability and denote it
by A(X1, b1, . . . , Xn, bn). (If all Xi are empty strings, we get a standard a priori
probability on a binary tree.) Minus logarithm of this semimeasure is called on-
line a priori complexity and denoted by KA(X1 → b1;X2 → b2; . . . ;Xn → bn).

4 Relations between KR and KA

Now, when two complexities KA and KR are defined in the on-line framework,
one may ask how they are connected. Their off-line versions are close to each
other: it is known that KR(x) ≤ KA(x) ≤ KR(x) + 2 log KR(x) (up to O(1)-
terms) for all binary strings x.

These inequalities remain true for the on-line setting (with the same O(1)-
precision):

Theorem 5. KR(. . .) ≤ KA(. . .) ≤ KR(. . .) + 2 logKR(. . .); here “. . . ” stands
for X1 → b1;X2 → b2; . . . ;Xn → bn.

Proof of the second inequality goes in the same way as usual; we consider a
randomized algorithm that chooses machine number i with probability 1/i2.

The first inequality needs more care, since in the on-line case we are more
restricted and need to ensure that programs are indeed on-line and do not refer
to the inputs that are not yet available.

We need to allocate 2n strings of length n to objects that have KA-complexity
less than n (=have a priori probability greater than 2−n). We do it inductively
(first for X1 → b1, then for X2 → b2, etc.) and ensure a stronger requirement:
if a priori probability of some object exceeds k2−n for some k, then there are at
least k different programs of length n allocated to this object.

So we start looking at the approximations (from below) to the (a priori)
probabilities of X1 → 0 and X1 → 1 (independently for each n and each X1);
when probability of X1 → b1 exceeds k2−n, we allocate a new (kth) program
of length n that transforms X1 to b1. On top of this process we look at the
approximations to a priori probabilities of X1 → b1;X2 → b2 and add new
programs that map X2 to b2 among the programs that mapped X1 to b1; we have
enough programs for that since M(X1, b1, X2, 1)+M(X1, b1, X2, 0) ≤ M(X1, b1),
so if k1 programs are needed for the first term and k0 are needed for the second,
then there are already k0 + k1 programs allocated to X1 → b1 to choose from.
On top of that, we allocate programs for X1 → b1;X2 → b2;X3 → b3 etc. �	

On-Line Probability, Complexity and Randomness 145

5 On-Line Randomness

Let us return to the “real-life” example and make it less real: imagine that we
observe an infinite sequence of games and (for every i) know the bit bi produced
by the referee when ith game starts and the string Xi that is known before
ith game. There are cases when we intuitively reject the fair coin assumption.
Can we make the intuition more formal and define a notion “in the sequence
X1, b1, X2, b2, X3, b3, . . . the bits b1, b2, . . . are random”? For the off-line case the
most popular notion is called Martin-Löf randomness (ML-randomness; see [3, 6]
for details). Now we want to extend it to the on-line setting.

Assume that a computable on-line probability distribution P (on the infinite
tree) is fixed. Martin-Löf definition starts with a notion of an “effectively null”
set. Adapting this definition to on-line setting, we need to remember that proba-
bility of events is now undefined; moreover, the notion of upper probability (that
replaces it) has been defined for finite case only.

Consider the space Π of all (infinite) sequences X1, b1, X2, b2, A cone in
this set is a set of all sequences with given finite prefix.

Definition. Let U be a finite union of cones. Then the upper probability of U
with respect to P is defined as the upper probability of the corresponding event
in the finite part of the tree (large enough to contain all the roots of the cones).

(It is easy to see that this probability does not change if we increase the size
of the finite part of the tree. The upper probability is monotone with respect to
set inclusion.)

Then we can define an on-line version of null sets.

Definition. A set Z ⊂ Π is an on-line null set if for any ε > 0 there exists a
sequence of cones such that: (1) the union of cones covers Z; (2) the union of
any finite number of these cones has upper probability less than ε.

Martin-Löf definition of randomness deals with effectively null sets, so our
next step is to define them in an on-line setting.

Definition. A set Z is an on-line effectively null set if there exists an algorithm
that for any given rational ε > 0 generates a sequence of vertices such that the
corresponding cones cover Z and the union of any finite number of these cones
has upper probability less than ε. (Note that we require the upper probability of
the union of the cones to be small, not the sum of upper probabilities of the cones.
This difference matters since upper probability, unlike classical probability, is not
additive.)

Theorem 6. There exists an on-line effectively null set that contains every other
on-line effectively null set.

Proof is similar to the off-line case. Having any algorithm that given rational
ε > 0 generates sequences of vertices, we can “trim” it so that the union of any
finite number of generated cones has upper probability less than ε. (Indeed, for
a computable on-line measure the upper probability of the finite union of cones
is computable, and we may quarantine new strings until they are cleared.) So

146 A. Chernov et al.

we can enumerate all the algorithms that satisfy these restrictions and then take
the union of corresponding on-line effectively null sets (combining covers of size
ε/2, ε/4 etc. to get the cover of size ε; here we use the subadditivity of upper
probability). �	

Now we can give a

Definition. Bits b1, b2, . . . are on-line ML-random in a sequence ω = X1, b1,
X2, b2, . . . if ω does not belong to the maximal on-line effectively null set.

In other words, b1, b2, . . . are not random in ω if and only if {ω} is an on-line
effectively null set (if and only if some on-line effectively null set contains ω).

6 On-Line Randomness Criterion

A classical Levin – Schnorr theorem gives a criterion of randomness in terms of
complexity (in particular, a priori complexity KA) or supermartingales. Similar
criterion exists for the on-line version.

Theorem 7. (Levin – Schnorr theorem, on-line version). Assume that a com-
putable on-line probability distribution P is fixed. Bits b1, b2, . . . are on-line ML-
random (with respect to P) in a sequence ω = X1, b1, X2, b2, . . . if and only if
KA(X1 → b1; . . . , Xn → bn) ≥ − log2 P (X1, b1, . . . , Xn, bn) − c for some c and
all n.

Recalling that KA is the minus logarithm of a priori probability A, we can refor-
mulate the criterion: bits bi are random in (X1, b1, X2, b2, . . .) if and only if the
ratio A(X1, b1, . . . , Xn, bn)/P (X1, b1, . . . , Xn, bn) has a constant upper bound.
(Note that A is the maximal semimeasure and P is a measure (and therefore a
semimeasure), so this ratio always has a positive lower bound.)

One more reformulation of the same result uses on-line supermartingales. As
we have noted, on-line (super)martingales with respect to P are ratios Q/P
where Q is an on-line (semi)measure. It allows us to reformulate the criterion as
follows: bits bi are random in a sequence ω = X1, b1, X2, b2, . . . if and only if any
lower semicomputable supermartingale is bounded on prefixes of ω.

For a more advanced (and more difficult to prove) version of Theorem 7,
see [8].

Proof of the on-line version of Levin – Schnorr randomness criterion follows the
off-line argument with some changes: we have to be more careful since we have
to deal with upper probability instead of an (additive) measure.

First, we have to show that if a sequence is not random, then the ratio A/P
is unbounded on its prefixes. Since A is maximal, it is enough to construct some
lower semicomputable semimeasure Q such that Q/P is unbounded.

Lemma. Assume that some algorithm enumerates a sequence of cones C1,
C2, . . . and the upper probability of the union C1∪. . .∪CN is less than ε for some
rational ε > 0 and for all N . Knowing this algorithm and ε, we can construct
a lower semicomputable semimeasure S that exceeds P/ε at any finite sequence
that belongs to one of the cones.

On-Line Probability, Complexity and Randomness 147

Proof of the Lemma. For any vertex v let us consider the cone C(v) with
root v and for any N let us compute the upper probability of the inter-
section C(v) ∩ (C1 ∪ C2 ∪ . . . ∪ CN). Since P is computable, doing this for
N = 1, 2, . . ., we get an increasing computable sequence of computable reals,
and its limit is lower semicomputable. Let S(v) be this limit divided by ε.
This limit is not technically a semimeasure since S(X1, b1, . . . , Xi, bi) can be
bigger than S(X1, b1, . . . , Xi, bi, Xi+1). But if we increase the latter by letting
S(X1, b1, . . . , Xi, bi, Xi+1) := S(X1, b1, . . . , Xi, bi), and also let S(Λ) = 1, we do
get a lower semicomputable semimeasure that satisfies the requirements of the
Lemma. �	
Now we can finish the proof of the first part of Levin – Schnorr on-line random-
ness criterion. Let εn = 2−2n. Since ω belongs to an on-line effectively null set, we
can get a sequence of cones with upper probability bounded by εn; applying the
Lemma to it, we get a lower semicomputable semimeasure Sn that exceeds 22nP
on any vertex that belongs to one of the cones. Then the sum S =

∑
n 2−nSn

exceeds 2nP on any vertex that belongs to some of the cones generated for εn.
By assumption ω has a prefix of this type for every n, so S/P is unbounded on
prefixes of ω.

In remains to prove the second part of the theorem. For any lower semicom-
putable semimeasure S we have to show that the set of all sequences ω such that
S/P is unbounded on the prefixes of ω is an on-line effectively null set.

For a given ε > 0 let us consider all the vertices where S/P exceeds 1/ε.
They can be enumerated if ε is given since S is lower semicomputable and P is
computable. We need to check that the upper probability of the union of any
finite number of corresponding cones is less than ε. Indeed, while computing the
costs inductively in a top-down fashion, the cost is upper-bounded by ε times
the value of S in the vertex. (Induction base is guaranteed by the assumption:
we start with vertices where S/P is greater that 1/ε; the induction step works
since S is a semimeasure and P is a measure.) �	
Remarks

1. In the off-line setting the similar construction almost gives a lower semi-
computable measure (with one exception: the measure of the entire space may
be less than 1) or, in other terms, a martingale whose initial amount is lower
semicomputable. In the on-line setting it is no more true (at least for this con-
struction), and we get a semimeasure (or supermartingale).

2. On the other hand, the proof gives more than we claimed: if a sequence
is not random, then some lower semicomputable on-line supermartingale is not
only unbounded but also tends to infinity. It implies that if some lower semi-
computable on-line supermartingale is unbounded on some ω, then some other
semicomputable on-line supermartingale tends to infinity on ω.

The notion of randomness of bi in a sequence X1, b1, X2, b2, . . . lies in-between
Martin-Löf randomness and Martin-Löf randomness with respect to an oracle.
Indeed, it implies ML-randomness since we can consider semimeasures (super-
martingales) that do not depend on Xi at all. On the other hand, each on-line

148 A. Chernov et al.

supermartingale can be transformed into a supermartingale that uses the entire
sequence X1, X2, . . . as an oracle (getting access not only to the past Xi, but also
to the future ones). Both inclusions are strict for evident reasons: a ML-random
sequence bi is not on-line random if Xi = bi; it is on-line random if Xi = bi−1

but not random with oracle X1, X2,
Other observations (the proof is straightforward):

Theorem 8
(a) If the sequence Xi is computable (or if Xi is a computable function of

X1, b1, . . . , Xi−1, bi−1) then on-line randomness is equivalent to (standard) ML-
randomness with respect to induced measure where Xi are fixed.

(b) Changing finitely many terms among bi or Xi does not make a random
sequence non-random or vice versa, assuming that all conditional probabilities
are not zeros.

(c) The on-line random sequence remains on-line random if we replace Xi by
some Yi that is a computable function of b1, X1, . . . , bi−1, Xi.

7 Muchnik’s Paradox

In this section we consider the case of fair coin (all conditional probabilities are
equal to 1/2). Let b1, b2, . . . be a ML-random sequence. It is easy to see that
then the sequence b2, b4, b6, . . . is on-line ML-random if b1, b3, b5 . . . are used as
external information. Indeed, any lower semicomputable on-line supermartingale
can be transformed into a (lower semicomputable) off-line supermartingale that
makes no bets on b1, b3, b5 etc. For the same reason the sequence b1, b3, b5, . . . is
on-line random inside the sequence Λ, b1, b2, b3, . . . (bits b2, b4, . . . are treated as
external information).

One may naturally expect that the reverse is also true: if both odd and even
bits are unpredictable (with all previous bits used as the external information),
then the entire sequence should be random. Indeed, our intuition says that if
the coin tossing is performed by two referees that alternate (each of them works
every second day), and both referees do their job perfectly, the resulting sequence
of bits should be also perfectly random.

This would make a nice on-line version of van Lambalgen theorem that says
that if a sequence b1, b3, b5, . . . is ML-random and at the same time b2, b4, b6, . . .
is ML-random with oracle b1, b3, b5, . . ., then the entire sequence b1, b2, b3, b4, . . .
is ML-random.

We may note also that if we replace semicomputable supermartingales by com-
putable supermartingales, the corresponding statement becomes true. Indeed,
assume that a computable supermartingale S is unbounded on some sequence.
We may assume without loss of generality that it is at least 1 on every sequence
(just by adding 1). At each vertex it splits the current capital in computable
proportions (since the ratio of two computable numbers separated from zero
is uniformly computable). So we can consider two computable supermartingales
S1 and S2; one does not make any bet on odd steps and follows the proportions
of S at the even steps, the other does the opposite. Then the capital of S is the

On-Line Probability, Complexity and Randomness 149

product of S1 and S2, so if S is unbounded on some sequence, then at least one
of S1 and S2 is unbounded on it.

However, all these arguments do not make the desired statement true, as
An. Muchnik [4] has shown. He showed that there is a sequence which is not ML-
random but still both odd and even terms are on-line random. This construction
is rather delicate and we do not explain it here.

8 Selection Rules and On-Line Randomness

The classical definition of randomness (for the case of independent fair coin
tossing) suggested by R. von Mises is based on selection rules: each subsequence
that is selected by an “admissible selection rule” should have limit frequency 1/2.
It can also be naturally transferred into the on-line framework.

In Mises – Church definition of randomness an admissible selection rule is a
total computable function that can be applied to any binary string and produces
one of two answers: S (“selected”) or O (“observed”). An application of this rule
to a sequence ω goes as follows: the value of selection rule on n-bit prefix of ω
determines if the next bit should be selected or just observed. Another version
that goes back to R.P. Daley considers partial functions as selection rules; if such
a function is undefined at some prefix of ω, then the selection process hangs and
the selected subsequence is finite.

Both definitions (with total and partial selection rules) can be easily extended
to the on-line framework. We just allow the selection rule to use the external
information that is available at the moment (i.e., all previous values of Xi). It
is easy to see that we get a weaker notion of randomness (compared to on-line
Martin-Löf randomness with respect to the uniform Bernoulli on-line measure,
i.e., the measure where all conditional probabilities are equal to 1/2). Moreover,
the following is true:

Theorem 9. Assume that bits bi are on-line ML-random (with respect to the uni-
form Bernoulli on-line measure) in a sequence X1, b1, X2, b2, . . . and a (partial)
selection rule S is given that is defined on all prefixes of this sequence and selects
infinitely many bits bi1 , bi2 , . . . for increasing sequence of indices i1 < i2 <
Then the selected bits are on-line ML-random in a sequence Y1, bi1 , Y2, bi2 , . . .
where Yk is the prefix of the original sequence (both Xi and bi) that precedes bik

.
(This implies, as we have said, that bik

are ML-random and therefore satisfy the
strong law of large numbers.)

Proof. Indeed, a semicomputable on-line supermartingale U that plays with bik

using information that precedes them can be transformed into a supermartingale
that deals with the original sequence. While selection rule is not yet defined,
the supermartingale does not bet anything; if selection rule says “observe”, the
supermartingale keeps the same capital not making any bets; if the selection rule
says “select”, the supermartingale follows U . �	

150 A. Chernov et al.

9 Randomness with Respect to Classes of Measures

On-line randomness is connected with the notion of randomness with respect to
effectively closed classes of measures; this notion was introduced by Levin [2]
(see [1] for the detailed exposition).

Consider some class S of measures (probability distributions) on the Cantor
space Ω of infinite sequences of zeros and ones. A set Z ⊂ Ω is called a S-null set
if P (Z) = 0 for every P ∈ S. The effective version of this definition: Z ⊂ Ω is an
effectively S-null set if there is an algorithm that given rational ε > 0 produces
a sequence of intervals I1, I2, . . . ⊂ Ω that covers Z such that P (I1∪I2∪ . . .) ≤ ε
for every P ∈ S.

Levin noted that for an effectively closed class S the union of all effectively
S-null set is an effectively S-null set. (An effectively closed class S is defined in
a natural way: we consider a topology on the set of all measures where basic
open set are the sets Ux,p,q = {P |P (Ωx) ∈ (p, q)} for all binary strings x and
all intervals (p, q) with rational endpoints, as well as their finite intersections. A
class S is effectively closed if its complement is a union of a computable sequence
of basic open sets.) Then we say that a sequence ω is random with respect to S
if it does not belong to largest effectively S-null set.

Now we can relate the definition of the on-line randomness to Levin’s de-
finition. Consider the class S of measures P that are consistent with the
given online distribution, i.e., have conditional probabilities 1/2 at odd layers:
P (b1b2 . . . b2n+10) = P (b1b2 . . . b2n+11) for every bit string b1 . . . b2n+1 of odd
length. It is easy to see that randomness with respect to S is equivalent to the
on-line randomness. (The strings Xi in the definition of the on-line randomness
are replaced by bits for simplicity, but this is not essential.)

10 On-Line and Prequential Randomness

The classical definition of ML-randomness with respect to a computable measure
P does not really use the ordering of the bits in the sequence: if we perform a
computable permutation of a sequence and change the measure accordingly, then
the sequence remains random. However, for the case when the bits are generated
sequentially, the standard Martin-Löf definition does not look natural. Indeed,
according to the definition, we need to know the measure of any interval in
the Cantor space, including the intervals that can not contain the sequence
in question. If our sequence starts with, say, 01001, it seems that the value
P (Γ100), where Γz is a set of all continuations of a finite string z, should be
totally irrelevant. The only thing that seems to be relevant in this sequential
setting (when a sequence ω is generated bit by bit from left to right) is the
values of conditional probabilities of 0 and 1 after ω1ω2 . . . ωn−1, i.e., the ratios
P (Γx0)/P (Γx) and P (Γx1)/P (Γx) for all x that are prefixes of ω.

This intuition is supported by the following observation: let P and P ′ be two
computable measures that have the same conditional probabilities along some
sequence ω (as defined above). If ω is ML-random with respect to P , then it

On-Line Probability, Complexity and Randomness 151

is ML-random with respect to P ′. (This is an immediate corollary of Levin –
Schnorr randomness criterion.)

So we come to a natural question: can we give a natural definition of random-
ness in such a way that only conditional probabilities along ω are used in the
definition?

Imagine an adjustable random bit generator, i.e., a device for generating ran-
dom bits with prescribed probabilities. Such a device gets some real number
p ∈ [0, 1] as an input and generates a bit b ∈ {0, 1} claiming that this bit is a
result of a “fresh” random experiment (independent of all the past information)
with probability of success p. Then we can send the next probability value to
the device, it generates the next random bit, and so on.

Assume that we observe the behavior of the device and have its work recorded.
The record (protocol) is a sequence p1, b1, p2, b2, . . . where pi ∈ [0, 1] and bi ∈
{0, 1}. Can we say whether this random bit generator works properly or not
looking at this protocol? Our intuition says that there are at least some cases
when we don’t trust such a generator. For example, if all pi are greater than
1/2 but vast majority of bi are zeros, it is clear that something is wrong with
the device. Similarly, if all pi are, say, between 1/3 and 2/3 while b1b2b3 . . . =
010101 . . . (alternating zeros and ones), again we would not trust the generator.

Let us restrict ourselves to the case when all pi are rational numbers in
(0, 1). Then we can define the randomness of the sequence p1, b1, p2, b2, . . . in
the following way. Consider an on-line probability distribution on sequences
X1, b1, X2, b2, . . . where strings Xi are identified with rational numbers pi in
(0, 1) using some computable one-to-one correspondence, and the conditional
probability Pr[bi = 1|X1, b1, . . . , Xi] equals pi (where pi is the rational number
that corresponds to Xi). This on-line probability reflects our intuition: the prob-
abilities pi (strings Xi) are chosen in an arbitrary way, and the following bit bi

should follow the declared distribution.

Theorem 10. Let p be a computable function on binary strings with positive
rational values that determines a measure, i.e., p(b1 . . . bn) = p(b1 . . . bn0) +
p(b1 . . . bn1). Then a sequence b1b2 . . . is Martin-Löf random with respect to this
measure if and only if the bits bi are on-line random in a sequence p1, b1, p2, b2, . . .
where pi is a conditional probability of bi = 1 after the prefix b1 . . . bi−1, i.e., the
ratio p(b1 . . . bi−11)/p(b1 . . . bi−1).

Proof. This is a direct consequence of the supermartingale criterion. Assume
that the sequence b1b2 . . . is not random with respect to measure p. Then there
exists a lower semicomputable supermartingale with respect to p that is un-
bounded on the prefixes of this sequence. This supermartingale can be extended
to an on-line lower semicomputable supermartingale: we let it to be zero on finite
sequence p1, b1, . . . , pi, bi where one of pj differs from conditional probability of
1 after b1 . . . bj−1 according to p. Therefore the sequence p1, b1, p2, b2, . . . is not
on-line random.

On the other hand, if the sequence p1, b1, . . . is not on-line random, there
exists a lower semicomputable on-line supermartingale that is unbounded on this

152 A. Chernov et al.

sequence. The restriction of this supermartingale on the subtree that contains
only the vertices compatible with p, is a lower semicomputable on the binary tree
with respect to measure p. This martingale is unbounded on b1b2 . . ., therefore
this sequence is not Martin-Löf random with respect to measure p. �	
Remarks

1. We restrict our attention to the simplest case where the measure has ra-
tional values and is computable as a rational-valued function. More general de-
finition is analyzed in [8].

2. Note that probabilities pi play a double role in this definition. First, they
determine the coefficients in the definition of on-line supermartingale; this is
their “primary” role. However, they are also source of information that can be
used in the computation of this supermartingale. This was not important, since
if p is a computable rational-valued measure, then the conditional probabilities
can be computed from other available information.

In fact, our randomness intuition is quite contradictory here. Imagine that, for
example, pi are rational numbers that converge very fast to 1/2, e.g., pi =
1/2 + ci/22i

, where ci is equal either to 0 or to 1. Since the convergence is very
fast, we would naturally expect that randomness would be the same as for the
uniform Bernoulli measure (independently of ci). On the other hand, if we watch
the random number generator of the type described and observe that generated
bit bi is always equal to ci, this compromises the fairness of the generator. Our
definition follows the second direction: bi that is equal to ci is not random.

Acknowledgements

We thank the participants of the Kolmogorov seminar (Moscow), Workshop
on effective randomness (Chicago University, 2007) and Workshop on game-
theoretic probability and related topics (Tokyo University, 2008), where some of
these results were presented.

This work was partly supported by EPSRC grant EP/F002998/1, Sycomore
ANR grant and RFBR grants 05-01-02803-CNRS-a, 06-01-00122-a. Alexey Cher-
nov is grateful for support to J. Schmidhuber and IDSIA (Lugano, Switzerland)
where part of the work was done under J. Schmidhuber’s SNF grant 200021-
113364.

References

[1] Gács, P.: Lecture notes on descriptional complexity and randomness,
http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf

[2] Levin, L.A.: Uniform tests of randomness. Soviet Math. Dokl. 17(2), 337–340 (1976)
[3] Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-

tions, 2nd edn. Springer, New York (1997)
[4] Muchnik, An. A., Chernov, A., Shen, A.: Algorithmic randomness and splitting of

supermartingales, arxiv.org:0807.3156

http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf

On-Line Probability, Complexity and Randomness 153

[5] Shen, A.: Algorithmic information theory and Kolmogorov complexity, Technical
Report 2000-034. Uppsala Universitet publication,
http://www.it.uu.se/research/publications/reports/2000-034

[6] Uspensky, V.A., Semenov, A.L., Shen, A.: Can an individual sequence of zeros and
ones be random? Russian Mathematics Surveys 45, 121–189 (1990)

[7] Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game. Wiley, New York
(2001)

[8] Vovk, V., Shen, A.: Prequential randomness. In: Freund, Y., Györfi, L., Turán, G.,
Zeugmann, T. (eds.) ALT 2008. LNCS(LNAI), vol. 5254, pp. 154–168. Springer,
Heidelberg (2008)

http://www.it.uu.se/research/publications/reports/2000-034

Prequential Randomness

Vladimir Vovk1 and Alexander Shen2

1 Department of Computer Science, Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

vovk@cs.rhul.ac.uk
2 Laboratoire d’Informatique Fondamentale, Centre de Mathématiques et

Informatique, 39 rue Joliot-Curie, F-13453 Marseille Cedex 13, France
alexander.shen@lif.univ-mrs.fr

Abstract. This paper studies Dawid’s prequential framework from the
point of view of the algorithmic theory of randomness. The main result
is that two natural notions of randomness coincide. One notion is the
prequential version of the measure-theoretic definition due to Martin-Löf,
and the other is the prequential version of the game-theoretic definition
due to Schnorr and Levin. This is another manifestation of the close
relation between the two main paradigms of randomness.

1 Introduction

We consider the following on-line learning protocol:

Probability forecasting of binary observations

FOR n = 1, 2, . . . :
Learner announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

END FOR.

Intuitively, pn is Learner’s subjective probability that yn = 1 after having ob-
served y1, . . . , yn−1 and taking account of all other relevant information available
at the time of issuing the forecast. We will refer to pn as forecasts and to yn as
outcomes.

When can we say that Learner is doing a good job of forecasting? Or as
we shall say, when is the sequence of outcomes (y1, y2, . . .) “random” w.r. to
the sequence of forecasts (p1, p2, . . .)? (We further abbreviate this by saying
that the sequence (p1, y1, p2, y2, . . .) containing both forecasts and outcomes is
random.) This paper demonstrates the equivalence of two superficially quite
different answers to this question.

Standard Theory
The simplest, and well-studied, situation is where the forecasts are produced
as conditional probabilities from a computable probability distribution P on

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 154–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Prequential Randomness 155

{0, 1}∞: pn is the conditional probability according to P that yn = 1 given
y1, . . . , yn−1. In this case it is natural to talk about the randomness of (y1, y2, . . .)
w.r. to P rather than w.r. to (p1, p2, . . .). The two fundamental paradigms of ran-
domness are measure-theoretic and game-theoretic. The first paradigm is usu-
ally referred to as typicality, and various flavours and modifications of the second
paradigm are referred to as unpredictability, stochasticity, chaoticity, and incom-
pressibility (see below). This terminology, however, would be counterintuitive in
the general framework of this paper. (To some degree this is also true about the
standard term “random”, but the reader is perhaps already accustomed to the
technical meaning of this term being different from its everyday meaning.)

The game-theoretic notion of randomness is based, as can be guessed, on
the idea of gaming: a sequence of outcomes is regarded random if there is no
computable way to become infinitely rich betting on its elements. Similarly, the
measure-theoretic notion is based on the idea of measure: a sequence is regarded
random if there is no computable way to specify a set of measure zero containing
this sequence. The standard game-theoretic definition of randomness is due to
Schnorr [18] and Levin ([12], Theorem 3), and the standard measure-theoretic
definition of randomness is due to Martin-Löf [14]. Schnorr and Levin [18, 12]
also established equivalence between the two definitions.

The measure-theoretic definition of randomness w.r. to a non-computable
probability distribution P was first given by Levin [12] and later developed,
modified, and applied in, e.g., [13, 8, 21, 9].

Remark 1. The terms “typicality”, “chaoticity”, and “stochasticity” were used
in [11]; “stochasticity” was introduced in Kolmogorov’s earlier papers, and “typ-
icality” and “chaoticity” were introduced in [11] itself. Modern literature often
talks about “unpredictability” and “incompressibility” (see, e.g., [1], Chapter 1).
As we said, typicality is synonymous with what we call measure-theoretic ran-
domness, and the other four terms are various versions of game-theoretic ran-
domness. Unpredictability is synonymous with our game-theoretic randomness.
Stochasticity is the game-theoretic notion of randomness based on von Mises’s
idea of subsequence selection rules, which Ville [20] showed to be inadequate in
some important respects. The synonyms “chaoticity” and “incompressibility” re-
quire that the algorithmic complexity of initial fragments of the sequence should
be close to their trivial upper bound. If the complexity is defined as the mi-
nus logarithm of the a priori semimeasure, this is the same as unpredictability.
However, other notions of complexity (such as plain, prefix, and monotonic) have
also been considered, and in this case chaoticity/incompressibility is sometimes
regarded as a third, information-theoretic, paradigm, based on coding; but in
any case, this third paradigm is very close to the game-theoretic one, as the con-
nections between coding and gambling are straightforward and well understood
(see, e.g., [10]). Levin’s [12] (Theorem 3) representation of game-theoretic ran-
domness is in terms of complexity (the chaoticity/incompressibility approach)
and Schnorr’s [18] is in terms of martingales (the unpredictability approach).

156 V. Vovk and A. Shen

Prequential Framework for Randomness
The standard definitions of randomness mentioned in the previous subsection
depend on knowing Learner’s probability model P . Our forecasting protocol,
however, only involves the realized forecasts pn, which are not assumed to be
calculated from any P . This feature of the protocol greatly extends its area
of application, allowing forecasts produced “on the fly”. Dawid’s prequential
principle ([3]; it is called “M2” in [4] and “weak prequential principle” in [5, 6])
says that our evaluation of the quality of the forecasts p1, p2, . . . in light of the
observed outcomes y1, y2, . . . should not depend on Learner’s model P even if it
exists and is known.

The first definition of randomness fully respecting the prequential princi-
ple was proposed by Dawid [4]. Dawid’s definition, however, was based on von
Mises’s idea of subsequence selection rules. Dawid ([4], Section 13.2) also gave
a brief description of a prequential definition based on Ville’s martingales, but
did not elaborate on it. Chernov et al. [2] give the details of the martingale de-
finition in the case where the forecasts are only allowed to take values from a
finite set. This paper provides the details of the general martingale definition,
which belongs to the game-theoretic paradigm. It also gives a Bayesian defin-
ition of measure-theoretic randomness. Its main mathematical result says that
the notions of measure-theoretic randomness (called measure-randomness for
brevity) and of game-theoretic randomness (called game-randomness) coincide
in the prequential framework.

Some Notation and Definitions
The set of all natural (i.e., positive integer) numbers is denoted N, N :=
{1, 2, . . .}; N0 is N extended by adding ∞ and 0. As always, Q and R are the
sets of all rational and real numbers, respectively.

Let Ω := {0, 1}∞ be the set of all infinite binary sequences and Ω� := {0, 1}∗
be the set of all finite binary sequences. Set Π := ([0, 1] × {0, 1})∞ and Π� :=
([0, 1] × {0, 1})∗. The empty element (sequence of length zero) of both Ω� and
Π� will be denoted �. In our applications, the elements of Ω and Ω� will be
sequences of outcomes (infinite or finite), and the elements of Π and Π� will be
sequences of forecasts and outcomes (infinite or finite). The set Π will sometimes
be referred to as the prequential space.

For x ∈ Ω�, let Γx ⊆ Ω be the set of all infinite continuations of x. Similarly,
for x ∈ Π�, Γx ⊆ Π is the set of all infinite continuations of x. For each ω =
(y1, y2, . . .) ∈ Ω and n ∈ N, set ωn := (y1, . . . , yn). Similarly, for each π =
(p1, y1, p2, y2, . . .) ∈ Π and n ∈ N, set πn := (p1, y1, . . . , pn, yn).

For understanding the intuitive meaning of our statements, the following in-
tuitive idea of lower semicontinuity will suffice: a function f : X → R ∪ {∞} is
lower semicomputable if there is an algorithm that, for all x ∈ X and r ∈ R,
will eventually tell us that f(x) > r if this inequality is indeed true. (Lower
semicomputable functions are not necessarily computable as the algorithm can
work arbitrarily long.) Understanding the proofs requires precise definitions, as
given in, e.g., Appendix A.

Prequential Randomness 157

2 Game-Randomness

A farthingale is a function V : Π� → [−∞,∞] satisfying

V (p1, y1, . . . , pn−1, yn−1)
= (1 − pn)V (p1, y1, . . . , pn−1, yn−1, pn, 0)

+ pnV (p1, y1, . . . , pn−1, yn−1, pn, 1) (1)

for all n and all (p1, y1, p2, y2, . . .) ∈ Π ; the product 0∞ is defined to be 0. If we
replace “=” by “≥” in (1), we get the definition of superfarthingales. These are
prequential versions of the standard notions of martingale and supermartingale,
and in our terminology we follow [6]. We will be interested mainly in non-negative
farthingales and superfarthingales.

The value of a farthingale can be interpreted as the capital of a gambler betting
according to the odds announced by Learner. In the case of superfarthingales,
the gambler is allowed to throw away part of his capital.

Lemma 1. Let V be the class of all non-negative lower semicomputable super-
farthingales V with initial value V (�) = 1. There exists a largest superfarthingale
in V to within a constant factor. In other words, there exists a superfarthingale
V ∈ V such that, for any other superfarthingale V ′, there exists a constant C > 0
such that, for any x ∈ Π�, V (x) ≥ V ′(x)/C.

Proof. Fix a universal computable sequence of lower semicomputable functions
f1, f2, . . . on Π� (see Lemma 6 in Appendix A). It is easy to construct a new
computable sequence of lower semicomputable functions f ′

1, f
′
2, . . . such that each

of f ′
l is a superfarthingale in V and that f ′

l = fl whenever fl is already in V , l ∈ N.
Then

∑∞
l=1 2−lf ′

l will be a largest, to within a constant factor, superfarthingale
in V . �	

Let us fix a largest, to within a constant factor, superfarthingale U in V and call
it the universal superfarthingale. A sequence π ∈ Π is game-random if U(πn)
stays bounded as n → ∞. The following lemma gives an equivalent definition of
game-random sequences.

Lemma 2. A sequence π ∈ Π is game-random if and only if U(πn) does not
tend to infinity as n → ∞.

Proof. Following the proof of Lemma 3.1 in [19], we can construct a superfar-
thingale V ∈ V such that lim infn→∞ V (πn) = ∞ whenever supn U(πn) = ∞.
(Therefore, lim infn→∞ U(πn) = ∞ whenever supn U(πn) = ∞.) Indeed, for
each m ∈ N, the function Um : Π� → [0,∞) defined by

Um(x) :=

{
2m if U(y) > 2m for some prefix y of x

U(x) otherwise

158 V. Vovk and A. Shen

is a superfarthingale; it is clear that it is lower semicomputable and so belongs to
V . Since U1, U2, . . . is a computable sequence of lower semicontinuous functions,
we can set

V :=
∞∑

m=1

2−mUm. �	

3 Measure-Randomness

We can also adapt the standard measure-theoretic definition of randomness to
the prequential framework. First we give an informal version of the definition.

A forecasting system is a function φ : Ω� → [0, 1]. Let Φ be the set of all
forecasting systems. For each φ ∈ Φ there exists a unique probability measure
Pφ on Ω such that, for each x ∈ Ω�, Pφ(Γx1) = φ(x) Pφ(Γx). (In other words,
such that φ(x) is a version of the conditional probability, according to Pφ, that
x will be followed by 1.) The notion of a forecasting system is close to that of a
probability measure on Ω: the correspondence φ �→ Pφ becomes an isomorphism
if we only consider forecasting systems taking values in the open interval (0, 1)
and probability measures taking positive values on the sets Γx, x ∈ Ω�.

Informally, we say that a sequence ω ∈ Ω is measure-random w.r. to a fore-
casting system φ if it is random in the sense of Martin-Löf [14] w.r. to Pφ when
φ is given as an oracle. We will formalize “given as an oracle” using some sim-
plest notions of effective topology (see Appendix A). The following definition is
a version of Levin’s “uniform test of randomness” [12, 13, 9].

Definition 1. A uniform test of randomness is a lower semicomputable function
T : Ω × Φ → N0 such that, for all φ ∈ Φ and all m ∈ N,

Pφ{ω ∈ Ω | T (ω, φ) ≥ m} ≤ 2−m. (2)

Intuitively, T (ω, φ) is the amount of irregularities (measured in bits, according
to (2)) discovered in ω w.r. to φ. The requirement of lower semicomputability
means that the irregularities have to be genuine: a discovery of irregularity can
never be undone. We will usually drop the adjective “uniform”.

Lemma 3. There exists a largest, to within an additive constant, test of ran-
domness. In other words, there exists a test of randomness T such that, for
any other test of randomness T ′, there exists a constant C such that, for any
(ω, φ) ∈ Ω × Φ,

T (ω, φ) ≥ T ′(ω, φ) − C.

Proof. The proof is similar to the standard one given by Martin-Löf [14]; it will,
however, crucially depend on the compactness of Φ, as in [12, 9]. For each set
G ⊆ Ω × Φ and each φ ∈ Φ we will use the notation

G[φ] := {ω ∈ Ω | (ω, φ) ∈ G}

Prequential Randomness 159

for the φ-cut of G. A convenient alternative representation of a test of random-
ness T is as a computable sequence of nested open sets G1 ⊇ G2 ⊇ · · · in Ω×Φ
such that

Pφ(Gm[φ]) ≤ 2−m (3)

for all φ ∈ Φ and m ∈ N. It is easy to see that the representations are indeed
equivalent: when given T we can set Gm := {(ω, φ) | T (ω, φ) ≥ m}, and when
given G1, G2, . . . we can set T (ω, φ) := max{m | (ω, φ) ∈ Gm}. Such sequences
G1, G2, . . . will also be referred to as tests of randomness.

Let Gl,m be a universal computable family of sequences of open sets (cf.
Lemma 5 in Appendix A). Put G′

l,m := ∩m
i=1Gl,i, so that G′

l,m is a computable
family of nested sequences of open sets containing all nested computable se-
quences of open sets. We can further “trim” each G′

l,m to G′′
l,m so that:

– Pφ(G′′
l,m[φ]) ≤ 2−m for all φ ∈ Φ;

– G′′
l,m = G′

l,m whenever Pφ(G′
l,m[φ]) < 2−m for all φ ∈ Φ.

Indeed, let G′
l,m = ∪{Uk | (l,m, k) ∈ A} be the representation of G′

l,m as the
union of basic sets. Set HK := ∪{Uk | (l,m, k) ∈ A, k ≤ K}, so that H1, H2, . . .
is a non-decreasing sequence of simple sets whose union is G′

l,m. Remember that,
by (11), HK ⊆ G′

l,m. We may “quarantine” new HK until they are “cleared”,
i.e.,

∀φ ∈ Φ : Pφ(HK [φ]) < 2−m (4)

is established. The open set G′′
l,m is defined as the union of the HK that are

cleared.
Let us check that condition (4) can indeed be eventually established by a

computable procedure when it is satisfied. Suppose (4) is satisfied. The set

S :=
{
φ ∈ Φ | Pφ(HK [φ]) < 2−m

}
is effectively open, so that we can effectively generate a sequence of basic sets
U ′

k ⊆ Φ whose union is S. By the compactness of Φ, already a finite number
of U ′

k will cover S when S = Φ, and so (4) can be established in a computable
manner.

Therefore, we can list all tests of randomness, in the following sense: there
is a computable sequence (G′′

l,m)∞m=1, l = 1, 2, . . ., of tests of randomness that
contains all “strict” tests of randomness (i.e., those satisfying the required in-
equality with “<” instead of “≤”; any test of randomness Gm can be made strict
by redefining Gm := Gm+1, m = 1, 2, . . .). To obtain a largest test of randomness
Gm, it suffices to set

Gm := ∪∞
l=1G

′′
l,m+l.

Indeed, the computability of the sequence of open sets Gm is obvious,

Pφ(Gm[φ]) ≤
∞∑
l=1

Pφ(G′′
l,m+l[φ]) ≤

∞∑
l=1

2−m−l = 2−m, ∀φ ∈ Φ, ∀m ∈ N,

and, for each l ∈ N,

160 V. Vovk and A. Shen

T (ω, φ) = max{m | (ω, φ) ∈ Gm} ≥ max{m | (ω, φ) ∈ G′′
l,m+l} = Tl(ω, φ) − l,

where T is the functional representation of the test (Gm)∞m=1 and Tl is the
functional representation of the test (G′′

l,m)∞m=1. �	

Let us fix a largest, to within an additive constant, test of randomness T and
call it the universal test of randomness. A sequence ω ∈ Ω is said to be measure-
random w.r. to φ ∈ Φ if T (ω, φ) < ∞.

Definition 2. We say that π = (p1, y1, p2, y2, . . .) ∈ Π is measure-random if
there exists a forecasting system φ such that (y1, y2, . . .) is measure-random w.r.
to φ and φ agrees with π, in the sense that pn = φ(y1, . . . , yn−1) for all n ∈ N.

4 Main Result

Theorem 1. A sequence π ∈ Π is game-random if and only if it is measure-
random.

This theorem will be proved in the next section. The proof will be based on
Levin’s [12] ideas (see also [9]). A related result is Theorem 7 in [2], which is
technically much simpler but uses a less natural definition.

The philosophical significance of Theorem 1 is that it establishes the equiv-
alence of the purely prequential and Bayesian viewpoints in the framework of
the algorithmic theory of randomness. The definition of measure-randomness is
Bayesian, in that Learner is modelled as a coherent decision maker, computing
his forecasts by conditioning a probability measure; rejecting the forecasts is the
same as rejecting all probability measures that could have produced those fore-
casts. The definition of game-randomness is purely prequential, in that it does
not see any probability measures behind the forecasts; the latter are used for
testing directly.

A simple corollary of Theorem 1 is the following observation:

Corollary 1. Let φ be a computable forecasting system such that φ(x) > 0 for
all x ∈ Ω�. A binary sequence (y1, y2, . . .) is random w.r. to Pφ in the sense of
Martin-Löf if and only if the sequence (p1, y1, p2, y2, . . .) is game-random (equiv-
alently, measure-random), where pn := φ(y1, . . . , yn−1), n ∈ N.

Therefore, the prequential notions of game-randomness and measure-randomness
generalize Martin-Löf’s notion of randomness. Corollary 1 generalizes Theo-
rem 10 in [2].

Remark 2. Notice that we have never assumed that the past observations
y1, . . . , yn−1 are the only information available to Learner when choosing the
forecast pn for the next outcome yn. Learner is allowed to (and typically does)
use all kinds of “side information” in addition to the past observations. It is
easy to extend all our definitions and results to the case where some of this side

Prequential Randomness 161

information, xn, is also known to the gambler. (As in [4], Section 9, and [2].) As
an example, the definition of a superfarthingale, (1), becomes

V (x1, p1, y1, . . . , xn−1, pn−1, yn−1)
= (1 − pn)V (x1, p1, y1, . . . , xn−1, pn−1, yn−1, xn, pn, 0)

+ pnV (x1, p1, y1, . . . , xn−1, pn−1, yn−1, xn, pn, 1).

Remark 3. Since we do not record side information in the main part of this
paper, the forecasting systems that we consider are never assumed computable:
even if Learner computes each forecast from the past outcomes and the side infor-
mation, typically the forecast cannot be computed from the past outcomes alone.
It is not even obvious that the notion of a forecasting system φ as we defined it (a
function of past outcomes) is meaningful. It involves the following controversial
picture along the lines of Pearl’s ([17], Section 6.2) “local surgeries”. To elicit
the value of the function φ on a binary sequence y1, . . . , yn, we act as follows.
First we wait until Reality produces the first piece of side information x1 and,
in response, Learner produces p1. Then we perform a “local surgery” replacing
Reality’s outcome by y1 (if it is different from y1). Now Reality produces x2 and
Learner produces p2. Another local surgery replaces the outcome by y2. Etc.
Finally, Learner produces pn, which is taken to be the value of φ on y1, . . . , yn.
According to Theorem 1, this philosophically questionable approach (see, e.g.,
Section 4 of Pearl’s response in [16]) leads to the same notion of randomness as
the philosophically immaculate approach of Section 2.

Remark 4. It is easy to see that Theorem 1 fails if in the definition of measure-
typicalness we require that φ should range over computable forecasting systems.
Indeed, take any non-computable sequence (y1, y2, . . .) ∈ Ω and consider π :=
(y1, y1, y2, y2, . . .) as an element of Π . It is clear that π is game-random (no
farthingale can grow on it) but no computable forecasting system agrees with π.

5 Proof of Theorem 1 and Corollary 1

The proof of the theorem will depend on a fundamental result called Ville’s
inequality. Let φ be a forecasting system. A martingale w.r. to φ is a function
V : Ω� → [−∞,∞] satisfying

V (x) = (1 − φ(x))V (x, 0) + φ(x)V (x, 1) (5)

for all x ∈ Ω� (with the same convention 0∞ := 0). If we replace “=” by
“≥” (respectively, by “≤”) in (5), we get the definition of a supermartingale
(respectively, submartingale) w.r. to φ.

Proposition 1 (Ville’s inequality, [20], p. 100). If φ is a forecasting system,
V is a non-negative supermartingale w.r. to φ with initial value V (�) = 1, and
C > 0,

Pφ

{
ω ∈ Ω | sup

n
V (ωn) ≥ C

}
≤ 1

C
.

Fix π ∈ Π .

162 V. Vovk and A. Shen

Part “if” of Theorem 1
Suppose π is not game-random. Then π ∈ Gm for all m ∈ N, where

Gm :=
{
π ∈ Π | sup

n
U(πn) > 2m

}
and U is the universal superfarthingale.

We will not distinguish between (p1, y1, p2, y2, . . .) ∈ Π and the pair of se-
quences ((p1, p2, . . .), (y1, y2, . . .)) ∈ [0, 1]∞×Ω. For φ ∈ Φ and ω = (y1, y2, . . .) ∈
Ω we set

φ(ω) := (φ(�), φ(y1), φ(y1, y2), . . .) ∈ [0, 1]∞.

The mapping (ω, φ) �→ φ(ω) from Ω ×Φ to [0, 1]∞ is continuous. Therefore, the
mapping (ω, φ) �→ (φ(ω), ω) from Ω × Φ to Π is also continuous. Therefore, the
set

G′
m := {(ω, φ) | (φ(ω), ω) ∈ Gm}

is open.
Let us check that G′

m is a test of randomness. The computability requirement
follows from Lemma 7 (which is uniform in C) in Appendix A. Fix m ∈ N and
φ ∈ Φ. To check (3), i.e., Pφ(G′

m[φ]) ≤ 2−m in the current notation, notice that
the function Uφ : Ω� → [0,∞] defined by

Uφ(y1, . . . , yn) := U(φ(�), y1, φ(y1), y2, . . . , φ(y1, . . . , yn−1), yn)

is a non-negative supermartingale w.r. to φ. Now Ville’s inequality implies

Pφ(G′
m[φ]) = Pφ {ω ∈ Ω | (ω, φ) ∈ G′

m} = Pφ {ω ∈ Ω | (φ(ω), ω) ∈ Gm}

= Pφ

{
ω ∈ Ω | sup

n
Uφ(ωn) > 2m

}
≤ 2−m, ∀φ ∈ Φ.

Suppose π, assumed to be not game-random, is measure-random. Then there
exists φ ∈ Φ such that π = (φ(ω), ω) for some ω measure-random w.r. to φ.
Since π ∈ Gm, we have (ω, φ) ∈ G′

m; since this is true for each m ∈ N, ω is not
measure-random w.r. to φ, and so we have arrived at a contradiction.

Part “only if” of Theorem 1
Let Gm = ∪{Uk | (m, k) ∈ A} be a representation of the universal test of
randomness via basic sets, with A ⊆ N2 a recursively enumerable set. Without
loss of generality we can assume that each basic set Uk in this representation
has the form Γc ×

{
φ ∈ Φ | a(x) < φ(x) < b(x), ∀x ∈ Ω≤n

}
for some c ∈ Ωn,

a, b : Ω≤n → Q, and n ∈ N. Define G′
m to be the set of all (p1, y1, p2, y2, . . .) ∈ Π

such that ((y1, y2, . . .), φ) ∈ Gm for all φ that agree with (p1, y1, p2, y2, . . .).
The compactness of Φ easily implies that each set G′

m ⊆ Π is open. Indeed,
suppose π = (p1, y1, p2, y2, . . .) ∈ G′

m. For each φ ∈ Φ, either φ disagrees with
π or ((y1, y2, . . .), φ) ∈ Gm. In both cases there is a neighbourhood O′

φ of π
and a neighbourhood O′′

φ of φ such that either all elements of O′′
φ disagree with

Prequential Randomness 163

all elements of O′
φ or ((y′1, y

′
2, . . .), φ

′) ∈ Gm for all (p′1, y
′
1, p

′
2, y

′
2, . . .) ∈ O′

φ

and all φ′ ∈ O′′
φ. Since Φ is compact, there is a finite set φ1, . . . , φJ such that

∪J
j=1O

′′
φj

= Φ. We can see that the neighbourhood ∩J
j=1O

′
φj

of π is a subset
of G′

m.
The same argument shows that the G′

m form a computable sequence of open
sets. Let us show that there exists a non-negative superfarthingale Vm with initial
value 2−m or less that eventually exceeds 1 on each sequence in G′

m. (In this
sense G′

m form a prequential test of randomness.)
Let G′

m = ∪{Uk | (m, k) ∈ A} be a representation of G′
m via basic sets, where

A ⊆ N2 is a recursively enumerable set. Let A = ∪∞
i=1Ai be a representation of A

as the union of a computable nested sequence ∅ ⊂ A1 ⊆ A2 ⊆ · · · of finite sets.
Fix an m. For each i ∈ N, define a superfarthingale Wi as follows. Let N be so
large that, for all x ∈ ΠN and (m, k) ∈ Ai, either Γx ⊆ Uk or Γx ∩Uk = ∅. (For
example, we can set N to the largest nk in (10) over k such that (m, k) ∈ Ai.)
For n ≥ N and x ∈ Πn, set

Wi(x) :=

{
1 if Γx ⊆ Uk for some k with (m, k) ∈ Ai

0 otherwise.

After that proceed by backward induction. If Wi(x) is already defined for x ∈
Πn, n = N,N − 1, . . . , 1, set, for each x ∈ Πn−1,

Wi(x) := sup
p∈[0,1]

(
(1 − p)Wi(x, p, 0) + pWi(x, p, 1)

)
. (6)

It is clear that Wi is a superfarthingale that does not depend on the choice of
N .

We will need to establish several properties of Wi. First, it is lower semicon-
tinuous. Indeed, there is an N (e.g., the largest nk in (10) over (m, k) ∈ Ai)
such that Wi(x) is lower semicontinuous when x is restricted to Πn with n ≥ N .
(It will be even lower semicomputable when x is restricted to Π≥N .) And the
operation sup preserves lower semicontinuity:

Lemma 4. If a function f : X × Y → R defined on the product of topological
spaces X and Y is lower semicontinuous, then the function x ∈ X �→ g(x) :=
supy∈Y f(x, y) is also lower semicontinuous.

Proof. It suffices to notice that, for each c ∈ R, {x | g(x) > c} = {x | ∃y :
f(x, y) > c}, and projections of open sets are open. �	

The lower semicontinuity of Wi implies its lower semicomputability: indeed, we
can restrict p to Q ∩ [0, 1] in (6).

Let us check that Wi(�) ≤ 2−m. Suppose that, on the contrary, Wi(�) > 2−m.
Construct a forecasting system φ as follows. (The words such as “construct” and
“choose” are not intended to imply computability: there are no computability
restrictions in this paragraph.) For each x ∈ Ωn, n = 0, 1, . . . , N − 1, choose
φ(x) such that

164 V. Vovk and A. Shen

(1 − φ(x))Wi(x, φ(x), 0) + φ(x)Wi(x, φ(x), 1)

≥ sup
p∈[0,1]

(
(1 − p)Wi(x, p, 0) + pWi(x, p, 1)

)
− ε/N = Wi(x) − ε/N,

where ε > 0 satisfies Wi(�) > 2−m+ε. For each x ∈ Ω≥N , define φ(x) arbitrarily,
say φ(x) := 0. Since (φ(ω), ω) /∈ G′

m for all ω /∈ Gm[φ], we have Wφ
i (ωN) = 0 for

all ω /∈ Gm[φ]. Combining the fact that{
ω | Wφ

i (ωN) = 1
}
⊆ Gm[φ]

with the fact that the function x ∈ Ω� �→ S(x) := Wφ
i (x) + εn/N , where n is

the length of x, is a submartingale w.r. to φ, we obtain

Pφ(Gm[φ]) ≥ Pφ

{
ω | Wφ

i (ωN) = 1
}

= Eφ Wφ
i (ωN) = Eφ(S(ωN) − ε)

≥ S(�) − ε = Wφ
i (�) − ε = Wi(�) − ε > 2−m, (7)

where Eφ stands for the expectation of a function of ω ∈ Ω w.r. to Pφ. The
inequality between the extreme terms of (7) fails by the definition of a test of
randomness.

Define Vm(x) := supi Wi(x), x ∈ Π�, to be the limit of the non-decreasing
sequence of superfarthingales Wi. It is clear that Vm is also a superfarthingale
and Vm(�) ≤ 2−m. Set V :=

∑∞
m=1 Vm; this is a lower semicomputable super-

farthingale with initial value V (�) ≤ 1 (so that V ∈ V if we redefine V (�) := 1).
Now it is easy to finish the proof of the theorem. Suppose that π is not

measure-random. Then π ∈ G′
m for all m ∈ N. Then V (πn) → ∞ as n → ∞,

and so π is not game-random.

Corollary 1
Fix a sequence ω = (y1, y2, . . .) ∈ Ω, and set π := (φ(ω), ω) ∈ Π . We will prove
the equivalence of the game-randomness of π and Schnorr and Levin’s reformu-
lation of Martin-Löf randomness of ω w.r. to Pφ. Remember that Schnorr and
Levin’s reformulation is that the universal lower semicomputable supermartin-
gale w.r. to φ is bounded on ωn, n → ∞; we will refer to this property as the
Schnorr–Levin randomness of ω w.r. to φ.

Suppose π is not game-random. Then U(πn) → ∞ as n → ∞, where U is
the universal superfarthingale. Then Uφ(ωn) → ∞, and since Uφ is a lower
semicomputable supermartingale w.r. to φ, ω is not Schnorr–Levin random.

Now suppose ω is not Schnorr–Levin random w.r. to φ. Let S be the universal
lower semicomputable supermartingale w.r. to φ. We can transform S into a
superfarthingale V by multiplying it by the likelihood ratio:

V (p1, y1, . . . , pn, yn) := S(y1, . . . , yn)
Pφ(Γ(y1,...,yn))∏n
i=1|pi + yi − 1|

(the expression |pi + yi−1| is just a convenient code for the probability assigned
by Learner outputting forecast pi to the outcome yi: it is pi if yi = 1, and it is
1 − pi if yi = 0). Since V (πn) = S(ωn) → ∞ as n → ∞, π is not game-random.

Prequential Randomness 165

Our argument depends on the superfarthingale V being lower semicom-
putable. The lower semicomputability of V is easy to check once we finish
its definition for the boundary cases. We set V (p1, y1, . . . , pn, yn) := 0 when
S(y1, . . . , yn) = 0 (although this case is in fact impossible since S is the universal
supermartingale), and we set V (p1, y1, . . . , pn, yn) := ∞ when S(y1, . . . , yn) > 0
but

∏n
i=1|pi + yi − 1| = 0. By our assumption, Pφ(Γ(y1,...,yn)) > 0. It is an open

problem to get rid of this assumption or show that it is essential. (If it turns
out to be essential, the next open problem is whether it can be relaxed to the
assumption that the set φ−1({0, 1}) ⊆ Ω� is computable.)

Acknowledgements

We are grateful to A. Philip Dawid and Glenn Shafer for illuminating discussions.
This work was partially supported by EPSRC (grant EP/F002998/1).

References

[1] Bienvenu, L.: Caractérisations de l’aléatoire par les jeux: impredictibilité et sto-
chasticité. PhD thesis, Université de Provence (2008)

[2] Chernov, A., Shen, A., Vereshchagin, N., Vovk, V.: On-line probability, complexity
and randomness. These Proceedings

[3] Dawid, A.P.: Statistical theory: the prequential approach. Journal of the Royal
Statistical Society A 147, 278–292 (1984)

[4] Dawid, A.P.: Calibration-based empirical probability (with discussion). Annals of
Statistics 13, 1251–1285 (1985)

[5] Dawid, A.P.: Prequential analysis. In: Kotz, S., Read, C.B., Banks, D.L. (eds.)
Encyclopedia of Statistical Sciences, vol. 1, pp. 464–470. Wiley, New York (1997)

[6] Dawid, A.P., Vovk, V.: Prequential probability: principles and properties.
Bernoulli 5, 125–162 (1999)

[7] Engelking, R.: General Topology, 2nd edn. Heldermann, Berlin (1989)
[8] Gács, P.: Exact expressions for some randomness tests. Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik 26, 385–394 (1980)
[9] Gács, P.: Uniform test of algorithmic randomness over a general space. Theoretical

Computer Science 341, 91–137 (2005)
[10] Kelly, J.L.: A new interpretation of information rate. Bell System Technical Jour-

nal 35, 917–926 (1956)
[11] Kolmogorov, A.N., Uspensky, V.A.: Algorithms and randomness. Theory of Prob-

ability and Its Applications 32, 389–412 (1987); Teori� vero�tnoste� i ee
primeneni� 32(3), 425–455 (1987) (Russian original)

[12] Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14,
1413–1416 (1973); Doklady AN SSSR 212(1), 548–550 (1973) (Russian original)

[13] Levin, L.A.: Uniform tests of randomness. Soviet Mathematics Doklady 17, 337–
340 (1976); Doklady AN SSSR 227(1), 33–35, (1976) (Russian original) Erra-
tum: 227(1), 33–35 (1976)

[14] Martin-Löf, P.: The definition of random sequences. Information and Control 9,
602–619 (1966)

[15] Martin-Löf, P.: Notes on Constructive Mathematics. Almqvist & Wiksell, Stock-
holm (1970)

166 V. Vovk and A. Shen

[16] Pearl, J.: Causal diagrams for empirical research (with discussion). Biometrika 82,
669–710 (1995)

[17] Pearl, J.: Causation, action and counterfactuals. In: Gammerman, A. (ed.) Com-
putational Learning and Probabilistic Reasoning, ch. 6, pp. 103–124. Wiley, Chich-
ester (1996)

[18] Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Springer, Berlin (1971)
[19] Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game. Wiley, New

York (2001)
[20] Ville, J.: Etude critique de la notion de collectif. Gauthier-Villars, Paris (1939)
[21] Vovk, V., V’yugin, V.V.: On the empirical validity of the Bayesian method. Jour-

nal of Royal Statistical Society B 55, 253–266 (1993)

A Effective Topology

In this section we will give definitions of various notions connected with com-
putability in topological spaces, mainly following Martin-Löf [15] (see also [9],
Appendix C.2). The details of the definitions become important only in the
proofs. We will use the terminology of Engelking [7].

In this appendix and in some proofs in the main part of the paper we will
be using the following notation for n ∈ N: Ωn := {0, 1}n is the set of all finite
binary sequences of length n; Ω≤n is the set of all finite binary sequences of
length at most n; Πn := ([0, 1]× {0, 1})n; Π≥n := ∪∞

i=n([0, 1] × {0, 1})i.
An effective topological space is a second-countable topological space with

a fixed numbering (Uk)∞k=1 of its countable base. In other words, an effective
topological space is a triple (X,O, (Uk)∞k=1), where (X,O) is a topological space
and (Uk)∞k=1 is a numbering of its countable base. The family (Uk)∞k=1 is called
the effective base of the effective topological space, and its elements are called
basic sets. Finite unions of basic sets are called simple sets. We do not distinguish
between two effective topological spaces (X,O, (Uk)∞k=1) and (X ′,O′, (U ′

k)∞k=1)
if (X,O) = (X ′,O′) and there exists a computable bijection f : N → N such
that U ′

k = Uf(k) for all k.

Example 1 (N). The usual discrete topology on N has as its base the set of all
singletons {k}, k ∈ N. They can serve as the effective base, Uk := {k}.

Example 2 (R). The topology on R has as its base the set of all intervals (a, b),
a < b. To make R into an effective topological space, fix a computable enumer-
ation (ak, bk), k = 1, 2, . . ., of all intervals with rational end-points, and take
Uk := (ak, bk) as the effective base.

Example 3 (Ω). The topology on Ω := {0, 1}∞ is the usual product topology,
which makes Ω a compact topological space. To make it into an effective topo-
logical space, fix a computable bijection f : N → Ω� and take Uk := Γf(k) as the
effective base.

Example 4 (Φ). The basic sets in Φ (the set of all forecasting systems) have the
form {

φ ∈ Φ | a(x) < φ(x) < b(x), ∀x ∈ Ω≤n
}

(8)

Prequential Randomness 167

for some n ∈ N and a, b : Ω≤n → Q. Let (nk, ak, bk), k = 1, 2, . . ., be
a computable enumeration of all such triples (n, a, b). Set Uk to (8) with
(n, a, b) := (nk, ak, bk).

Example 5 (Π). The topology on the prequential space Π is the standard prod-
uct topology of [0, 1]× {0, 1} × [0, 1]× {0, 1} × · · · . The basic sets are{

(p1, y1, p2, y2, . . .) ∈ Π | a1 < p1 < b1, y1 = c1, . . . , an < pn < bn, yn = cn

}
(9)

where n ranges over N, ai, bi ∈ Q, and ci ∈ {0, 1}, i = 1, . . . , n. Let

(nk, a1,k, b1,k, c1,k, . . . , ank,k, bnk,k, cnk,k) (10)

be a computable enumeration of all such sequences (n, a1, b1, c1, . . . , an, bn, cn).
We can define Uk as (9) with (10) in place of (n, a1, b1, c1, . . . , an, bn, cn).

Let X ′ and X ′′ be two effective topological spaces with effective bases (U ′
k)∞k=1

and (U ′′
k)∞k=1, respectively. The Cartesian product of X ′ and X ′′ is the product

of the topological spaces X ′ and X ′′ equipped with the effective base (Uk)∞k=1,
where Uf(k′,k′′) := U ′

k′ × U ′′
k′′ and f : N2 → N is a fixed computable bijection.

We will be particularly interested in the product Ω×Φ; sometimes we will need
products of more than two spaces, such as Ω × Φ× R := (Ω × Φ) × R.

Let X be an effective topological space with effective base (Uk)∞k=1. As de-
scribed in the previous paragraph, we define the structure of an effective topolog-
ical space on the power set Xn, n ∈ N; let the effective base in Xn be (Un

k)∞k=1.
For n = 0, X0 is the trivial one-element effective topological space with all
Uk = X0, k ∈ N. The set X∗ of all finite sequences of elements of X is equipped
with the topology of the direct sum of Xn, n ≥ 0. An effective base in it can be
defined by Uf(n,k) := Un

k , where f : (N∪{0})×N → N is a computable bijection.
Let X be a fixed effective topological space with effective base (Uk)∞k=1. An

open set G ⊆ X is said to be effectively open if it can be represented in the form
∪{Uk | k ∈ A} for a recursively enumerable set A ⊆ N. In the main part of this
paper, for any effectively open set G we will only consider its representations
∪{Uk | k ∈ A} such that

Uk ⊆ G; (11)

this can be done without loss of generality for all specific effective topological
spaces that we will need. A computable sequence of open sets is a sequence of
open sets G1, G2, . . . such that there exists a recursively enumerable set A ⊆ N2

satisfying Gm = ∪{Uk | (m, k) ∈ A} for all m ∈ N. A computable family of
sequences of open sets is a family (Gl,m), l,m ∈ N, of sequences of open sets
such that there exists a recursively enumerable set A ⊆ N3 satisfying Gl,m =
∪{Uk | (l,m, k) ∈ A} for all l,m. The existence of a universal Turing machine
immediately implies

Lemma 5. There exists a computable family (Gl,m) of sequences of open sets
such that for any computable sequence G′

m of open sets there exists l ∈ N such
that G′

m = Gl,m for all m ∈ N.

168 V. Vovk and A. Shen

Any computable family of sequences of open sets satisfying the condition in
Lemma 5 will be called a universal computable family of sequences of open sets.

A function f : X → R∪{∞} is called lower semicomputable if the set {(x, r) |
x ∈ X, r ∈ R, f(x) > r} is effectively open in X × R. Similarly, a function
f : X → N0 is lower semicomputable if the set {(x, r) | x ∈ X, r ∈ N, f(x) ≥ r}
is effectively open in X × N. A sequence f1, f2, . . . of lower semicomputable
functions fl : X → R ∪ {∞} is called computable if the set {(l, x, r) | x ∈ X, r ∈
R, fl(x) > r} is effectively open in N×X×R. The existence of a universal Turing
machine also implies

Lemma 6. There exists a computable sequence f1, f2, . . . of lower semicom-
putable functions fl : X → R ∪ {∞} that contains every lower semicomputable
function.

Any computable sequence of lower semicomputable functions satisfying the con-
dition in Lemma 6 will be called a universal computable sequence of lower semi-
computable functions.

It is not difficult to check that the notion of lower semicomputability is an
effective version of the standard topological notion of lower semicontinuity: a
function f : X → R ∪ {∞} is lower semicontinuous (in the usual sense of {x ∈
X | f(x) > r} being open for each r ∈ R) if and only if the set {(x, r) | x ∈
X, r ∈ R, f(x) > r} is open in the product X × R.

Lemma 7. If f : X → [0,∞] is lower semicomputable and C ∈ N, the set
{x | f(x) > C} is effectively open.

Proof. Let ∪{Uk | k ∈ A}, with A ⊆ N recursively enumerable, be a represen-
tation of the effectively open set {(x, r) | x ∈ X, r ∈ R, f(x) > r} as a union
of basic sets in X × R. The set {x | f(x) > C} can be represented as the
union of the basic sets {x ∈ X | ∃r ∈ R : (x, r) ∈ Uk} over k ∈ A such that
sup{r | ∃x : (x, r) ∈ Uk} > C. �	

A function f : X → R is called computable if both f and −f are lower semi-
computable. It is easy to see that the analogue of Lemma 6 does not hold for
computable functions.

Some Sufficient Conditions on an Arbitrary

Class of Stochastic Processes for the Existence
of a Predictor

Daniil Ryabko

INRIA Lille–Nord Europe, France
daniil@ryabko.net

Abstract. We consider the problem of sequence prediction in a prob-
abilistic setting. Let there be given a class C of stochastic processes
(probability measures on the set of one-way infinite sequences). We are
interested in the question of what are the conditions on C under which
there exists a predictor (also a stochastic process) for which the pre-
dicted probabilities converge to the correct ones if any of the processes
in C is chosen to generate the data. We find some sufficient conditions
on C under which such a predictor exists. Some of the conditions are
asymptotic in nature, while others are based on the local (truncated to
first observations) behaviour of the processes. The conditions lead to con-
structions of the predictors. In some cases we obtain rates of convergence
that are optimal up to an additive logarithmic term. We emphasize that
the framework is completely general: the stochastic processes considered
are not required to be i.i.d., stationary, or to belong to some parametric
family.

1 Introduction

Given a finite sequence x1, . . . , xn of observations xi ∈ X , where X is a finite
set, we want to predict what are the probabilities of observing xn+1 = x for each
x ∈ X . It is assumed that the sequence is generated by some unknown stochastic
process µ, a probability measure on the set of one-way infinite sequences X∞.
The goal is to have a predictor such that the difference between the predicted
and correct probabilities goes to zero (in some sense). In general this goal is
impossible to achieve if nothing is known about the measure µ generating the
sequence. In other words, one cannot have a predictor whose error goes to zero
for any measure µ. However, if µ is known to belong to a certain class C of
measures, some well-known results establish the existence of a predictor.

In particular, the Laplace predictor

ρL(xn+1 = a|x1, . . . , xn) =
#{i ≤ n : xi = a} + 1

n + |X |

predicts any i.i.d. process, that is, predicted probabilities converge to “true”
probabilities if the measure generating the sequence is an i.i.d. process. Based

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 169–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 D. Ryabko

on similar ideas a predictor can be constructed for the class of all k-order Markov
measures, and, moreover, such predictors can be combined [9] to form a predictor
for the class of all stationary processes over X∞. As another example, one can
construct a predictor for any given countable class of measures, as shown by
Solomonoff’s construction of a predictor [15] for the class of all semi-computable
measures.

Thus there are examples of classes of processes for which a predictor is known
to exist. These examples cover some cases interesting theoretically or important
from the application point of view. On the other hand, a trivial negative example
is a class of all deterministic sequences (that is, each measure in the class pro-
duces a certain sequence of outcomes with probability 1) for which a predictor
does not exist: for any predictor there is a measure in the class (a deterministic
sequence) on which the predicted probabilities differ from the “true” ones by at
least 1/2 on every step.

The question we are addressing in this work is: in general, for which
classes C of stochastic processes there exists a predictor that predicts every
measure in the class?

Motivation. The importance of this question stems primarily from the fact
that, interesting as the studied cases are, their motivation originally comes either
from some specific applications or from the theoretical attractiveness of the
corresponding assumptions. Since new and new applications for the problem
of sequence prediction constantly come to existence, known theoretical models
can be unsuitable for some of them. For example, stationary processes may
model well some physical phenomena but may be less suited for the analysis
of DNA sequences. If one had a tool to check feasibility of different theoretical
assumptions (that is, to check whether there is a predictor that predicts every
process satisfying these assumptions) one could use it to find a better model for
each specific application.

Prior work. Apart from the results on the examples of classes C mentioned
above (i.i.d., finite–memory, stationary, computable), this general question (at
least for sequence prediction) has received little attention. A related question
has been addressed in [6]: Whether, given a class of measures C and a prior
(“meta”-measure) λ over this class of measures, the conditional probabilities of
a Bayesian mixture of the class C w.r.t. λ converge to the true µ-conditional
probabilities (weakly merge, in terminology of [6]) for λ-almost any measure µ
in C. The answer found in [6] is a set of necessary and sufficient conditions on
the measure given by the mixture of the class C w.r.t. λ under which prediction
is possible. The major difference from the general question we posed above is
that we do not wish to assume that we have a measure on our class of measures.
For large (non-parametric) classes of measures it may not be intuitive which
measure over it is natural; rather, the question is whether a “natural” measure
which can be used for prediction exists.

Another related question is formulated as a question about two individual
measures rather than a class of measures and a predictor. Namely, one can ask

Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes 171

under which conditions one stochastic process predicts another. In [2] it was
shown that if one measure is absolutely continuous with respect to another,
than the latter predicts the former (the conditional probabilities converge in
a very strong sense). In [12] a weaker form of convergence of probabilities (in
particular, convergence of expected average KL divergence) is obtained under
weaker assumptions.

Measuring prediction quality. As it was mentioned, we are interested in
probabilities of observing xn+1 = x, x ∈ X conditional on x1, . . . , xn. Such
conditional probabilities, if specified for every x1, . . . , xn also define a probabil-
ity measure over X∞. Thus a predictor (for a class of stochastic processes) is
also a stochastic process. The quality of prediction is measured as the discrep-
ancy between the predicted and “true” conditional probabilities. In this work
we are mainly considering the Kullback-Leibler divergence between conditional
probabilities, averaged over time, which is either required to converge to zero in
expectation over x1, . . . , xn (expectation being taken with respect to the “true”
measure generating the sequence), or with probability 1 (again with respect to
the measure generating the sequence). Thus, we are interested in the conditions
on a class C of measures, under which there exists a measure ρC such that the
average KL divergence between ρ and µ conditional probabilities goes to zero
for every µ ∈ C, in µ-expectation or with µ-probability 1.

The results. In the present work we exhibit some sufficient conditions on the
class C under which this is possible; none of these conditions relies on a para-
metrization of any kind. The conditions presented are of two types: conditions
on asymptotic behaviour of measures in C, and on their local (restricted to first
n observations) behaviour. Conditions of the first type concern separability of C
with respect to the expected average KL divergence. We show that such separa-
bility is sufficient for the existence of a predictor.

The conditions of the second kind concern the “capacity” of the set Cn :=
{µn : µ ∈ C} where µn is the measure µ restricted to the first n observations.
Intuitively, if Cn is small in some sense then prediction is possible. We measure
the capacity in two ways. The first way is to find the maximum probability
given to each sequence x1, . . . , xn by some measure in the class, and then take
a sum over x1, . . . , xn. Denoting the obtained quantity cn, one can show that it
grows polynomially in n for some important classes of processes, such as i.i.d.
or Markov processes. We show that, in general, if cn grows subexponentially
then a predictor exists that predicts any measure in C in expected average KL
divergence. On the other hand, exponentially growing cn are not sufficient for
prediction. Under slightly stronger conditions on the speed of growth of cn, we
also establish the existence of a measure that predicts every process µ in C in
average KL divergence with µ-probability 1 (rather than in expectation).

A more refined way to measure the capacity of Cn is using a concept of chan-
nel capacity from Information Theory, which was developed for a closely related
problem of finding optimal codes for a class of sources. We extend corresponding re-
sults from InformationTheory to show that sublinear growth of channel capacity is

172 D. Ryabko

sufficient for the existence of a predictor, in the sense of expected average diver-
gence. Moreover, the obtained bounds on the divergence are optimal up to an ad-
ditive logarithmic term.

2 Preliminaries

We consider stochastic processes (probability measures) on the set of one-way
infinite sequences X∞ where X is a finite set (alphabet). In the examples we
will often assume X = {0, 1}. The symbol µ is reserved for the “true” measure
generating the sequence. We use Eν for expectation with respect to a measure ν
and simply E for Eµ (expectation with respect to the “true” measure generating
the sequence).

To measure the quality of prediction we will mainly use quantities which are
based on the Kullback-Leibler (KL) divergence. For two probability distributions
ν1 and ν2 on a finite set X the KL divergence d(ν1, ν2) is defined as

d(ν1, ν2) =
∑
x∈X

ν1(x) log
ν1(x)
ν2(x)

. (1)

The quality of prediction can be measured as time-average KL divergence be-
tween the forecast and the true probabilities. Thus for a sequence (x1, . . . , xn) ∈
Xn the average KL divergence between µ and ρ is defined as

d̄n(µ, ρ|x1, . . . , xn) =
1
n

n∑
t=1

d(µ(·|x1, . . . , xt−1), ρ(·|x1, . . . , xt−1)), (2)

where µ(·|x1, . . . , xt−1) is the probability distribution of the tth member of the
sequence conditional on x1, . . . , xt−1.

We say that ρ predicts µ in average KL divergence if

d̄n(µ, ρ, x1, . . . , xn) → 0 µ-a.s.,

and ρ predicts µ in expected average KL divergence if

Eµd̄n(µ, ρ, x1, . . . , xn) → 0.

We also define asymptotic expected KL divergence between measures µ1 and
µ2 as

D(µ, ρ) = lim sup
n→∞

Eµd̄n(µ, ρ, x1, . . . , xn−1).

We will often omit the argument x1, . . . , xn from our notation.

3 Main Results

Asymptotic conditions. Call a class C of stochastic processes separable with
respect to (asymptotic expected KL divergence) D if there is a countable set
M ⊂ C with the following property: For every µ ∈ C and every ε > 0 there is
µε ∈ M such that D(µ, µε) ≤ ε.

Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes 173

Theorem 1. If C is separable with respect to D then there exists a measure ρ
such that ρ predicts every µ ∈ C in expected average KL divergence

D(µ, ρ) = 0

for every µ ∈ C.

The predictor ρ constructed in the proof (below) is a weighted average of the
countable dense set whose existence is asserted in the statement. This idea of tak-
ing a weighted mixture ρ of a countable class M and then bounding the KL di-
vergence of a measure outside M with ρ by its divergence with a measure in M
plus a constant (log−1 of the weight), has appeared in many places, starting from
[9]; in particular the general scheme appears in [5, Section 3.2.8]. For parametric
families of processes [5] also exhibits the idea of constructing a predictor by taking
a mixture over a countable dense (with respect to the parametrisation) subset.

Proof. Let wk, k ∈ N be a sequence of positive reals that sum to 1, e.g. wk = 2−k.
Since the set M is countable we can introduce µi, i ∈ N such that M = {µi : i ∈
N}. Define the predictor ρ as ρ =

∑
i∈N

wiµi. We have to show that

lim
n→∞Eµdn(µ, ρ) = 0

for every µ ∈ C. Fix any µ ∈ C and ε > 0. Find µk ∈ M such that D(µ, µk) ≤ ε.
Introduce the symbol Et for µ-expectation over xt conditional on x1, . . . , xt−1.
We have

Eµd̄n(µ, ρ) =
1
n
E

n∑
t=1

∑
xt∈X

µ(xt|x1, . . . , xt−1) log
µ(xt|x1, . . . , xt−1)
ρ(xt|x1, . . . , xt−1)

=
1
n

n∑
t=1

EEt log
µ(xt|x1, . . . , xt−1)
ρ(xt|x1, . . . , xt−1)

=
1
n
E log

n∏
t=1

µ(xt|x1, . . . , xt−1)
ρ(xt|x1, . . . , xt−1)

=
1
n
E log

µ(x1, . . . , xn)
ρ(x1, . . . , xn)

≤ 1
n
E log

µ(x1, . . . , xn)
wkµk(x1, . . . , xn)

=
log w−1

k

n
+

1
n
E log

µ(x1, . . . , xn)
µk(x1, . . . , xn)

=
log w−1

k

n
+ Eµd̄n(µ, µk), (3)

from which we conclude that

lim sup
n→∞

Eµd̄n(µ, ρ) ≤ lim sup
n→∞

Eµd̄n(µ, µk) ≤ ε.

Since this holds for every ε, and since KL divergence is always non-negative, we
get the statement limn→∞ Eµd̄n(µ, ρ) = 0. �	

Example: countable classes. A trivial but interesting example in which the
conditions of Theorem 1 are satisfied is when the class C itself is countable. A
well-studied case is when C is the class of all (semi-)computable measures ([15],
see also [5]).

174 D. Ryabko

Example: i.i.d. Another simple example is given by the class CB of all i.i.d.
processes, with X = {0, 1}, indexed by the parameter p ∈ [0, 1]; that is, µp(xn =
0) = p for all n independently of each other. In this case, it is easy to check
that the subset of all processes with rational parameters is dense in CB with
respect to the expected average KL divergence, since d̄n(µp, µq) = d(µp, µq) and
the latter is continuous in p and q.

Example: Finite-memory, stationary. The same holds for the class of sta-
tionary finite memory processes: each process with memory k is parametrized
by a finite number of parameters — the conditional probabilities of observing
xk+1 = x ∈ X given x1, . . . , xk and the initial distribution. The set of processes
with rational values of the parameters is dense with respect to the expected av-
erage divergence. Since any stationary ergodic process can be arbitrary well ap-
proximated (in the sense of asymptotic expected average KL divergence D(µ, ρ),
where lim sup actually becomes lim) by finite-memory processes, in particular
by those with rational parameters, we can conclude that the class of stationary
ergodic sources is separable with respect to expected average KL divergence.
Thus, applying Theorem 1 we can derive the result of [9] which says that there
exists a predictor for the class of all stationary ergodic processes.

Conditions based on local behaviour of measures. Next we provide some
sufficient conditions for the existence of a predictor based on local characteristics
of the class of measures.

For a class C of stochastic processes and a sequence (x1, . . . , xn) ∈ Xn

introduce the coefficients

cx1,...,xn(C) = sup
µ∈C

µ(x1, . . . , xn). (4)

Define also the normalizer

cn(C) =
∑

(x1,...,xn)∈Xn

cx1,...,xn(C). (5)

A normalized maximum likelihood estimator λ is defined as

λC(x1, . . . , xn) =
1

cn(C)
cx1,...,xn(C). (6)

For finite spaces (that is, for fixed n) normalized maximum likelihood estimators
have been studied in e.g. [14, 17], in the context of Information Theory. However,
the family λC(x1, . . . , xn) (indexed by n) in general does not define a stochastic
process over X∞ (λC are not consistent for different n); thus, in particular, using
average KL divergence for measuring prediction quality would not make sense,
since

dn(µ(·|x1, . . . , xn−1), λC(·|x1, . . . , xn−1))

can be negative, as the following example shows.

Example: negative dn for NML estimates. Let theprocessesµi, i ∈ {1,. . . , 4}
be defined on the steps n = 1, 2 as follows. µ1(00) = µ2(01) = µ4(11) = 1, while

Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes 175

µ3(01) = µ3(00) = 1/2. We have λC(1) = λC(0) = 1/2, while λC(00) = λC(01) =
λC(11) = 1/3. If we define λC(x|y) = λC(yx)/λC(y) we get λC(1|0) = λC(0|0) =
2/3. Then d2(µ3(·|0), λC(·|0)) = log 3/4 < 0.

Yet, by taking an appropriate mixture, it is still possible to construct a pre-
dictor (a stochastic process) based on λ that predicts the measures in the class
not only in expectation but, under certain conditions, also with probability 1.

Definition 1 (predictor ρc). Let w :=
∑∞

k=1
1
k2 and let wk := 1

wk2 . Define
a measure µk as follows. On first k steps it is defined as λC , and for n > k it
outputs only zeros with probability 1; so, µk(x1, . . . , xk) = λC(x1, . . . , xk) and
µk(xn = 0) = 1 for n > k. Define the measure ρc as

ρc =
∞∑

k=1

wkµk. (7)

Thus we have taken the normalized maximum likelihood estimates λn for each n
and continued them arbitrarily (actually by a deterministic sequence) to obtain
a sequence of measures on X∞ that can be summed.

Theorem 2. For a class C of stochastic processes the predictor ρc defined above
satisfies

Eµd̄n(µ, ρc) ≤
log cn(C)

n
+ O

(
log n

n

)
; (8)

in particular if
log cn(C) = o(n). (9)

then ρc predicts every µ ∈ C in expected average KL divergence. If the coefficients
cn(C) are such that

∞∑
n=1

log2 cn(C)
n2

< ∞ (10)

then ρc predicts every µ ∈ C in average KL divergence (with µ-probability 1).

Proof. Since for each x1,xn and each µ ∈ C we have

ρc(x1,xn) ≥ wn2cn(C)µ(x1,xn)

the theorem can be deduced from [12, Theorems 4,5]; we give here a full proof
for the sake of completeness.

For the first statement, we have (similarly to the proof of Theorem 1)

Eµd̄n(µ, ρc) =
1
n
E log

µ(x1, . . . , xn)
ρc(x1, . . . , xn)

≤ 1
n
E log

µ(x1, . . . , xn)
wnµn(x1, . . . , xn)

≤ 1
n

log
cn(C)
wn

=
1
n

(log cn(C) + 2 log n + log w). (11)

176 D. Ryabko

In order to prove the second statement, we first introduce a short-hand nota-
tion x1..n for x1, . . . , xn. Consider the random variables

ln = log
µ(xn|x1..n−1)
ρc(xn|x1..n−1)

and

l̄n =
1
n

n∑
t=1

lt.

Observe that dn = Enln, so that the random variables mn := ln − dn form a
martingale difference sequence (that is, Enmn = 0) with respect to the standard
filtration defined by x1, . . . , xn, Let also m̄n = 1

n

∑n
t=1 mt. We will show that

m̄n → 0 µ-a.s. and l̄n → 0 µ-a.s. which implies d̄n → 0 µ-a.s.
Note that

l̄n =
1
n

log
µ(x1..n)
ρc(x1..n)

≤ log w−1
n cn(C)
n

→ 0.

Thus to show that l̄n goes to 0 we need to bound it from below. It is easy to
see that nl̄n is (µ-a.s.) bounded from below by a constant, since ρc(x1..n)

µ(x1..n) is a
positive µ-supermartingale, which converges to a finite limit µ-a.s. by Doob’s
submartingale convergence theorem, see e.g. [13, p.508].

Next we will show that m̄n → 0 µ-a.s. We have

mn = log
µ(x1..n)
ρc(x1..n)

− log
µ(x1..n−1)
ρc(x1..n−1)

− En log
µ(x1..n)
ρc(x1..n)

+ En log
µ(x1..n−1)
ρc(x1..n−1)

= log
µ(x1..n)
ρc(x1..n)

− En log
µ(x1..n)
ρc(x1..n)

.

Let f(n) be some function monotonically increasing to infinity such that

∞∑
n=1

(log w−1
n cn(C) + f(n))2

n2
< ∞ (12)

(e.g. choose f(n) = log n). For a sequence of random variables λn define

(λn)+(f) =
{

λn if λn ≥ −f(n)
0 otherwise

and λ
−(f)
n = λn − λ

+(f)
n . Introduce also

m+
n =

(
log

µ(x1..n)
ρc(x1..n)

)+(f)

− En

(
log

µ(x1..n)
ρc(x1..n)

)+(f)

,

m−
n = mn −m+

n and the averages m̄+
n and m̄−

n . Observe that m+
n is a martingale

difference sequence. Hence to establish the convergence m̄+
n → 0 we can use

Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes 177

the martingale strong law of large numbers [13, p.501], which states that, for
a martingale difference sequence γn, if E(nγ̄n)2 < ∞ and

∑∞
n=1 Eγ2

n/n2 < ∞
then γ̄n → 0 a.s. Indeed, for m+

n the first condition is trivially satisfied (since
the expectation in question is a finite sum of finite numbers), and the second
follows from the fact that

|m+
n | ≤ log w−1

n cn(C) + f(n)

and (12).
Furthermore, we have

m−
n =

(
log

µ(x1..n)
ρc(x1..n)

)−(f)

− En

(
log

µ(x1..n)
ρc(x1..n)

)−(f)

.

As it was mentioned before, log µ(x1..n)
ρc(x1..n) converges µ-a.s. either to (positive)

infinity or to a finite number. Hence(
log

µ(x1..n)
ρc(x1..n)

)−(f)

is non-zero only a finite number of times, and so its average goes to zero. To see

that En
(
log µ(x1..n)

ρc(x1..n)

)−(f)

→ 0 we write

En+1

(
log

µ(x1..n+1)
ρc(x1..n+1)

)−(f)

=
∑

xn∈X
µ(xn+1|x1..n)

(
log

µ(x1..n)
ρc(x1..n)

+ log
µ(xn+1|x1..n)
ρc(xn+1|x1..n)

)−(f)

≥
∑

xn∈X
µ(xn+1|x1..n)

(
log

µ(x1..n)
ρc(x1..n)

+ log µ(xn+1|x1..n)

)−(f)

and note that the first term in brackets is bounded from below, and so for the
sum in brackets to be less than −f(n+1) (which is unbounded) the second term
log µ(xn|x1..n) has to go to −∞, but then the expectation goes to zero since
limu→0 u logu = 0.

Thus we conclude that m̄−
n → 0 µ-a.s., which together with m̄+

n → 0 µ-a.s.
implies m̄n → 0 µ-a.s., which, finally, together with l̄n → 0 µ-a.s. implies d̄n → 0
µ-a.s. �	

Example: finite-memory. To illustrate the applicability of the theorem we
first consider the class of i.i.d. processes CB over the binary alphabet X = {0, 1}.
It is easy to see that for each x1, . . . , xn

sup
µ∈CB

µ(x1, . . . , xn) = pk(1 − p)n−k

178 D. Ryabko

where k = #{i ≤ n : xi = 0} is the number of 0s in x1, . . . , xn and p = k/n. For
the constants cn(C) we can get the bound cn(C) ≤ n+1. In general, for the class
Ck of processes with memory k over a finite space X we get polynomial cn(C)
(see e.g. [11]).

Thus, with respect to finite-memory processes, the conditions of Theorem 2
leave ample space for the growth of cn(C): the condition (9) allows any subex-
ponential growth of cn(C) and the condition (10) allows for example cn(C) =
2
√

n/logn.

Example: exponential coefficients are not sufficient. Observe that the
condition (9) cannot be relaxed further, in the sense that exponential coefficients
cn are not sufficient for prediction. Indeed, for the class of all deterministic
processes (that is, each process from the class produces some fixed sequence of
observations with probability 1) we have cn = 2n, while obviously for this class
a predictor does not exist.

Optimal rates of convergence. A natural question that arises with respect
to the bound (8) is whether it is optimal. This question is closely related to the
optimality of the normalized maximum likelihood estimates used in the construc-
tion of the predictor. In general, since such estimates are not optimal neither
are the rates of convergence in (8). To obtain (close to) optimal rates one has to
consider a different measure of capacity.

To do so, we make the following connection to a problem in Information
Theory. Let P(X∞) be the set of all stochastic processes (probability measures)
on the set X∞, and let P(X) be the set of probability distributions over a (finite)
set X . For a class C of measures we are interested in a predictor that has a small
(or minimal) worst-case (with respect to the class C) probability of error. Thus,
we are interested in the quantity

inf
ρ∈P(X∞)

sup
µ∈C

D(µ, ρ), (13)

where the infimum is taken over all stochastic processes ρ, and D is the as-
ymptotic expected average KL divergence. (In particular, we are interested in
the conditions under which the quantity in (13) equals zero.) This problem has
been studied for the case when the probability measures are over a finite set X ,
and D is replaced simply by the KL divergence d between the measures. Thus,
the problem was to find the probability measure ρ (if it exists) on which the
following minimax is attained

R(A) := inf
ρ∈P(X)

sup
µ∈A

d(µ, ρ), (14)

where A ⊂ P(X). This problem is closely related to the problem of finding the
best code for the class of sources A, which was its original motivation. The nor-
malized maximum likelihood distribution considered above does not in general
lead to the optimum solution for this problem. The optimum solution is ob-
tained through the result that relates the minimax (14) to the so-called channel

Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes 179

capacity. For a set A of measures on a finite set X the channel capacity of A is
defined as

C(A) := sup
P∈P0(A)

∑
µ∈S(P)

P (µ)d(µ, ρP), (15)

where P0(A) is the set of all probability distributions on A that have a finite sup-
port S(P), and ρP =

∑
µ∈S(P) P (µ)µ. It is shown in [8, 3] that C(A) = R(A),

thus reducing the problem of finding a minimax to an optimization problem.
Moreover, an algorithm [1] exists for approximating C(A) numerically and solv-
ing the optimization problem for the important case when A is the convex
hull of a finite set. For probability measures over infinite spaces this result
(R(A) = C(A)) was generalized in [4], but the divergence between probability
distributions is measured by KL divergence (and not average KL divergence),
which gives infinite R(A) for most of the cases interesting from the sequence
prediction point of view (e.g. for the class of i.i.d. processes).

However, truncating measures in a class C to the first n observations, we can
use the results about channel capacity to analyze the predictive properties of the
class. Moreover, the rates of convergence that can be obtained along these lines
are close to optimal. In order to pass from measures minimizing the divergence
for each individual n to a process that minimizes the divergence for all n we use
the same idea as when constructing the process ρc.

Theorem 3. Let C be a class of measures over X∞ and Cn be the class of
measures from C restricted to Xn. There exists a measure ρC such that

Eµd̄n(µ, ρC , x1, . . . , xn) ≤ C(Cn)
n

+ O

(
log n

n

)
. (16)

(in particular, if C(Cn)/n → 0 then ρC predicts every µ ∈ C in expected average
KL divergence). Moreover, for any measure ρC and every ε > 0 there exists
µ ∈ C such that

Eµd̄n(µ, ρC , x1, . . . , xn) ≥ C(Cn)
n

− ε.

Proof. As shown in [3], for each n there exists a sequence νn
k , k ∈ N of measures

on Xn such that
lim

k→∞
sup

µn∈Cn

d(µn, νn
k) → C(Cn).

For each n ∈ N find an index kn such that

| sup
µn∈Cn

d(µn, νn
kn

) − C(Cn)| ≤ 1.

Define the measure ρn as follows. On the first n symbols it coincides with νn
kn

and ρn(xm = 0) = 1 for m > n. Finally, set ρC =
∑∞

n=1 wnρn, where wk =
1

wn2 , w =
∑∞

n=1
1

n2 . We have to show that limn→∞ Eµd̄n(µ, ρC) = 0 for every
µ ∈ C. Indeed,

180 D. Ryabko

Eµd̄n(µ, ρC) =
1
n
Eµ log

µ(x1..n)
ρC(x1..n)

≤ log w−1
k

n
+

1
n
Eµ log

µ(x1..n)
ρn(x1..n)

≤ log w + 2 log n

n
+

1
n

d(µn, ρn)

≤ o(1) +
C(Cn)

n
+

1
n

. (17)

The second statement follows from the fact [8, 3] that C(Cn) = R(Cn)
(cf. (14)). �	

Thus, if the channel capacity C(Cn) grows sublinearly, a predictor can be con-
structed for the class of processes C. In this case the problem of constructing the
predictor is reduced to finding the channel capacities for different n and finding
the corresponding measures on which it is attained or approached.

As an example we can mention, again, the class of all i.i.d. processes, whose
channel capacity C(Cn

B) is O(log n), see e.g. [7].
We also remark that the requirement of a sublinear channel capacity cannot be

relaxed, in the sense that a linear channel capacity is not sufficient for prediction,
since it is the maximal possible capacity for a set of measures on Xn.

4 Discussion

As far as algorithmic realizability of the predictors proposed is concerned,
we should first note that when an input parameter of an “algorithm” is an arbi-
trary class of stochastic processes, one can hardly talk about algorithms for real
computers. Rather, the predictors constructed have to be regarded as reductions
of the problem of finding a predictor for a given class of stochastic processes to
the conceptually much easier problems of approximating certain suprema and
infinite sums. Here an analogy can be made with the classification problem. In
certain cases the problem of finding a good classifier can be reduced to the prob-
lem of finding a classifier from a given class that best fits the data (minimizes
empirical risk [16]). Conceptually this is a much simpler problem; however, in
some cases it can be intractable (see e.g. [10]). In general, for each particular
class of classifiers a separate algorithm should be constructed to find efficiently
a classifier that fits the data. Indeed, efficient solutions (such as support vector
machines [16]) exist for many important cases.

Returning to our problem, Theorem 1 states that if in a class C of measures
there is a countable dense subset M , then a predictor can be constructed whose
average expected error goes to zero. Moreover, such a predictor can be obtained
as a weighted sum of measures from M (with any positive weights that sum to
1). Thus the problem of finding a predictor is reduced to two (simpler) problems:
finding a dense subset and taking an infinite sum. We can further show that in
some cases the latter problem can be reduced to a version of the former, that is,
it is not necessary to take an infinite sum if one can find a finite ε-net.

Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes 181

Proposition 1. Let a class C of stochastic processes be such that for some ε
there exists a finite or countable subset Mε ⊂ C with the following property. For
any µ ∈ C there exists µ′ ∈ Mε such that D(µ, µ′) ≤ ε. Then for the measure

ρ =
∑

ν∈Mε

wνν,

where wν are any positive reals (that sum to 1), we have D(µ, ρ) ≤ ε for any
µ ∈ C.

This statement can be proven in exactly the same way as Theorem 1.
The predictors constructed in the proofs of Theorems 2 and 3 also involve

summation over an infinite set. However, in these cases it is immediately appar-
ent from the constructions of the predictors that for prediction on nth step it
is sufficient to take sums up to n, and the bounds on expected average diver-
gence (8) and (16) still hold. Thus the problem of finding a predictor is reduced
to the problem of approximating a finite number of suprema.

Namely, for the case of normalized maximum likelihood predictor of Theo-
rem 2 the quantity (4) have to be evaluated for each n and each x1, . . . , xn. For
the predictor based on channel capacity one has to find the measure on which
channel capacity (15) is attained (possibly up to a certain εn) for each n. Again,
for some important cases efficient algorithms for solving this problem exist, such
as [1] for the case when the set Cn is a convex hull of a finite number of measures.

One more question we discuss is other possible ways of measuring the
quality of prediction. In this paper we were considering KL divergence (1)
averaged over time (2), and have developed predictors on which this divergence
tends to zero either in expectation or with probability 1. Other possible ways of
measuring divergence include the absolute distance

an(µ, ρ|x1..n−1) =
∑
x∈X

|µ(xn = x|x1..n−1) − ρ(xn = x|x1..n−1)|,

the squared absolute distance

sn(µ, ρ|x1..n−1) =
∑
x∈X

(µ(xn = x|x1..n−1) − ρ(xn = x|x1..n−1))2,

and the Hellinger distance

hn(µ, ρ|x1..n−1) =
∑
x∈X

(√
µ(xn = x|x1..n−1) −

√
ρ(xn = x|x1..n−1

)2
.

Analogously with the average KL divergence (2) we can define average absolute
distance ān, average squared absolute distance s̄n and average Hellinger distance
h̄n. Using Pinsker’s inequality a2

t ≤ 2dt one can easily show that all convergence
results and upper bounds stated in terms of KL divergence also hold for the
measures of divergence just introduced (see e.g. Lemma 1 of [12] for details).

182 D. Ryabko

Proposition 2. The statements concerning convergence and upper of Theo-
rems 1, 2 and 3 hold true if the average KL distance d̄n is replaced by either
of the following: average absolute distance ān, average squared absolute distance
s̄n and average Hellinger distance h̄n.

Another interesting problem would be to investigate a stronger notion of predic-
tive quality: without averaging over time. For example, under which conditions
on a class C of measures there exist a predictor ρ for which

dn(µ, ρ|x1, . . . , xn−1)

goes to zero with µ probability 1 for every µ.
These questions, along with the problem of finding efficient algorithmic solu-

tions for cases of practical interest, constitute an agenda for further investigation.

References

[1] Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Transactions on Information Theory IT-I 8, 14–20 (1972)

[2] Blackwell, D., Dubins, L.: Merging of opinions with increasing information. Annals
of Mathematical Statistics 33, 882–887 (1962)

[3] Gallager, R.: Source Coding With Side Information and Universal Coding (un-
plublished) M.I.T. LIDS-P-937 (1976) (revised 1979)

[4] Haussler, D.: A General Minimax Result for Relative Entropy. IEEE Transactions
on Information Theory 43(4), 1276–1280 (1997)

[5] Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2005)

[6] Jackson, M., Kalai, E., Smorodinsky, R.: Bayesian representation of stochastic
processes under learning: de Finetti revisited. Econometrica 67(4), 794–875 (1999)

[7] Krichevsky, R.: Universal Compression and Retrival. Kluwer Academic Publish-
ers, Dordrecht (1993)

[8] Ryabko, B.: Coding of a source with unknown but ordered probabilities. Problems
of Information Transmission 15(2), 134–138 (1979)

[9] Ryabko, B.: Prediction of random sequences and universal coding. Problems of
Information Transmission 24, 87–96 (1988)

[10] Ryabko, D.: On sample complexity for computational classification problems. Al-
gorithmica 49(1), 69–77 (2007)

[11] Ryabko, D., Hutter, M.: On sequence prediction for arbitrary measures. In: Proc.
2007 IEEE International Symposium on Information Theory, Nice, France, pp.
2346–2350 (2007)

[12] Ryabko, D., Hutter, M.: Predicting Non-Stationary Processes. Applied Mathe-
matics Letters 21(5), 477–482 (2008)

[13] Shiryaev, A.: Probability. Springer, Heidelberg (1996)
[14] Shtarkov, Yu.: Universal sequential coding of single messages. Problems of Infor-

mation Transmission 23, 3–17 (1988)
[15] Solomonoff, R.J.: Complexity-based induction systems: comparisons and conver-

gence theorems. IEEE Trans. Information Theory IT-24, 422–432 (1978)
[16] Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc., New York

(1998)
[17] Xie, Q., Barron, A.: Asymptotic minimax regret for data compression, gambling,

and prediction. IEEE Transactions on Information Theory 46(2), 431–445 (1997)

Nonparametric Independence Tests: Space

Partitioning and Kernel Approaches

Arthur Gretton1 and László Györfi2

1 MPI for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany
arthur@tuebingen.mpg.de

2 Budapest University of Technology and Economics,
H-1521 Stoczek u. 2, Budapest, Hungary

gyorfi@szit.bme.hu

Abstract. Three simple and explicit procedures for testing the inde-
pendence of two multi-dimensional random variables are described. Two
of the associated test statistics (L1, log-likelihood) are defined when the
empirical distribution of the variables is restricted to finite partitions.
A third test statistic is defined as a kernel-based independence measure.
All tests reject the null hypothesis of independence if the test statis-
tics become large. The large deviation and limit distribution proper-
ties of all three test statistics are given. Following from these results,
distribution-free strong consistent tests of independence are derived, as
are asymptotically α-level tests. The performance of the tests is evaluated
experimentally on benchmark data.

Consider a sample of Rd × Rd′
-valued random vectors (X1, Y1), . . . , (Xn, Yn)

with independent and identically distributed (i.i.d.) pairs defined on the same
probability space. The distribution of (X,Y) is denoted by ν, while µ1 and µ2

stand for the distributions of X and Y , respectively. We are interested in testing
the null hypothesis that X and Y are independent,

H0 : ν = µ1 × µ2,

while making minimal assumptions regarding the distribution.
We consider two main approaches to independence testing. The first is to

partition the underlying space, and to evaluate the test statistic on the resulting
discrete empirical measures. Consistency of the test must then be verified as the
partition is refined for increasing sample size. Previous multivariate hypothesis
tests in this framework, using the L1 divergence measure, include homogeneity
tests (to determine whether two random variables have the same distribution, by
Biau and Györfi [1]); and goodness-of-fit tests (for whether a random variable has
a particular distribution, by Györfi and van der Meulen [2], and Beirlant et al.
[3]). The log-likelihood has also been employed on discretised spaces as a statistic
for goodness-of-fit testing [4]. We provide generalizations of both the L1 and log-
likelihood based tests to the problem of testing independence, representing to
our knowledge the first application of these techniques to independence testing.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 183–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 A. Gretton and L. Györfi

We obtain two kinds of tests for each statistic: strong consistent tests1 based on
large deviation bounds, which make no assumptions about the distribution; and
tests based on the asymptotic distribution of the test statistic, which assume
only that the distribution is nonatomic. We also present a conjecture regarding
the form taken by an asymptotic test based on the Pearson χ2 statistic, using
the goodness-of-fit results in [4] (further related test statistics include the power
divergence family of Read and Cressie [6], although we do not study them here).
The advantage of our test procedures is that, besides being explicit and easy
to carry out, they require very few assumptions on the partition sequences, are
consistent, and have distribution-independent thresholds.

Our second approach to independence testing is kernel-based. In this case,
our test statistic has a number of different interpretations: as an L2 distance
between Parzen window estimates [7], as a smoothed difference between em-
pirical characteristic functions [8, 9], or as the Hilbert-Schmidt norm of a cross-
covariance operator mapping between functions of the random variables [10, 11].
Each test differs from the others regarding the conditions required of the ker-
nels: the Parzen window statistic requires the kernel bandwidth to decrease with
increasing sample size, and has a different limiting distribution to the remaining
two statistics; while the Hilbert-Schmidt approach uses a fixed bandwidth, and
can be thought of as a generalization of the characteristic function-based test.
We provide two new results: a strong consistent test of independence based on
a tighter large deviation bound than that in [10], and an empirical comparison
of the limiting distributions of the kernel-based statistic.

Additional independence testing approaches also exist in the statistics lit-
erature. For d = d′ = 1, an early nonparametric test for independence, due to
Hoeffding, Blum, Kiefer, and Rosenblatt [12, 13], is based on the notion of differ-
ences between the joint distribution function and the product of the marginals.
The associated independence test is consistent under appropriate assumptions.
Two difficulties arise when using this statistic in a test, however. First, quantiles
of the null distribution are difficult to estimate. Second, and more importantly,
the quality of the empirical distribution function estimates becomes poor as the
dimensionality of the spaces Rd and Rd′

increases, which limits the utility of the
statistic in a multivariate setting. Further approaches to independence testing
can be used when particular assumptions are made on the form of the distribu-
tions, for instance that they should exhibit symmetry. We do not address these
approaches in the present study.

The paper is organized as follows. Section 1 describes the large deviation and
limit distribution properties of the L1-test statistic. The large deviation result
is used to formulate a distribution-free strong consistent test of independence,
which rejects the null hypothesis if the test statistic becomes large. The limit
distribution is used in an asymptotically α-level test, which is consistent when
the distribution is nonatomic. Both a distribution-free strong consistent test

1 A strong consistent test means that both on H0 and on its complement the test makes
a.s. no error after a random sample size. This concept is close to the definition of
discernability introduced by Dembo and Peres [5]. See [1] for further discussion.

Nonparametric Independence Tests 185

and an asymptotically α-level test are presented for the log-likelihood statis-
tic in Section 2, and a conjecture for an asymptotically α-level test based on
the Pearson χ2 statistic is described in Section 3. Section 4 contains a review
of kernel-based independence statistics, and the associated hypothesis tests for
both the fixed-bandwidth and variable-bandwidth cases. Finally, a numerical
comparison between the tests is given in Section 5. More detailed proofs and
further discussion may be found in an associated technical report [14].

1 L1-Based Statistic

Denote by νn, µn,1 and µn,2 the empirical measures associated with the samples
(X1, Y1), . . . , (Xn, Yn), X1, . . . , Xn, and Y1, . . . , Yn, respectively, so that

νn(A×B) = n−1#{i : (Xi, Yi) ∈ A×B, i = 1, . . . , n},
µn,1(A) = n−1#{i : Xi ∈, i = 1, . . . , n}, and

µn,2(B) = n−1#{i : Yi ∈ B, i = 1, . . . , n},

for any Borel subsets A and B. Given the finite partitions Pn = {An,1, . . . ,

An,mn} of Rd and Qn = {Bn,1, . . . , Bn,m′
n
} of Rd′

, we define the L1 test statistic
comparing νn and µn,1 × µn,2 as

Ln(νn, µn,1 × µn,2) =
∑

A∈Pn

∑
B∈Qn

|νn(A×B) − µn,1(A) · µn,2(B)|.

In the following two sections, we derive the large deviation and limit distribution
properties of this L1 statistic, and the associated independence tests.

1.1 Large Deviation Properties

For testing a simple hypothesis versus a composite alternative, Györfi and van
der Meulen [2] introduced a related goodness of fit test statistic Ln defined as

Ln(µn, µ) =
∑

A∈Pn

|µn(A) − µ(A)|.

Beirlant [15], and Biau and Györfi [1] proved that, for all 0 < ε,

P{Ln(µn, µ) > ε} ≤ 2mne−nε2/2. (1)

We now show that a similar result follows quite straightforwardly for the L1

independence statistic.

Theorem 1. Under H0, for all 0 < ε1, 0 < ε2 and 0 < ε3,

P{Ln(νn, µn,1×µn,2)>ε1+ε2+ε3}≤ 2mn·m′
ne−nε2

1/2+2mne−nε2
2/2+2m′

ne−nε2
3/2.

186 A. Gretton and L. Györfi

Proof. We bound Ln(νn, µn,1 × µn,2) according to

Ln(νn, µn,1 × µn,2) ≤
∑

A∈Pn

∑
B∈Qn

|νn(A×B) − ν(A ×B)|
+
∑

A∈Pn

∑
B∈Qn

|ν(A ×B) − µ1(A) · µ2(B)|
+
∑

A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B) − µn,1(A) · µn,2(B)|.

The central term in the sum is zero under the null hypothesis. The proof is then
completed by further applications of the triangle inequality, then using (1) on
the resulting terms, and applying a union bound.

Theorem 1 yields a strong consistent test of homogeneity, which rejects the null
hypothesis if Ln(νn, µn,1×µn,2) becomes large. The test is distribution-free, i.e.,
the probability distributions ν, µ1 and µ2 are completely arbitrary. The proof of
the following corollary is similar to that employed for the homogeneity test by
Biau and Györfi [1].

Corollary 1. Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c1

(√
mnm′

n

n
+
√

mn

n
+

√
m′

n

n

)
≈ c1

√
mnm′

n

n
,

where c1 >
√

2 ln 2 ≈ 1.177. Assume conditions

lim
n→∞mnm

′
n/n = 0, lim

n→∞mn/lnn = ∞, lim
n→∞m′

n/lnn = ∞, (2)

are satisfied. Then under H0, the test makes a.s. no error after a random sample
size. Moreover, if ν �= µ1 × µ2, and for any sphere S centered at the origin,

lim
n→∞ max

A∈Pn, A∩S 	=0
diam(A) = 0 and lim

n→∞ max
B∈Qn, B∩S 	=0

diam(B) = 0, (3)

then after a random sample size the test makes a.s. no error.

1.2 Asymptotic Normality

Beirlant et al. [3] proved, under conditions

lim
n→∞mn = ∞, lim

n→∞mn/n = 0, lim
n→∞ max

j=1,...,mn

µ(Anj) = 0, (4)

that √
n (Ln(µn, µ) − E{Ln(µn, µ)}) /σ D→ N (0, 1),

where D→ stands for the convergence in distribution and σ2 = 1− 2/π. We adapt
this proof to the case of independence testing (see Appendix for details).

Theorem 2. Assume that conditions (2) and

lim
n→∞ max

A∈Pn

µ1(A) = 0, lim
n→∞ max

B∈Qn

µ2(B) = 0, (5)

Nonparametric Independence Tests 187

are satisfied. Then under H0, there exists a centering sequence (Cn)n≥1 depend-
ing on ν such that

√
n (Ln(νn, µn,1 × µn,2) − Cn) /σ D→ N (0, 1), where σ2 = 1 − 2/π.

Theorem 2 yields the asymptotic null distribution of a consistent independence
test, which rejects the null hypothesis if Ln(νn, µn,1 × µn,2) becomes large.
In contrast to Corollary 1, and because of condition (4), this new test is not
distribution-free. In particular, the measures µ1 and µ2 have to be nonatomic.
The corollary below follows from Theorem 2, replacing Cn with the upper bound

Cn ≤
√

2mnm′
n/(πn)

(the original expression for Cn is provided in the Appendix, eq. (20)).

Corollary 2. Let α ∈ (0, 1). Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c2
√

mnm′
n/n + σ/

√
nΦ−1(1 − α) ≈ c2

√
mnm′

n/n,

where σ2 = 1 − 2/π, c2 =
√

2/π ≈ 0.798, and Φ denotes the standard normal
distribution function. Then, under the conditions of Theorem 2, the test has
asymptotic significance level α. Moreover, under the additional conditions (3),
the test is consistent.

2 Log-Likelihood Statistic

In the goodness-of-fit testing literature the I-divergence or log-likelihood statistic,

In(µn, µ) = 2
∑mn

j=1 µn(An,j) log [µn(An,j)/µ(An,j)],

plays an important role. For testing independence, the corresponding log-likeli-
hood test statistic is defined as

In(νn, µn,1 × µn,2) = 2
∑

A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) · µn,2(B)
.

The large deviation and the limit distribution properties of In(νn, µn,1 × µn,2)
can be derived from the properties of

In(νn, ν) = 2
∑

A∈Pn

∑
B∈Qn

νn(A×B) log [νn(A×B)/ν(A×B)] ,

since under the null hypothesis it can easily be seen that

In(νn, ν) − In(νn, µn,1 × µn,2) = In(µn,1, µ1) + In(µn,2, µ2) ≥ 0.

For the large deviation bound, Kallenberg [16], and Quine and Robinson [17]
proved that, for all ε > 0,

P{In(µn, µ)/2 > ε} ≤
(
n + mn − 1

mn − 1

)
e−nε ≤ emn log(n+mn)−nε.

188 A. Gretton and L. Györfi

Therefore under the condition mn logn = o(n), which is stronger than (4),

P{In(µn, µ)/2 > ε} = e−n(ε+o(1)). (6)

A test based on this result can be introduced which rejects independence if

In(νn, µn,1 × µn,2) ≥ mnm
′
nn

−1(2 log(n + mnm
′
n) + 1).

Under H0, we obtain the non-asymptotic bound

P
{
In(νn, µn,1 × µn,2) > mnm

′
nn

−1(2 log(n + mnm
′
n) + 1)

}
≤ P

{
In(νn, ν) > mnm

′
nn

−1(2 log(n + mnm
′
n) + 1)

}
≤ e−mnm′

n .

Therefore condition (2) implies∑∞
n=1 P

{
In(νn, µn,1 × µn,2) > mnm

′
nn

−1(2 log(n + mnm
′
n) + 1)

}
< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null
hypothesis. Under the alternative hypothesis the proof of strong consistency
follows from Pinsker’s inequality,

L2
n(νn, µn,1 × µn,2) ≤ In(νn, µn,1 × µn,2). (7)

Concerning the limit distribution, Györfi and Vajda [4] proved under (4),

(nIn(µn, µ) −mn) (2mn)−1/2 D→ N (0, 1).

This implies that for any real valued x, under conditions (2) and (5),

P
{

nIn(νn,µn,1×µn,2)−mnm′
n√

2mnm′
n

≤ x

}
≤ P

{
nIn(νn,ν)−mnm′

n√
2mnm′

n

≤ x

}
→ Φ(x),

from which an asymptotically α-level test follows straightforwardly.

3 Pearson χ2 Statistic

Another statistic for testing independence is the Pearson χ2 test statistic,

χ2
n(νn, µn,1 × µn,2) =

∑
A∈Pn

∑
B∈Qn

(νn(A×B) − µn,1(A) · µn,2(B))2

µn,1(A) · µn,2(B)
.

For the associated goodness of fit test, Quine and Robinson [17] provide a large
deviation bound for the statistic

χ2
n(µn, µ) =

mn∑
j=1

(µn(An,j) − µ(An,j))2

µ(An,j)
, (8)

Nonparametric Independence Tests 189

from which it may be possible to obtain a strong consistent distribution-free
test of independence. The asymptotic distribution of (8) under conditions (4)
was addressed by Györfi and Vajda [4], who proved(

nχ2
n(µn, µ) −mn

)
(2mn)−1/2 D→ N (0, 1).

We conjecture that under the conditions (2) and (5),(
nχ2

n(νn, µn,1 × µn,2) −mnm
′
n

)
(2mnm

′
n)−1/2 D→ N (0, 1),

from which an asymptotically α-level test follows.

4 Kernel-Based Statistic

We now present a second class of approaches to independence testing, based on
a kernel statistic. We can derive this statistic in a number of ways. The most
immediate interpretation, introduced by Rosenblatt [7], defines the statistic as
the L2 distance between the joint density estimate and the product of marginal
density estimates. Let K and K ′ be density functions (called kernels) defined on
Rd and on Rd′

, respectively. For the bandwidth h > 0, define

Kh(x) =
1
hd

K
(x

h

)
and K ′

h(x) =
1
hd′ K

′
(x

h

)
.

The Rosenblatt-Parzen kernel density estimates of the density of (X,Y) and X
are respectively

fn(x, y) =
1
n

n∑
i=1

Kh(x−Xi)K ′
h(y − Yi) and fn,1(x) =

1
n

n∑
i=1

Kh(x−Xi), (9)

with fn,2(y) defined by analogy. Rosenblatt [7] introduced the kernel-based in-
dependence statistic

Tn =
∫

Rd×Rd′
(fn(x, y) − fn,1(x)fn,2(y))2dx dy. (10)

Alternatively, defining

Lh(x) =
∫

Rd

Kh(u)Kh(x− u)du =
1
hd

∫
Rd

K(u)K(x− u)du

and L′
h(x) by analogy, we may write the kernel test statistic

Tn = 1
n2

∑n
i=1

∑n
j=1 Lh(Xi −Xj)L′

h(Yi − Yj)

− 2
n3

∑n
i=1

(∑n
j=1 Lh(Xi −Xj)

)(∑n
j=1 L′

h(Yi − Yj)
)

+
(

1
n2

∑n
i=1

∑n
j=1 Lh(Xi −Xj)

)(
1

n2

∑n
i=1

∑n
j=1 L′

h(Yi − Yj)
)
. (11)

190 A. Gretton and L. Györfi

Note that at independence, the expected value of the statistic is not zero, but

E{Tn} =
n− 1
n2

(Lh(0) − E{Lh(X1 −X2)}) (L′
h(0) − E{L′

h(Y1 − Y2)}) (12)

≤ n−1Lh(0)L′
h(0) = (nhdhd′

)−1‖K‖2‖K ′‖2. (13)

A second interpretation of the above statistic is as a smoothed difference be-
tween the joint characteristic function and the product of the marginals [8]. The
characteristic function and Rosenblatt-Parzen window statistics can be quite
similar: in fact, for appropriate smoothing and kernel choices and fixed n, they
may be identical [9]. For increasing n, the main differences between the ap-
proaches are that the kernel bandwidth h must decrease in the Rosenblatt test
for consistency of the kernel density estimates, and the more restrictive condi-
tions on the Rosenblatt-Parzen test statistic [7, conditions a.1-a.4].

A generalization of the statistic to include non-Euclidean domains is presented
by Gretton et al. [10, 11]. The test statistic in (11) is then interpreted as a biased
empirical estimate of the Hilbert-Schmidt norm of a cross-covariance operator
between reproducing kernel Hilbert spaces (RKHS),2 ‖Cxy‖2

HS. Clearly, when
Kh and K ′

h are continuous and square integrable densities, the induced kernels
Lh and L′

h are continuous positive definite RKHS kernels. However, as long as
Lh and L′

h are characteristic kernels (in the sense of Fukumizu et al. [18]; see
also Sriperumbudur et al. [19]), then ‖Cxy‖2

HS = 0 iff X and Y independent:
these kernels need not be inner products of square integrable probability density
functions. The Gaussian kernel is characteristic on Rd [18], and universal ker-
nels (in the sense of Steinwart [20]) are characteristic on compact domains [10].
Note that universal kernels exist that may not be written as inner products of
kernel density functions: see examples in [20, Section 3]. An appropriate choice
of kernels allows testing of dependence in general settings, such as distributions
on strings and graphs [11].

4.1 Large Deviation Property

The empirical statistic Tn was previously shown by Gretton et al. [10] to converge
in probability to its expectation with rate 1/

√
n. We now provide a more refined

bound, which is tighter when the bandwidth h decreases. We will obtain our
results for the statistic

T̃n = ‖fn(·, ·) − Efn(·, ·)‖2,

since under the null hypothesis,
√
Tn = ‖fn(·, ·) − fn,1(·)fn,2(·)‖

≤
√

T̃n + ‖fn,1(·)‖ ‖fn,2(·) − Efn,2(·)‖ + ‖fn,1(·) − Efn,1(·)‖ ‖Efn,2(·)‖ ≈
√

T̃n.
(14)

2 Given RKHSs F and G, the cross-covariance operator Cxy : G → F for the
measure ν is defined such that for all f ∈ F and g ∈ G, 〈f, Cxyg〉F =
E {[f(x) − E{f(x)}] [g(y) − E{g(y)}]} .

Nonparametric Independence Tests 191

Theorem 3. For any ε > 0,

P

{
T̃n ≥

(
ε + E

{√
T̃n

})2
}

≤ e−nε2
/

(2Lh(0)L′
h(0)).

Proof. We apply McDiarmid’s inequality [21]: Let Z1, . . . , Zn be independent
random variables taking values in a set A, and assume that f : An → R satisfies

sup
z1,...,zn,

z′
i∈A

|f(z1, . . . , zn) − f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ ci, 1 ≤ i ≤ n.

Then, for all ε > 0,

P {f(Z1, . . . , Zn) − Ef(Z1, . . . , Zn) ≥ ε} ≤ e−2ε2
/�n

i=1 c2
i .

Given the function f =
√

T̃n, the result follows from

2
n
‖Kh(· −X1)K ′

h(· − Y1)‖ =
2
n

√
Lh(0)L′

h(0) =: ci = c1.

From these inequalities we can derive a test of independence. Given ε such that
nε2

/
(2Lh(0)L′

h(0)) = 2 lnn, and recalling (13) and (14), a strongly consistent
test rejects independence if

Tn > ‖K‖2‖K ′‖2(
√

4 lnn + 1)2(nhdhd′
)−1.

Under the alternative hypothesis, there are two cases. If h → 0 and the density
f exists and is square integrable, then Tn → ‖f − f1f2‖2 > 0 a.s. If h is fixed,
the strong law of large numbers implies Tn → ‖Cxy‖2

HS > 0 for characteristic
kernels, and the test is strongly consistent. In both cases the strong consistency
is not distribution-free.

4.2 Limit Distribution

We now describe the asymptotic limit distribution of the test statistic Tn in (11).
We address two cases: first, when the kernel bandwidth decreases, and second,
when it remains fixed.

Let us consider the case where Kh(x) and K ′
h(y) are intended to be used

in a Rosenblatt-Parzen density estimator, as in (9). The corresponding density
estimates in Tn are mean square consistent if h = hn such that

hn → 0 and nhd
nh

d′

n → ∞. (15)

Based on the results in [22, 23, 24], we expect Tn to be asymptotically normally
distributed. For an independence test, we require var(Tn) ≈ var(T̃n). If h → 0,

var(T̃n) ≈ 2‖f‖2n−2h−dh−d′
. (16)

192 A. Gretton and L. Györfi

Therefore a possible form for the asymptotic normal distribution is

nhd/2hd′/2(Tn − E{Tn})/σ D→ N (0, 1),

where σ2 = 2‖f‖2. While an α-level test may be obtained by replacing E{Tn}
with its upper bound in (13), the resulting threshold is still not distribution-free,
since σ depends on the unknown f . The simplest distribution-free bound for the
variance, σ2 ≤ ‖K‖4‖K ′‖4n−2h−2dh−2d′

, is unsatisfactory since its performance
as a function of h is worse than the result in (16). An improved distribution-
free bound on the variance is a topic for future research: we give an empirical
estimate below (eq. 18) for use in asymptotic hypothesis tests.

We now consider the case of fixed h. Following [8], the distribution of Tn under
H0 is

nTn
D→

∞∑
l=1

λlz
2
l , (17)

where zl ∼ N (0, 1) i.i.d., and λl are the solutions to an eigenvalue problem
depending on the unknown distribution of X and Y (see [11, Theorem 2]). A
difficulty in using the statistic (11) in a hypothesis test therefore arises due to
the form of the null distribution, which is a function of the unknown distribution
over X and Y , whether or not h is fixed. In the case of h decreasing according
to (15), we may use an empirical estimate of the variance of Tn under H0 due
to Gretton et al. [11, Theorem 4]. Denoting by ! the entrywise matrix product
and A·2 the entrywise matrix power,

var(Tn) = 1
 (B− diag(B)) 1, where B = ((HLH) ! (HL′H))·2 , (18)

L is a matrix with entries Lh(Xi −Xj), L′ is a matrix with entries L′
h(Yi − Yj),

H = I − n−111
 is a centering matrix, and 1 an n× 1 vector of ones.
Two approaches have been proposed in the case of fixed h to obtain quantiles

of the null distribution (17) for hypothesis testing: repeated shuffling of the
sample [8], and approximation by a two-parameter Gamma density [9],

nTn ∼ xα−1e−x/β/ (βαΓ (α)) , α = (E{Tn})2/var(Tn), β = nvar(Tn)/E{Tn},

using E{Tn} from (12). This Gamma approximation was found by [11] to per-
form identically on the Section 5 benchmark data to the more computationally
expensive approach of Feuerverger [8]. We emphasize, however, that this approx-
imation is a heuristic, with no guarantees on asymptotic performance.

We end this section with an empirical comparison between the Normal and
two-parameter Gamma null distribution approximations, and the null CDF gen-
erated by repeated independent samples of Tn. We chose X and Y to be in-
dependent and univariate, with X having a uniform distribution and Y being
a symmetric bimodal mixture of Gaussians. Both variables had zero mean and
unit standard deviation. Results are plotted in Figure 1. We observe that as the
kernel size increases, the Gamma approximation of Tn becomes more accurate
(although it is always good for large quantiles, which is the region most impor-
tant to a hypothesis test). The Normal approximation is close to the Gamma

Nonparametric Independence Tests 193

0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

T

P
(n

T
n <

 T
)

Samp:200, Kernel size:0.01

Gamma
Normal
Emp

0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

T

P
(n

T
n <

 T
)

Samp:200, Kernel size:0.1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

T

P
(n

T
n <

 T
)

Samp:200, Kernel size:1

Fig. 1. Simulated cumulative distribution function of Tn (Emp) under H0 for n =
200, compared with the two-parameter Gamma distribution (Gamma) and the Normal
distribution (Normal). The empirical CDF was obtained using 5000 independent draws
of Tn.

approximation for small kernel sizes, but is less accurate for larger kernel sizes
(where “small” and “large” will depend on the measure ν).

5 Experiments

In comparing the independence tests, we made use of the multidimensional
benchmark data proposed by Gretton et al. [11]. We tested the independence
of both one-dimensional and two-dimensional random variables (i.e. d = d′ = 1
and d = d′ = 2). The data were constructed as follows. First, we generated n
samples of two univariate random variables, each drawn at random from the
ICA benchmark densities in Figure 5 of Bach and Jordan [25]: these included
super-Gaussian, sub-Gaussian, multimodal, and unimodal distributions. Second,
we mixed these random variables using a rotation matrix parametrised by an
angle θ, varying from 0 to π/4 (a zero angle meant the data were independent,
while dependence became easier to detect as the angle increased to π/4: see the
two plots in Figure 2). Third, in the case of d = 2, a second dimension was ap-
pended to each of the mixed variables, consisting of independent Gaussian noise
of zero mean and unit standard deviation; and each resulting vector was multi-
plied by an independent random two-dimensional orthogonal matrix, to obtain
vectors dependent across all observed dimensions. We emphasise that classical
approaches (such as Spearman’s ρ or Kendall’s τ) are unable to find this depen-
dence, since the variables are uncorrelated; nor can we recover the subspace in
which the variables are dependent using PCA, since this subspace has the same
second order properties as the noise. We investigated sample sizes n = 128, 512.

We compared three different asymptotic independence testing approaches
based on space partitioning: the L1 test, denoted L1; the Pearson χ2 test Pears;
and the log likelihood test Like. The number of discretisations per dimension
was set at mn = m′

n = 4, besides in the n = 128, d = 2 case, where it was
set at mn = m′

n = 3: in the latter case, there were too few samples per bin
when a greater number of partitions were used. We divided our spaces Rd and
Rd′

into roughly equiprobable bins. Further increases in the number of parti-
tions per dimension, where sufficient samples were present to justify this (i.e.,

194 A. Gretton and L. Györfi

−2 0 2
−3

−2

−1

0

1

2

3
Rotation θ = π/8

X

Y

−2 0 2
−3

−2

−1

0

1

2

3
Rotation θ = π/4

X

Y
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Angle (×π/4)

%
 a

cc
ep

ta
nc

e
of

 H
0

Samp:128, Dim:1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Angle (×π/4)

%
 a

cc
ep

ta
nc

e
of

 H
0

Samp:128, Dim:2

Ker(g)
Ker(n)
L1
Pears
Like

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Angle (×π/4)

%
 a

cc
ep

ta
nc

e
of

 H
0

Samp:512, Dim:1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Angle (×π/4)

%
 a

cc
ep

ta
nc

e
of

 H
0

Samp:512, Dim:2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Angle (×π/4)

%
 a

cc
ep

ta
nc

e
of

 H
0

Samp:128, Dim:1, h:3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Angle (×π/4)

%
 a

cc
ep

ta
nc

e
of

 H
0

Samp:512, Dim:1, h:3

Fig. 2. Top left plots: Example dataset for d = d′ = 1, n = 200, and rotation angles
θ = π/8 (left) and θ = π/4 (right). In this case, both distributions prior to rotation
are mixtures of two Gaussians. Next four plots: Rate of acceptance of H0 for the
PD, fCorr, HSICp, and HSICg tests. “Samp” is the number n of samples, and “dim” is
the dimension d = d′ of x and y. Bottom right plots Performance of the Ker(g) and
Ker(n) tests for a large kernel size h = 3, and α = 0.5, to show the difference between
the Normal and two-parameter Gamma approximations to the null distribution.

the n = 512, d = 1 case), resulted only in very minor shifts in performance. We
also compared with the kernel approach from Section 4, using both the Gamma
Ker(g) and Normal Ker(n) approximations to the null distribution. Our kernels
were Gaussian for both X and Y , with h and h′ set to the median distances
between samples of the respective variables, following Gretton et al. [11].

Results are plotted in Figure 2 (average over 500 independent generations of
the data). The y-intercept on these plots corresponds to the acceptance rate of
H0 at independence, or 1 − (Type I error), and should be close to the design
parameter of 1−α = 0.95. Elsewhere, the plots indicate acceptance of H0 where
the underlying variables are dependent, i.e. the Type II error. As expected, de-
pendence becomes easier to detect as θ increases from 0 to π/4, when n increases,
and when d decreases. Although no tests are reliable for small θ, several tests
do well as θ approaches π/4 (besides the case of n = 128, d = 2). For smaller
numbers of samples (n = 128), the L1 test performs the same as or slightly
better than the log likelihood test; the Pearson χ2 test always performs worst.
For larger numbers of samples (n = 512), the L1 test has a slight advantage
at d = 1, but the log-likelihood test displays far better performance for d = 2.
The superior performance of the log-likelihood test compared with the χ2 test
might arise due to the different convergence properties of the two test statistics.
In particular, we note the superior convergence behaviour of the goodness-of-fit
statistic for the log likelihood, as compared with the χ2 statistic, in terms of

Nonparametric Independence Tests 195

the dependence of the latter on the number mn of partitions used [15]. In all
cases, the kernel-based test outperforms the remaining methods, and behaviour
under the Normal and Gamma null distribution models is virtually identical.
That said, we should bear in mind the kernel test thresholds require E{Tn}
and var(Tn), which are unknown and must be estimated from the data: thus,
unlike the L1, χ2, and log likelihood tests, the kernel test thresholds are not
distribution-independent.

It is of interest to further investigate the null distribution approximation
strategies for the kernel tests. We used an artificially high kernel bandwidth
h = 3, and a lower α = 0.5, to make visible the performance difference. Results
are shown in the final row of Figure 2. In accordance with Figure 1, the Gaussian
approximation yields a larger threshold than the true CDF would require, and
consequently has a Type I error below the design level α.

Acknowledgments. The research of László Györfi is supported by the Hungarian
Academy of Sciences (MTA SZTAKI). This work is also supported by the IST
Program of the EC, under the FP7 Network of Excellence, ICT-216886-NOE.

References

[1] Biau, G., Györfi, L.: On the asymptotic properties of a nonparametric l1-test
statistic of homogeneity. IEEE Trans. Inform. Theory 51, 3965–3973 (2005)

[2] Györfi, L., van der Meulen, E.C.: A consistent goodness of fit test based on the total
variation distance. In: Roussas, G. (ed.) Nonparametric Functional Estimation and
Related Topics, pp. 631–645. Kluwer Academic Publishers, Dordrecht (1990)

[3] Beirlant, J., Györfi, L., Lugosi, G.: On the asymptotic normality of the l1- and
l2-errors in histogram density estimation. Canad. J. Statist. 22, 309–318 (1994)

[4] Györfi, L., Vajda, I.: Asymptotic distributions for goodness of fit statistics in a
sequence of multinomial models. Stat. Prob. Lett. 56, 57–67 (2002)

[5] Dembo, A., Peres, Y.: A topological criterion for hypothesis testing. Ann. Sta-
tist. 22, 106–117 (1994)

[6] Read, T., Cressie, N.: Goodness-Of-Fit Statistics for Discrete Multivariate Analy-
sis. Springer, New York (1988)

[7] Rosenblatt, M.: A quadratic measure of deviation of two-dimensional density es-
timates and a test of independence. The Annals of Statistics 3, 1–14 (1975)

[8] Feuerverger, A.: A consistent test for bivariate dependence. International Statis-
tical Review 61, 419–433 (1993)

[9] Kankainen, A.: Consistent Testing of Total Independence Based on the Empirical
Characteristic Function. PhD thesis, University of Jyväskylä (1995)

[10] Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical depen-
dence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.)
ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–78. Springer, Heidelberg (2005)

[11] Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.: A kernel
statistical test of independence. In: NIPS 20 (2008)

[12] Hoeffding, W.: A nonparametric test for independence. The Annals of Mathemat-
ical Statistics 19, 546–557 (1948)

[13] Blum, J.R., Kiefer, J., Rosenblatt, M.: Distribution free tests of independence
based on the sample distribution function. Ann. Math. Stat. 32, 485–498 (1961)

196 A. Gretton and L. Györfi

[14] Gretton, A., Györfi, L.: Consistent nonparametric tests of independence. Technical
Report 172, MPI for Biological Cybernetics (2008)

[15] Beirlant, J., Devroye, L., Györfi, L., Vajda, I.: Large deviations of divergence
measures on partitions. J. Statist. Plan. Inference 93, 1–16 (2001)

[16] Kallenberg, W.C.M.: On moderate and large deviations in multinomial distribu-
tions. Annals of Statistics 13, 1554–1580 (1985)

[17] Quine, M., Robinson, J.: Efficiencies of chi-square and likelihood ratio goodness-
of-fit tests. Ann. Statist. 13, 727–742 (1985)

[18] Fukumizu, K., Gretton, A., Sun, X., Schölkopf, B.: Kernel measures of conditional
dependence. In: NIPS 20 (2008)

[19] Sriperumbudur, B.K., Gretton, A., Fukumizu, K., Lanckriet, G.R.G., Schölkopf,
B.: Injective Hilbert space embeddings of probability measures. In: COLT, pp.
111–122 (2008)

[20] Steinwart, I.: On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research 2, 67–93 (2001)

[21] McDiarmid, C.: On the method of bounded differences. In: Survey in Combina-
torics, pp. 148–188. Cambridge University Press, Cambridge (1989)

[22] Hall, P.: Central limit theorem for integrated square error of multivariate non-
parametric density estimators. Journal of Multivariate Analysis 14, 1–16 (1984)

[23] Cotterill, D.S., Csörgő, M.: On the limiting distribution of and critical values for
the Hoeffding, Blum, Kiefer, Rosenblatt independence criterion. Statistics and
Decisions 3, 1–48 (1985)

[24] Beirlant, J., Mason, D.M.: On the asymptotic normality of lp-norms of empirical
functionals. Math. Methods Statist. 4, 1–19 (1995)

[25] Bach, F.R., Jordan, M.I.: Kernel independent component analysis. J. Mach. Learn.
Res. 3, 1–48 (2002)

A Proof of Theorem 2

The main difficulty in proving Theorem 2 is that it states the asymptotic nor-
mality of Ln(νn, µn,1 × µn,2), which is a sum of dependent random variables.
To overcome this problem, we use a “Poissonization” argument originating from
the fact that an empirical process is equal in distribution to the conditional
distribution of a Poisson process given the sample size (see [3] for details). We
begin by introducing the necessary terminology. For each n ≥ 1, denote by
Nn a Poisson(n) random variable, defined on the same probability space as the
sequences (Xi)i≥1 and (Yi)i≥1, and independent of these sequences. Further de-
fine νNn , µNn,1 and µNn,2 as the Poissonized version of the empirical measures
associated with the samples {(Xi, Yi)}, {Xi} and {Yi}, respectively,

nνNn(A×B) = #{i : (Xi, Yi) ∈ A×B, i = 1, . . . , Nn},
nµNn,1(A) = #{i : Xi ∈ A, i = 1, . . . , Nn}, and
nµNn,2(B) = #{i : Yi ∈ B, i = 1, . . . , Nn},

for any Borel subsets A and B. Clearly, nνNn(A×B), nµNn,1(A), and nµNn,2(B)
are Poisson random variables. The Poissonized version L̃n(νn, µn,1 × µn,2) of
Ln(νn, µn,1 × µn,2) is then

L̃n(νn, µn,1 × µn,2) =
∑

A∈Pn

∑
B∈Qn

|νNn(A× B) − µNn,1(A) · µNn,2(B)|.

Nonparametric Independence Tests 197

Key to the proof of Theorem 2 is the following result, which extends the propo-
sition of [3, p. 311].

Proposition 1. Let gnjk (n ≥ 1, j = 1, . . . ,mn, k = 1, . . . ,m′
n) be real measur-

able functions, and let

Mn :=
mn∑
j=1

m′
n∑

k=1

gnjk (νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)) .

Assume that under the null hypothesis,

E{gnjk (νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk))} = 0,

and that (
Mn,

Nn − n√
n

)
D→ N

([
0
0

]
,

[
σ2 0
0 1

])
(19)

as n → ∞, where σ is a positive constant and N (m,C) is a normally distributed
random variable with mean m and covariance matrix C. Then

1
σ

mn∑
j=1

m′
n∑

k=1

gnjk (νn(Anj ×Bnk) − µn,1(Anj)µn,2(Bnk)) D→ N (0, 1).

The proof of the proposition is a simple extension of that by Beirlant et al. for
the goodness-of-fit case [3, pp. 311–313]. We now turn to the proof of Theorem 2.

Proof (Theorem 2, sketch only). We will show the theorem with the centering
constant

Cn = E{L̃n(νn, µn,1×µn,2)} =
∑

A∈Pn

∑
B∈Qn

E{|νNn(A×B)−µNn,1(A)·µNn,2(B)|}.

(20)
Define

gnjk(x) :=
√
n (|x| − E |νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)|) .

Our goal is to prove that the assumption in (19) holds. In particular (see [3, 1]
for details), we require a central limit result to hold for the Poissonized statistic

Sn := t
√
n

mn∑
j=1

m′
n∑

k=1

(
|νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)|

− E |νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)|
)

+ v
√
n (Nn/n− 1) .

Once we obtain var(Sn), the asymptotic normality in (19) can be proved by
verifying the Lyapunov conditions as in Beirlant et al. [3]. We have that

Nn/n− 1 =
∑

A∈Pn

∑
B∈Qn

νNn(A×B) −
∑

A∈Pn

∑
B∈Qn

µ1(A)µ2(B),

198 A. Gretton and L. Györfi

and therefore the variance of Sn is

var(Sn) = t2n
∑

A∈Pn

∑
B∈Qn

var |νNn(A×B) − µNn,1(A)µNn,2(B)|
+ 2tvn

∑
A∈Pn

∑
B∈Qn

E
{
|νNn(A×B) − µNn,1(A)µNn,2(B)|

· (νNn(A×B) − µ1(A)µ2(B))
}

+ v2.

One can check that there exist standard normal random variables ZA×B, ZA,
and ZB such that

νNn(A×B)
D≈ ZA×B

√
µ1(A)µ2(B)/n + µ1(A)µ2(B),

µNn,1(A)
D≈ ZA

√
µ1(A)/n + µ1(A),

with µNn,2(B) and ZB defined by analogy. Making these substitutions and sim-
plifying,

var(Sn) ≈ t2(1 − 2/π) + v2.

Supermartingales in Prediction with
Expert Advice

Alexey Chernov, Yuri Kalnishkan, Fedor Zhdanov, and Vladimir Vovk

Computer Learning Research Centre, Department of Computer Science
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

{chernov,yura,fedor,vovk}@cs.rhul.ac.uk

Abstract. This paper compares two methods of prediction with expert
advice, the Aggregating Algorithm and the Defensive Forecasting, in two
different settings. The first setting is traditional, with a countable num-
ber of experts and a finite number of outcomes. Surprisingly, these two
methods of fundamentally different origin lead to identical procedures. In
the second setting the experts can give advice conditional on the learner’s
future decision. Both methods can be used in the new setting and give
the same performance guarantees as in the traditional setting. However,
whereas defensive forecasting can be applied directly, the AA requires
substantial modifications.

1 Introduction

The framework of prediction with expert advice was introduced in the late 1980s.
In contrast to statistical learning theory, the methods of prediction with expert
advice work without making any statistical assumption about the source of data.
The role of the assumptions is played by a “pool of experts” that the predictor
competes with. For references and details, see the monograph [3].

Many methods for prediction with expert advice are known. This paper deals
with two of them: the Aggregating Algorithm [15] and defensive forecasting [17].
The Aggregating Algorithm (the AA for short) is a member of the family of
exponential-weights algorithms, and so implements a Bayesian-type aggregation;
various optimality properties of the AA have been established [16]. Defensive
forecasting is a recently developed technique that combines the ideas of game-
theoretic probability [12] with Levin and Gács’s ideas of neutral measure [7, 9]
and Foster and Vohra’s ideas of universal calibration [5].

The idea of defensive forecasting is that a prediction strategy is developed
assuming that we are given probability forecasts satisfying a convenient law of
probability. In game-theoretic probability, a law of probability is represented as
a strategy for an imaginary opponent, Sceptic, whose capital tends to infinity
(or becomes large) if the law is violated. Sceptic’s capital is a supermartingale,
and a well-known result (Lemma 3 of this paper) says that there is a forecasting
strategy that prevents Sceptic’s capital from growing, thereby forcing the law
of probability. This paper gives a self-contained description of a simple version

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 199–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 A. Chernov et al.

of the method of defensive forecasting; we have no need to talk about laws of
probability (for us, they are synonymous with game-theoretic supermartingales).

The older versions of defensive forecasting (see, e.g., [17]) minimize Learner’s
actual loss with the help of the following trick: a probability forecasting system is
constructed such that the actual losses (Learner’s and experts’) are close to the
(one-step-ahead conditional) expected losses; at each step Learner minimizes the
expected loss. (Therefore, the law of probability used is the conjunction of several
laws of large numbers.) Defensive forecasting, as well as the AA, can be used for
competitive online prediction against “pools of experts” consisting of all functions
from a large functional class (see [18, 19]). However, the loss bounds proved so
far are generally incomparable: for large classes (such as many Sobolev spaces),
defensive forecasting is better, whereas for smaller classes (such as classes of
analytical functions), the AA works better. Note that the optimality results for
the AA are obtained for the case of free agents as experts, not functions from a
given class, thus we need to evaluate the algorithms anew.

In this paper, the AA and defensive forecasting are compared in the simple
case of a finite number of outcomes. Learner competes with a pool of experts Θ.
Learner and the experts suffer some loss at each step. We are interested in the
performance guarantees of the form

∀θ ∈ Θ LN ≤ cLN(θ) + a(θ) ,

where LN is the cumulative loss of Learner and LN(θ) is the cumulative loss of
expert θ over the first N steps, c is some constant and a depends on θ only. In
this case, we prove the following fact: an exponent of the regret (LN − cLN (θ))
is a supermartingale if and only if the AA guarantees for this c the bound above.
A defensive forecasting algorithm exploiting this fact turns out to give the same
predictions as the AA.

Then we consider a new setting for prediction with expert advice, where the
experts are allowed to “second-guess”, that is, to give “conditional” predictions
that are functions of the future Learner’s decision (cf. the notion of internal
regret [6]). If the dependence is regular enough (the expert’s loss is continuous
in Learner’s loss), the Defensive Forecasting algorithm works in the new setting
virtually without changes and guarantees the same performance bound as in the
traditional setting. The AA in its original form cannot work in the new setting,
and we suggest a modified version of the AA for this case.

2 Aggregating Algorithm

We begin with formulating the setting of the prediction with expert advice and
the AA. Then we give a proof of the standard performance bound for the AA,
which provides an insight to the “supermartingale” nature of the bound.

A game of prediction consists of three components: a non-empty finite set
Ω of possible outcomes, a non-empty set Γ of possible decisions, and a func-
tion λ : Ω × Γ → [0,∞] called the loss function. For technical convenience, we
identify each decision γ ∈ Γ with the function ω �→ λ(ω, γ) (and also with

Supermartingales in Prediction with Expert Advice 201

a point in an |Ω|-dimensional Euclidian space with pointwise operations). Let
Λ = { g ∈ [0,∞]Ω | ∃γ ∈ Γ ∀ω ∈ Ω g(ω) = λ(ω, γ) } be the set of predictions.
From now on, a game is a pair (Ω,Λ), where Λ ⊆ [0,∞]Ω.

The game of prediction with expert advice is played by Learner, Reality, and
Experts; the set (“pool”) of Experts is denoted by Θ. We will assume that Θ
is (finite or) countable. In this paper, there is no loss of generality in assuming
that Reality and all Experts are cooperative, since we are only interested in what
can be achieved by Learner alone; therefore, we essentially consider a two-player
game. The protocol of the game is the following.

Prediction with expert advice

L0 := 0.
Lθ

0 := 0, θ ∈ Θ.
FOR n = 1, 2, . . . :

Experts θ ∈ Θ announce γθ
n ∈ Λ.

Learner announces γn ∈ Λ.
Reality announces ωn ∈ Ω.
Ln := Ln−1 + γn(ωn).
Lθ

n := Lθ
n−1 + γθ

n(ωn).
END FOR.

The goal of Learner is to keep Ln less or at least not much greater than Lθ
n,

at each step n and for all θ ∈ Θ.
To analyse the game, we need some additional notation. A point g ∈ [0,∞]Ω is

called a superprediction if there is γ ∈ Λ such that γ(ω) ≤ g(ω) for all ω ∈ Ω. The
last property will be denoted by γ ≤ g. Let ΣΛ be the set of all superpredictions.

The Aggregating Algorithm is a strategy for Learner. It has four parameters:
reals c ≥ 1 and η > 0, a distribution P0 on Θ (that is, P0(θ) ∈ [0, 1] for all θ ∈ Θ
and

∑
Θ P0(θ) = 1), and a substitution function σ : ΣΛ → Λ such that σ(g) ≤ g

for any g ∈ ΣΛ.
At step N , the AA takes a point gN ∈ [0,∞]Ω defined by the formula

gN (ω) = − c

η
ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (ω)) ,

where

PN−1(θ) = P0(θ)
N−1∏
n=1

exp(−ηγθ
n(ωn))

is an unnormalized distribution on Θ. Then, γN = σ(gN) is announced as the
next prediction of Learner.

The step of AA is correct if and only if gN is a superprediction. The necessary
and sufficient condition for this is

∃γN ∈ Λ ∀ω γN (ωN) ≤ − c

η
ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (ω)) . (1)

202 A. Chernov et al.

We say that the AA is realizable for certain c and η if the condition (1) is
true regardless of γθ

N ∈ Λ and PN−1 (that is, regardless of P0, the history, and
the opponents’ moves). In other words, for any finite set G ⊆ Λ and for any
distribution ρ on G, it holds that

∃γ ∈ Λ ∀ω exp
(
−η

c
γ(ω)

)
≥

∑
g∈G

ρ(g) exp(−ηg(ω)) . (2)

A detailed survey of the AA, its properties, attainable bounds and respective
conditions on c and η for different games can be found in [16]. Remark only that
if the AA is realizable for c = 1 and some η, the game is called η-mixable (and
mixable if it is η-mixable for some η), and this case is of special interest.

Theorem 1 (Vovk, 1990). If the AA is realizable for c and η, then the AA
with parameters c, η, P0, and σ guarantees that at each step n for all experts θ

Ln ≤ cLθ
n +

c

η
ln

1
P0(θ)

.

The theorem was proved in [15]. Here we reproduce the proof emphasizing the
points we need in the sequel.

Proof. We need to deduce the performance bound from the condition (1). To
this end, we will rewrite (1) and get a semi-invariant of AA—a value that does
not grow.

First, note that if we replace ∃γN ∈ Λ by ∃γN ∈ ΣΛ in (1), we get an
equivalent statement Indeed, Λ ⊆ ΣΛ, thus one direction is trivial. The other
direction holds by definition of a superprediction.

Second, note PN−1 occur in (1) only as a ratio of PN−1(θ) to their sum, so we
can multiply all PN−1(θ) by a constant (an expression without θ). Let us define
QN−1 by the formula P0(θ)QN−1(θ) = PN−1(θ)

∏N−1
n=1 exp

(
η
c γn(ωn)

)
, that is,

QN−1(θ) = exp

(
η

N−1∑
n=1

(
γn(ωn)

c
− γθ

n(ωn)
))

,

and replace PN−1(θ) by P0(θ)QN−1(θ) in (1). The inequality transforms to∑
θ∈Θ

P0(θ)QN−1(θ) ≥
∑
θ∈Θ

P0(θ)QN−1(θ) exp(−ηγθ
N (ω)) exp(

η

c
γN (ω)) .

Finally, we get that (1) is equivalent to the following condition:

∃γN ∈ ΣΛ ∀ω
∑
θ∈Θ

P0(θ)QN (θ) ≤
∑
θ∈Θ

P0(θ)QN−1(θ) (3)

(for ωN in QN we substitute ω).
In other words, the AA (if realizable for c and η) guarantees that after each

step n the value
∑

θ∈Θ P0(θ)Qn(θ) does not increase whatever ωn is chosen by

Supermartingales in Prediction with Expert Advice 203

Reality. Since
∑

θ∈Θ P0(θ)Q0(θ) =
∑

θ∈Θ P0(θ) = 1, we get
∑

θ∈Θ P0(θ)QN (θ) ≤
1 and QN(θ) ≤ 1/P0(θ) for each step N . To complete the proof it remains to
note that

QN (θ) = exp
(
η

(
LN

c
− Lθ

N

))
. �	

For c = 1, the value 1
η ln

∑
θ P0(θ)QN (θ) is known as the exponential potential

(see [3, Sections 3.3,3.5]) and plays an important role in the analysis of weighted
average algorithms.

In the next section we show that the reason why condition (3) holds is essen-
tially that the Q is a supermartingale.

3 Supermartingales

Let P(Ω) be the set of all distributions on Ω. Note that since Ω is finite we
can identify P(Ω) with a (|Ω| − 1)-dimensional simplex in Euclidean space,
with the standard distance and topology. Let E be any set (maybe, empty).
A function S : (E × P(Ω) ×Ω)∗ → R is called a (game-theoretic) supermartin-
gale if for any N , for any e1, . . . , eN ∈ E, for any π1, . . . , πN ∈ P(Ω), for any
ω1, . . . , ωN−1 ∈ Ω, it holds that∑

ω∈Ω

πN (ω)S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1, eN , πN , ω)

≤ S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1) . (4)

Remark 1. In the context of algorithmic probability theory (e. g. [10, p. 296]),
the word ‘supermartingale’ is used in the following sense. Let µ : Ω∗ → [0, 1] be
a measure on Ω∗. A function s : Ω∗ → R+ is a supermartingale with respect to
µ if for any N and any ω1, . . . , ωN−1 ∈ Ω it holds that∑

ω∈Ω

µ(ω | ω1, . . . , ωN−1)s(ω1, . . . , ωN−1, ω) ≤ s(ω1, . . . , ωN−1) ,

where µ(ω | ω1, . . . , ωN−1) = µ(ω1,...,ωN−1,ω)
µ(ω1,...,ωN−1)

. The relation with the game-
theoretic supermartingale notion is the following. Let us take any measure µ.
Let en be any functions of ω1 . . . , ωn−1. Let πn(ω) be µ(ω | ω1, . . . , ωn−1). Hav-
ing substituted these functions in a game-theoretic supermartingale S, one gets
a probabilistic supermartingale with respect to µ.

A supermartingale S is called forecast-continuous if for each N , it is continuous
as a function of πN .

3.1 Two Examples of Supermartingales

Let us consider two examples of supermartingales that naturally arise from two
widely used games of prediction.

204 A. Chernov et al.

The logarithmic loss function is defined by

λ(ω, γ) :=

{
− ln γ if ω = 1,
− ln(1 − γ) if ω = 0,

where ω ∈ {0, 1} and γ ∈ [0, 1] (notice that the loss function is allowed to take
value ∞). The losses in the game are LN :=

∑N
n=1 λ(ωn, γn) for Learner who

predicts γn and Lθ
N :=

∑N
n=1 λ(ωn, γ

θ
n) for expert θ who predicts γθ

n. Consider
an exponent of the difference of losses of Learner and the expert:

exp

(
η

N∑
n=1

(
λ (ωn, γn) − λ

(
ωn, γ

θ
n

)))
.

Let us assign prediction γ ∈ [0, 1] to each probability distribution (1 − γ, γ)
on {0, 1}. With this identification, the expression above can be considered as a
function on ([0, 1] × P({0, 1})× {0, 1})∗.

Lemma 1. For η ∈ [0, 1], the function above is a forecast-continuous super-
martingale.

Proof. The continuity is obvious. For the supermartingale property, it suffices
to check that

peη(− ln p+ln g) + (1 − p)eη(− ln(1−p)+ln(1−g)) ≤ 1,

i.e., that p1−ηgη + (1 − p)1−η(1 − g)η ≤ 1 for all p, g ∈ [0, 1] (p stands for γn

and g stands for γθ
n). The last inequality immediately follows from the inequality

between the geometric and arithmetic means when η ∈ [0, 1]. (The left-hand side
of that inequality is a special case of what is known as the Hellinger integral in
probability theory.) �	

In the game with quadratic loss function, ω ∈ {0, 1} and γ ∈ [0, 1] as before,
and the losses of Learner and expert θ are LN :=

∑N
n=1(γn − ωn)2 and Lθ

N :=∑N
n=1(γ

θ
n − ωn)2, respectively.

Lemma 2. For η ∈ [0, 2], the following function on ([0, 1]×P({0, 1})×{0, 1})∗

exp

(
η

N∑
n=1

(
(γn − ωn)2 −

(
γθ

n − ωn

)2))
is a forecast-continuous supermartingale.

Proof. It is sufficient to check that

peη((p−1)2−(g−1)2) + (1 − p)eη((p−0)2−(g−0)2) ≤ 1

for all p, g ∈ [0, 1]. If we substitute g = p + x, the last inequality will reduce to

pe2η(1−p)x + (1 − p)e−2ηpx ≤ eηx2
, ∀x ∈ [−p, 1 − p].

Supermartingales in Prediction with Expert Advice 205

The last inequality is a simple corollary of Hoeffding’s inequality [8, 4.16], which
is true for any h ∈ R (cf. [3, Lemma A.1]). Indeed, applying Hoeffding’s inequality
to the random variable X that is equal to 1 with probability p and to 0 with prob-
ability (1−p), we obtain p exp(h(1 − p)) + (1 − p) exp(−hp) ≤ exp(h2/8), which
the substitution h := 2ηx reduces to p exp(2η(1 − p)x) + (1 − p) exp(−2ηpx) ≤
exp(η2x2/2) ≤ exp(ηx2), the last inequality assuming η ≤ 2. �	

3.2 A Supermartingale Criterion If the AA Is Realizable

In Lemmas 1 and 2, we take a certain function of losses, and consider it as a
supermartingale by having identified a prediction γ with a distribution (1−γ, γ).
A similar approach works also in the general case.

Let α : P(Ω) → ΣΛ ⊆ [0,∞]Ω map any distribution π to a prediction απ.
Given α, a real c ≥ 1, and a real η > 0, let us define the following function on
(ΣΛ × P(Ω) ×Ω)∗:

Q(e1, π1, ω1, . . . , eN , πN , ωN) = exp

(
η

N∑
n=1

(
απn(ωn)

c
− en(ωn)

))
. (5)

Note that this very function is used in Lemmas 1 and 2, and also it is the function
QN(θ) from the proof of Theorem 1, with en standing for γθ

n and απn standing
for γn.

Our next goal (Theorems 2 and 3) is to show that the AA is realizable if and
only if there exists α such that the function Q is a supermartingale.

Lemma 3. Let S be a forecast-continuous supermartingale. For any N , for any
e1, . . . , eN ∈ E, for any π1, . . . , πN−1 ∈ P(Ω), for any ω1, . . . , ωN−1 ∈ Ω, it
holds that

∃π ∈ P(Ω)∀ω ∈ Ω S(e1, π1, ω1, . . . , eN , π, ω)
≤ S(e1, π1, ω1, . . . , eN−1, πN−1, ωN−1) .

A variant of this lemma was originally proved by Levin [9]. For a full proof see [7,
Theorem 6] and [20, Theorem 1].

Note that the property provided by Lemma 3 is essentially the condition (3).

Theorem 2. Let α be a mapping from P(Ω) to ΣΛ and c ≥ 1 and η > 0 reals
such that Q is a forecast-continuous supermartingale. Then the AA is realizable
for c and η.

Proof. Let G ⊆ Λ be an arbitrary finite set. To prove (2) for any distribution
ρ on G, we construct a supermartingale Qρ on (P(Ω) ×Ω)∗ (the set E in the
definition of supermartingale may be empty), which is a ρ-average of Q with g
substituted for e1 (e2, e3, . . . may be arbitrary), and apply Lemma 3 for N = 1.
Namely,

Qρ(π, ω) =
∑
g∈G

ρ(g)Q(g, π, ω) .

206 A. Chernov et al.

By the lemma, there exists π ∈ P(Ω) such that Qρ(π, ω) ≤ 1 for all ω, that is,∑
g∈G

ρ(g) exp
(
η

(
απ(ω)

c
− g(ω)

))
≤ 1 .

Since απ ∈ ΣΛ, there is γ ∈ Λ such that γ ≤ απ, which completes the proof. �	

For the converse statement, we need three assumptions about Λ.

Assumption 1. Λ is a compact set.

Assumption 2. There is γ ∈ Λ such that γ(ω) < ∞ for all ω.
These assumptions are standard (see [16]). The third assumption is new and

very technical. First we introduce some definitions that will be useful also in the
proof of the theorem below.

For a given η, the exp-convex hull of ΣΛ is the set ΞΛ ⊇ ΣΛ that consists of
all points g ∈ [0,∞]Ω of the form

g(ω) = log(e−η)

∑
γ∈G

ρ(γ)
(
e−η

)γ(ω) = −1
η

ln
∑
γ∈G

ρ(γ) exp(−ηγ(ω))

for all ω ∈ Ω, where G is a finite subset of ΣΛ and ρ is a distribution on G.
Let Ξ ′ be the set of minimal elements of ΞΛ: f ∈ Ξ ′ if and only if for any

g ∈ Ξ ∀ω (g(ω) ≤ f(ω)) implies f = g. Notice that Ξ ′ is contained in the
boundary of ΞΛ. It is known that the game is η-mixable if and only if ΞΛ ⊆ ΣΛ

(which explains the name) if and only if Ξ ′ ⊆ Λ.
For π ∈ P(Ω) and g ∈ [0,∞]Ω, denote

Eπg =
∑
ω∈Ω

π(ω)g(ω) .

Assumption 3. Let π ∈ P(Ω) be such that π(ω1) = 0 and π(ω2) = 0 for some
ω1 �= ω2. Let m = minγ∈Ξ′ Eπγ. If Eπγ1 = m and Eπγ2 = m for some γ1, γ2 ∈
Ξ ′, then either γ1 minorizes γ2 or vice versa.

Assumption 3 is rather awkward. But it holds for a wide class of games. In
particular, it holds for all binary games and for all proper scoring rules. (But
it does not hold, e. g., for non-binary “absolute-loss” game, where λ(ω, γ) =∑n

i=1 |ωi − γi|.)
On the other hand, some technical requirement of this kind is unavoidable. It

does not appear just from our proof: For almost all π ∈ P(Ω) there is a unique
απ such that Q defined by (5) is a supermartingale. And it is easy to construct an
example where this correspondence cannot be extended to a continuous mapping
from P(Ω) to Ξ ′. (One possible way is to consider the image of ΞΛ under point-
wise exponential mapping g �→ e−ηg. Every π ∈ P(Ω) can be naturally identified
with a family of parallel hyperplanes. The inequality (4) actually means that απ

is a point of tangency, where one of the hyperplanes touches the image of ΞΛ.
To get an example with a point of discontinuity, one may consider a vertical
cylinder in the three-dimensional space and a horisontal hyperplane.) It is not
clear how to cope with such cases under the supermartingale approach.

Supermartingales in Prediction with Expert Advice 207

Theorem 3. Let the game (Ω,Λ) satisfy Assumptions 1–3. If the AA is realiz-
able for certain c and η, then there is a mapping α : P(Ω) → ΣΛ such that for
these α, c, and η, Q defined by (5) is a forecast-continuous supermartingale.

Proof. We construct the mapping α in two steps. First, we map P(Ω) to Ξ ′, and
then we map Ξ ′ to the boundary of ΣΛ. Geometrically, these steps amount to
taking a tangent plane to Ξ ′ and the central projection from Ξ ′ to the boundary
of ΣΛ.

The mapping µ from P(Ω) to Ξ ′ is defined by the formula

µπ = arg min
g∈Ξ′

Eπg .

First, let us prove that µπ is well-defined. By Assumption 2, there is a finite
point in Λ and thus in Ξ ′, hence the min is finite. The minimum is attained since
ΞΛ is compact and Eπg1 ≤ Eπg2 if g1 ≤ g2. Let us prove that the minimum is
attained at one point only1. Assume the converse: for some π, there are at least
two different points f and g where the minimum is attained, and Eπf = Eπg =
m. By definition of Ξ, the point − ln((e−ηf(ω) + e−ηg(ω))/2)/η also belongs to
Ξ. If it does not belong to Ξ ′, there is a point h ∈ Ξ ′ that minorizes it. For any
reals x, y, we have (ex + ey)/2 ≥ e(x+y)/2, and the inequality is strict if x �= y.
Therefore, h(ω) ≤ (f(ω) + g(ω))/2, and if there exists ω such that π(ω) �= 0
and f(ω) �= g(ω), then Eπh < Eπ(f + g)/2 = m. This contradiction proves that
if f(ω) �= g(ω), then π(ω) = 0. If f and g differ at one ω only, then one of
them minorizes the other, thus only one can belong to Ξ ′. The remaining case
is directly forbidden by Assumption 3.

Let us prove that µ is continuous. Consider any sequence of πi converging
to π. First of all, prove that Eπiµπi converges to Eπµπ. Indeed, for any π, π′ ∈
P(Ω), we have Eπ′µπ′ ≤ Eπ′µπ ≤ Eπµπ +maxω µπ(ω)

∑
ω |π′(ω)−π(ω)|. Hence

|Eπiµπi − Eπµπ| ≤
∑

ω |π′(ω) − π(ω)| × max{µπ(ω), µπi(ω) | ω ∈ Ω }, and the
last expression tends to zero as πi tends to π. We omitted several subtle points:
how to bound µπi and how to cope with the case of µπ(ω) = ∞ (e. g., consider
an auxiliary sequence of finite points converging to µπ).

Now assume a sequence πi converges to π and µπi converges to some γ. By
Assumption 1, γ belongs to ΞΛ. Further, Eπiγ converges to Eπγ since their
difference is bounded by maxω γ(ω)

∑
ω |πi(ω)−π(ω)|, and Eπi(µπi−γ) converges

to zero since it is bounded by max |µπi − γ|. Thus, Eπiµπi converges to Eπγ and
to Eπµπ, and γ = µπ due to the uniqueness of µπ.

Now let us construct a continuous mapping from Ξ ′ to ΣΛ. Let g ∈ ΞΛ.
By definition, it is a positive combination of some γ ∈ ΣΛ. For g(ω) = 0 for
some ω, then γ(ω) = 0 too for any γ from the combination. For ω such that
g(ω) �= 0, there is a constant c > 0 such that cg(ω) ≥ γ(ω) for all γ from the
combination. Taking the maximal such c over all ω, we get that for any g ∈ ΞΛ

these is a constant c > 0 such that cg ∈ ΣΛ. Now take the minimal c > 0
such that cg ∈ ΣΛ, this c will be called C(g) (the minimum is attained due to
1 In Bayesian framework this uniqueness means that the loss function is a strictly

proper scoring rule, cf. [4].

208 A. Chernov et al.

Assumption 1). Clearly, the mapping g �→ C(g)g is a continuous mapping from
ΞΛ (and thus from Ξ ′) to the boundary of ΣΛ. If the AA is realizable for some
c (and η—recall that Ξ ′ depends on η), then C(g) ≤ c for all g ∈ Ξ ′.

Let απ = C(µπ)µπ. Clearly, απ is continuous and so is Q.
It remains to check that Q is a supermartingale, that is, satisfy (4). Dividing

both sides by the right-hand side, we get that it suffices to check the following:∑
ω∈Ω

π(ω) exp
(
η

(
απ(ω)

c
− γ(ω)

))
≤ 1,

for any γ ∈ ΣΛ and any π ∈ P(Ω). This inequality will follow from∑
ω∈Ω

π(ω)eη(µπ(ω)−γ(ω)) ≤ 1 (6)

since απ ≤ cµπ (here we use that the AA is realizable for c and η). Take ε > 0
Consider − 1

η ln ((1 − ε)e−ηµπ + εe−ηγ). By definition, this mixture belongs to Ξ.
When ε → 0, we have

− 1
η

ln
(
(1 − ε)e−ηµπ + εe−ηγ

)
= µπ − 1

η
ln
(
1 + ε

(
eη(µπ−γ) − 1

))
= µπ − ε

η

(
eη(µπ−γ) − 1

)
+ o(ε2).

Take the expectation Eπ of the last expression. If (6) does not hold, this expec-
tation is less than Eπµπ for sufficiently small ε, which contradicts the definition
of µπ. �	

Remark 2. For any g ∈ Ξ ′, we have C(g) ≥ 1 since ΞΛ ⊇ ΣΛ and g is minimal in
ΞΛ. Thus for η-mixable games (c = 1) we have απ = µπ for all π, and the image
of the mapping α is included in Λ. For arbitrary games, the image is included
in the boundary of ΣΛ. Note also that α is continuous.

3.3 Defensive Forecasting

Now we describe the Defensive Forecasting algorithm (DF) for the game of
prediction with expert advice. It has five parameters: reals c ≥ 1, η > 0, a
function α : P(Ω) → ΣΛ, a distribution P0 on Θ, and a substitution function
σ : ΣΛ → Λ such that σ(g) ≤ g for all g ∈ ΣΛ.

The parameters c, η, and α are such that the function Q is a forecast-
continuous supermartingale. Let

QP0({γθ
1}θ∈Θ, π1, ω1, . . .) =

∑
θ∈Θ

P0(θ)Q(γθ
1 , π1, ω1, . . .) .

Clearly, QP0 is also a forecast-continuous supermartingale, therefore Lemma 3
applies.

At step N , the DF takes any πN that satisfy the conclusion of Lemma 3, and
then announces γN = σ(απN) as the next prediction of Learner.

Supermartingales in Prediction with Expert Advice 209

Theorem 4. If Q is a forecast-continuous supermartingale for c, η, and α, then
the DF with parameters c, η, α, P0, and σ guarantees that at each step n for all
experts θ

Ln ≤ cLθ
n +

c

η
ln

1
P0(θ)

.

Proof. Lemma 3 guarantees that at each step QP0 is not greater than its initial
value, 1. Thus,

exp

(
η

N∑
n=1

(
απn(ωn)

c
− γθ

n(ωn)
))

≤ 1
P0(θ)

,

and therefore
N∑

n=1

απn(ωn) ≤ cLθ
n +

c

η
ln

1
P0(θ)

.

It remains to note that γn = σ(απn) ≤ απn , and hence Ln ≤
∑N

n=1 απn(ωn). �	

As we have seen, the AA and the DF are very close in the loss bound and also in
their procedure. We can say even more: with the same parameters and inputs,
they give the same predictions. More precisely, two sets coincide: the set of γN

satisfying (1) and the set of γN such that they minorize απN for πN satisfying
the conclusion of Lemma 3. Thus, within the standard setting of the prediction
with expert advice, the DF is just another way of looking at the AA. In the next
section, we consider a setting where these two algorithms differ.

4 Second-Guessing Experts

Let us consider an extension of the protocol of prediction with expert advice.
The game is specified by the same elements (Ω,Λ) as above.

Prediction with second-guessing expert advice

L0 := 0.
Lθ

0 := 0, θ ∈ Θ.
FOR n = 1, 2, . . . :

Experts θ ∈ Θ announce γθ
n : Λ → Λ.

Learner announces γn ∈ Λ.
Reality announces ωn ∈ Ω.
Ln := Ln−1 + γn(ωn).
Lθ

n := Lθ
n−1 + γθ

n(γn)(ωn).
END FOR.

The new protocol contains only one substantial change. Informally speaking,
now the experts announce not their actual predictions, but conditional state-
ments that specify their predictions depending on Learner’s next step. Therefore,
the loss of each expert is determined by the prediction of Learner as well as by

210 A. Chernov et al.

the outcome chosen by Reality. We will call the experts in this protocol second-
guessing experts. Second-guessing experts are a generalization of experts in the
standard protocol: a standard expert can be interpreted in the new protocol as
a constant function.

The phenomenon of “second-guessing experts” occurs in real-world finance.
For example, commercial banks serve as “second-guessing experts” for a central
bank when they use variable interest rates (that is, the interest rate for the next
period is announced as an explicit function of the central bank base rate).

In game theory, there is a notion of internal regret [6], which is related to the
idea of second-guessing experts. The internal regret appears in the framework
where for each prediction, which is called action in this context, there is an
expert that consistently recommends this action, and Learner follows one of the
experts at each step. The internal regret for a pair of experts (i, j) shows by how
much Learner could decrease its loss by having followed expert j each time it
followed expert i. This can be modelled by a second-guessing expert that agrees
with Learner if Learner does not follow i, and recommends following j when the
Learner follows i.

The internal regret is studied in randomized prediction protocols. In our case
of deterministic Learner’s predictions, one cannot hope to get any interesting
loss bound without additional assumptions. Indeed, Experts can always suggest
exactly the “opposite” to the Learner’s prediction (for example, in the log loss
game, predict 0 if Learner predicts γn ≤ 0.5 and 1 otherwise), and Reality can
“agree” with them; then the Experts’ losses remain zero, but the Learner’s loss
grows linearly in the number of steps. In this paper we consider second-guessing
experts that depend on the prediction of Learner continuously.

4.1 The DF for Second-Guessing Experts

First consider the case when γθ
n are continuous mappings from Λ to Λ. Surpris-

ingly, the DF requires virtually no modifications.

Theorem 5. Suppose Q defined by (5) is a forecast-continuous supermartingale
for some c, η, and a continuous α : P(Ω) → Λ. Then a DF algorithm can
be applied in the protocol of prediction with second-guessing expert advice for
continuous experts; it guarantees the same loss bound as in the prediction with
expert advice protocol.

Proof. Let Q be a forecast-continuous supermartingale as a function on (ΣΛ ×
P(Ω)×Ω)∗. Let γθ

n be continuous functions Λ → Λ. Since α is continuous, γθ
n(απ)

is a continuous function P(Ω) → Λ. Then Q with γθ
n(απ) substituted for en is a

forecast-continuous supermartingale as a function on (C(Λ → Λ)×P(Ω)×Ω)∗,
where C(Λ → Λ) is the set of continuous functions on Λ. We take the identity
for a substitution function since α takes values already in Λ, and for the DF
with the supermartingale above the proof of Theorem 4 applies. �	

Recall that for mixable games the mapping α constructed in the proof of Theo-
rem 3 satisfies the conditions of the last theorem.

Supermartingales in Prediction with Expert Advice 211

For games that are not mixable, it may happen that such α does not exist.
Even more, for games where Λ is not connected (e. g., the simple game of pre-
diction), the continuity of experts does not rule out the example with “opposite”
predictions.

To cope with such cases, we modify the protocol of the game. Namely, we
allow Experts and Learner to announce predictions from the boundary Σ′

Λ of
ΣΛ. That is, Experts are γθ

n : Σ′
Λ → Σ′

Λ, and Learner is γn ∈ Σ′
Λ. Theorem 5

requires minimal changes: now α is a function from P(Ω) to Σ′
Λ, and the proof

is modified accordingly. Theorem 3 supplies us with the α required.

4.2 The AA for Second-Guessing Experts

The AA cannot be applied to the second-guessing protocol directly. Recall the
AA is based on the inequality (1), which is already resolved for γN . In the
second-guessing protocol, the inequality contains γN on both sides:

γN (ωN) ≤ − c

η
ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (γN)(ωN)) . (7)

The DF implicitly solves this inequality within (the proof of) Lemma 3, which is
a kind of fixed point theorem. We present a modification of the AA which uses
a fixed point theorem explicitly. We use the following theorem (see e. g. [1]).

Theorem 6 (Brouwer). If X is homeomorphic to a closed simplex, and F :
X → X is a continuous function, then F has a fixed point.

Our goal is to find a subset X of possible Learner’s predictions such that X
is homeomorphic to a closed simplex, and a continuous function G : X → X
such that for any γ ∈ X , the point G(γ) is not greater than the right-hand side
of (7) with γ substituted for γN . Then the modified AA works as follows: at each
step, the AA constructs G and X (they may depend on the step and history),
finds a fixed point γ = G(γ) via the Brouwer theorem, and announces γ as the
next prediction of Learner. Since any fixed point of G is a solution of (7), the
standard analysis of the AA applies providing the same loss bound.

We construct the domain X and the function G in a different manner for
mixable games with the original second-guessing protocol and for non-mixable
games and the modified protocol.

Obviously, Ξ ′ is homeomorphic to a closed simplex (note that the “exponential
image” e−ηΞΛ of ΞΛ is a bounded convex subset of R|Ω|). For mixable games,
Ξ ′ ⊆ Λ, and we let X = Ξ ′ in this case. For non-mixable games, we consider the
mapping g �→ C(g)g used in the proof of Theorem 3, which is a homeomorphism
of Ξ ′ to a part of Σ′

Λ. This part we take as X .
Now let us construct the function G. The beginning is common for both

versions. A point γ ∈ X is mapped to the point g such that

g(ω) = −1
η

ln
∑
θ∈Θ

PN−1(θ)∑
θ∈Θ PN−1(θ)

exp(−ηγθ
N (γ)(ω))

for all ω. The point g belongs to ΞΛ by definition.

212 A. Chernov et al.

Lemma 4. There is a continuous mapping F : ΞΛ → Ξ ′ such that for any
g ∈ ΞΛ, it holds that F (g) ≤ g.

We postpone the proof and continue the construction of G. This F maps g to
F (g) ∈ Ξ ′. For mixable games, we are done. For non-mixable games, we need
one more step: apply to F (g) the homeomorphism from Ξ ′ to Σ′

Λ. The function
G has the correct range by construction and is continuous as a composition of
continuous mappings. The point G(γ) is not greater than the right-hand side
of (7) since C(F (g))F (g) ≤ cF (g) ≤ cg. Thus, we obtained the following

Theorem 7. If the AA is realizable for the game (Ω,Λ) in the prediction with
expert advice for some c and η, then the AA with fixed point is realizable for
the same game for the prediction with second-guessing expert advice protocol
(modified—for non-mixable games) for the same c and η, and guarantees the
same loss bounds.

Proof of Lemma 4. We construct a continuous mapping F : ΞΛ → Ξ ′ as a
composition of mappings Fω for all ω ∈ Ω. Each Fω when applied to g ∈ ΞΛ

preserves the values of g(o) for o �= ω and decreases as far as possible the value
g(ω) so that the result is still in ΞΛ. Formally, Fω(g) = g′ such that g′(o) = g(o)
for o �= ω and g′(ω) = min{ f(ω) | f ∈ ΞΛ, ∀o �= ω f(o) = g(o) }.

Let us show that Fω is continuous. It suffices to show that Fω(g)(ω) depends
continuously on g, since the other coordinates do not change. We will show that
Fω(g)(ω) is concave in g, continuity follows easily (see, e. g. [11]). Indeed, take
any t ∈ [0, 1], and f, g ∈ ΞΛ. Since ΞΛ is convex (and even exp-convex), then
tf + (1 − t)g ∈ ΞΛ and tFω(f) + (1 − t)Fω(g) ∈ ΞΛ. The latter point has all
the coordinates o �= ω the same as the former. Thus, by definition of Fω , we get
Fω(tf +(1− t)g)(ω) ≤ (tFω(f)+(1− t)Fω(g))(ω) = tFω(f)(ω)+(1− t)Fω(g)(ω),
which was to be shown.

All Fω do not increase the coordinates. Since the set ΞΛ contains any point
g with all its majorants, Fω(f) = f implies that Fω(g) = g for any g obtained
from f by applying any Fω′ . Therefore, the image of a composition of Fω over
all ω ∈ Ω is included in Ξ ′. �	

Remark 3. Actually, Lemma 4 constructs a continuous substitution function. In
many natural games, the standard substitution functions appear to be continu-
ous. In particular, for the log loss function,

(g0, g1) �→ ((−g0 + g1) ln(e−g0+g1 + 1), (−g0 + g1) ln(eg0−g1 + 1)) .

For the quadratic loss function,

(g0, g1) �→
((

1 + g0 − g1

2

)2

,

(
1 − g0 + g1

2

)2
)

.

Acknowledgements. This work was partly supported by EPSRC grant EP/
F002998/1. Comments by Alex Gammerman, Glenn Shafer, Alexander Shen,
and the anonymous referees have helped us improve the presentation.

Supermartingales in Prediction with Expert Advice 213

References

[1] Agarwal, R., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications.
Cambridge Tracts in Mathematics, vol. 141. Cambridge University Press, Cam-
bridge (2001)

[2] Blum, A., Mansour, Y.: From External to Internal Regre. J. Mach. Learn. Res. 8,
1307–1324 (2007)

[3] Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

[4] Dawid, A.P.: The geometry of proper scoring rules. Annals of the Institute of
Statistical Mathematics 59, 77–93 (2007)

[5] Foster, D., Vohra, R.: Asymptotic calibration. Biometrika 85, 379–390 (1998)
[6] Foster, D., Vohra, R.: Regret in the online decision problem. Games Econ. Be-

hav. 29, 104–130 (1999)
[7] Gács, P.: Uniform test of algorithmic randomness over a general space. Theoretical

Computer Science 341, 91–137 (2005)
[8] Hoeffding, W.: Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association 58, 13–30 (1963)
[9] Levin, L.: Uniform tests of randomness. Soviet Mathematics Doklady 17, 337–340

(1976)
[10] Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-

tions, 2nd edn. Springer, New York (1997)
[11] Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1996)
[12] Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game. Wiley, New

York (2001)
[13] Stoltz, G., Lugosi, G.: Internal Regret in On-Line Portfolio Selection. Machine

Learning 59, 125–159 (2005)
[14] Stoltz, G., Lugosi, G.: Learning correlated equilibria in games with compact sets

of strategies. Games and Economic Behavior 59, 187–209 (2007)
[15] Vovk, V.: Aggregating Strategies. In: Fulk, M., Case, J. (eds.) Proceedings of the

Third Annual Workshop on Computational Learning Theory, San Mateo, CA, pp.
371–383 (1990)

[16] Vovk, V.: A game of prediction with expert advice. Journal of Computer and
System Sciences 56, 153–173 (1998)

[17] Vovk, V.: Competitive on-line learning with a convex loss function. Technical
Report arXiv:cs/0506041v3 [cs.LG], arXiv.org e-Print archive (September 2005)

[18] Vovk, V.: On-line regression competitive with reproducing kernel Hilbert spaces.
Technical Report arXiv:cs/0511058v2 [cs.LG], arXiv.org e-Print archive (Jan-
uary 2006)

[19] Vovk, V.: Metric entropy in competitive on-line prediction. Technical Report
arXiv:cs/0609045v1 [cs.LG], arXiv.org e-Print archive (September 2006)

[20] Vovk, V.: Continuous and randomized defensive forecasting: unified view. Techni-
cal Report arXiv:0708.2353v2 [cs.LG], arXiv.org e-Print archive (August 2007)

Aggregating Algorithm for a Space of
Analytic Functions

Mikhail Dashevskiy

Computer Learning Research Centre,
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK
mikhail@cs.rhul.ac.uk

Abstract. In this paper the problem of Prediction with Expert Advice is
considered. We apply an existing algorithm, the Aggregating Algorithm,
to a specific class of experts. This class of experts approximates (with
respect to its parameter) the class of continuous functions and in this way
it is close to a natural way of describing a possible dependence between
two variables (continuous). We develop an explicit algorithm and prove
an upper bound on the difference between the loss of our algorithm and
the loss of the best expert, which has the order of the squared logarithm
of the number of steps of the algorithm. This bound lies between existing
bounds which have the form of the logarithm of the number of steps and
the square root of the number of steps. Having more sets (algorithm,
class of experts, upper bound) helps in choosing an appropriate way of
solving the problem of Prediction with Expert Advice for a particular
application.

1 Introduction

Let us consider the problem of Prediction with Expert Advice ([1, 3, 4, 9]), i. e.
given a class of experts our algorithm outputs predictions which are not much
worse (in a sense) than the best expert. Ideally, we would like to develop an
algorithm which could compete with as wide a class of experts as possible being
as close to the best expert as possible. The problem of Prediction with Expert
Advice can be divided into two parts: choosing an appropriate class of experts
and using the experts to construct an algorithm with high performance. To de-
velop an algorithm with high overall performance it is important to successfully
solve both parts of the problem.

To build a successful algorithm which solves the problem of Prediction with
Expert Advice it is essential to choose a wide class of experts. In this paper we
use a class of analytical functions, which approximates the space of continuous
functions, as the space of experts, i. e. in the limit our space of experts (which
depends on two parameters) is dense in the space of continuous functions. The
problem of competing with classes of experts dense in the space of continuous
functions is also studied in [1, 3, 8].

There are many ideas regarding how to use experts so that we receive a predic-
tion that is not much worse than those given by the experts. In this paper we use

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 214–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Aggregating Algorithm for a Space of Analytic Functions 215

the idea of the Aggregating Algorithm (AA, [9]) and find an explicit algorithm
that uses the functions from our space of experts (which is infinite dimensional).
Currently there exist only explicit algorithms for the AA aggregating experts
from finite-dimensional classes of experts. We hope that the ideas used in this
paper can give some directions for creating an algorithm, which competes with
all continuous functions, and has high performance.

The Aggregating Algorithm was applied to the space of linear functions (the
case of Linear Regression) in [9]. We extend the result for the case of a wider class
of experts. The performance of the algorithms solving the problem of Prediction
with Expert Advice is measured by the regret term, the absolute difference be-
tween the total loss and the loss of the best expert. The AA for Regression has
the regret term in the form of O(log T) (where T is the number of steps of the
algorithm). The fact that our class of experts is wider worsens the regret term
and the latter has the form of O(log2 T).

The current algorithms can be divided into two groups according to the form
of the regret term: those with the regret form of O(log T) ([9, 2, 5]) and those
with the regret form of O(

√
T) ([4, 11]). Of course, the form of the regret term

depends on the class of experts: the same algorithm can have different upper
bounds on the regret term for different classes of experts. Besides the Aggregating
Algorithm for Regression which has the regret term in the form of O(log T), there
are the Forwarding Algorithm and the Incremental Off-line Algorithm from [2]
and the Exponential Weights Algorithm (see [5]) with the same main term in
the upper bound on the regret term.

There is another group of algorithms, those having O(
√

T) as an upper bound
on their regret term. The Defensive Forecasting algorithm, which employs the
idea of using Probability Theory results in the Game-Theoretical form, is one
of them ([11]). Another example of such algorithms is the Aggregating Algo-
rithm. These algorithm when competing with some infinite-dimensional bench-
mark classes (Reproducing Kernel Hilbert Spaces) have an upper bound (see [8])
on the regret term in the form of O(

√
T).

Our algorithm provides an upper bound on the regret term different from
those which have traditional algorithms. Our result elaborates the result in [10]
(where a bound in the form of O(log2 T) is found) and an explicit algorithm
is introduced and an explicit bound is found (i. e. a bound in the form of a
polynomial of log T). This is the main result of this paper: we developed an
algorithm with a new upper bound on the regret term, which lies between existing
results.

A natural way of representing experts is associating each expert with a con-
tinuous function. Saying that the dependence of two variables is a continuous
function is usually not a strong constraint in applications. It would be of great
benefit if we could guarantee that our learning algorithm performs not much
worse than any expert in the form of continuous functions. In this paper we
describe an algorithm that competes (effectively) with a class of experts, which
approximates (in the limit) continuous bounded functions.

216 M. Dashevskiy

The other problem that we are trying to solve (or approximate to solving it) in
this paper is the problem of the correspondence between the class of experts with
which an algorithm competes and the form of the regret term of the algorithm for
this class of experts. For example, it is known that the Aggregating Algorithm
for Regression and the Exponential Weights Algorithm have the regret term in
the form of log T . Here we try to contribute to solving the problem of finding
a correspondence between the two properties of an algorithm (we could use
this information to choose the parameters of the algorithm as there is a trade-off
between the width of the space of experts and the performance of the algorithm).

The rest of the paper is organized as follows. The next section describes the
Aggregating Algorithm which we apply to a functional space and states an upper
bound on the total loss. Section 3 is devoted to the application of the Aggregating
Algorithm to the functional space where we use some particular properties of
the selected space and introduce our algorithm. Section 4 gives an estimate on
the upper bound of the algorithm and its proof. Section 5 concludes the paper
and gives some directions for further research.

2 Aggregating Algorithm

In this part of the paper we consider one of the existing algorithms for solving
the problem of Prediction with Expert Advice. The problem can be describe in
the form of a game. In each round of the game: experts give their predictions,
we look at the experts’ predictions in order to give our prediction, the event
happens (we see what happened in real life), and the losses of each expert and
of our algorithm are calculated. Our aim is to create an algorithm that has total
loss (the cumulative loss of all rounds of the game) is not much higher than the
total loss of the best expert.

Now we will give a more formal definition of the Prediction Game. We consider
here a game between three players, Nature, Experts, and Learner. Let Σ be
a set called signal space, Ω be a set called sample space, Γ be a set called
the decision space, and Θ be a measurable space called the parameter space. A
signal is an element of the signal space, an outcome is an element of the sample
space and a decision is an element of the decision space. The loss function
λ : Ω × Γ → [0, ∞], the function which measures the performance of Experts
and Learner is also part of the game. The following perfect-information game is
considered: on each step t = 1, 2, . . .

– Nature outputs a signal xt ∈ Σ.
– Experts make measurable predictions ξt : Θ → Γ ; ξt(θ) is the prediction

corresponding to the parameter θ ∈ Θ.
– Learner makes his own prediction γt ∈ Γ.
– Nature chooses an outcome ωt ∈ Ω.
– Experts’ loss calculation LT (θ) =

∑T
t=1 λ(ωt, ξt(θ)).

– Learner’s loss calculation LT =
∑T

t=1 λ(ωt, ξt(θ)).

Learner wants to minimize the regret term, i. e. the difference between the
total loss of the algorithm and the total loss of the best expert.

Aggregating Algorithm for a Space of Analytic Functions 217

In this paper we consider the case Ω ⊂ R, Γ ⊂ R. The Aggregating Algorithm
(AA) works as follows: on each step it re-computes weights of the experts (their
probability distribution) and mixes all experts according to this distribution.
Thus AA gets a mixture of the experts’ predictions (a generalized prediction),
after that it finds the best (in some sense) prediction from Θ. The AA uses
the parameters η > 0 learning rate, β is defined to be e−η, P0 is probability
distribution on the set Θ of the experts. Intuitively P0 is the prior distribution,
which specifies the initial weights assigned to the experts. At each step the AA
performs the following operations:

1. Weights re-computation according to the previous losses:

Pt−1(dθ) = βλ(ωt−1, ξt−1(θ))Pt−2(dθ), θ ∈ Θ. (1)

2. Predictions’ mixing according to their weights:

gt(ω) = logβ

∫
Θ

βλ(ω, ξt(θ))P ∗
t−1(dθ),

where P ∗
t−1(dθ) is a normalized probability distribution, i. e.

P ∗
t−1(dθ) =

Pt−1(dθ)
Pt−1(Θ)

and if Pt−1(Θ) = 0, AA is allowed to choose any prediction. On this step we
get gt(ω) which is a function Ω → R.

3. Looking for an appropriate prediction from Γ :

γt(gt).

In [9] (Lemma 2) it is proved that in the case of the square-loss function, i. e.
λ(ω, γ) = (ω − γ)2, η ≤ 1

2Y (where Y is a bound for |yt|)

γt =
gt(−Y) − gt(Y)

4Y
(2)

is a prediction from Θ.
The formula (2) gives us the final prediction on step t. Let Nature’s signal be

xt ∈ RM , Nature’s outcome be yt ∈ [−Y, Y] and the prediction be γt ∈ R. Let
LT (θ) be the total loss corresponding to the expert with parameter θ ∈ Θ over
T steps and LT (AA(N, a)) be the total loss of the Aggregating Algorithm with
parameters N (the dimension of the Parameter Space) and a (a real number).
The following theorem from [9] shows an estimate of the performance of the AA:

Proposition 1 (Vovk, 2001). In the square-loss game there exists an algo-
rithm which satisfies: for any class of experts Θ,

218 M. Dashevskiy

LT (AA(n, a)) ≤ inf
θ

(LT (θ) + a ‖θ‖2) + Y 2 ln det

(
I +

1
a

T∑
t=1

xtx
′
t

)
.

Let
X = max

1≤t≤T
(‖xt‖∞),

then ∀T

LT (AA(n, a)) ≤ inf
θ

(LT (θ) + a ‖θ‖2) + NY 2 ln
(

TX2

a
+ 1

)
,

where I is the identity matrix, a > 0 and N is the dimension of Θ.

Intuitively, a is a constant reflecting our prior expectations about the complexity
‖θ‖ =

√∑N
i=j θ2

j of successful experts.

3 Application to Ah (C)

In [9] the AA was applied to the class of linear functions. Here we apply the
algorithm to a wider class of functions.

Definition 1 ([7]). Let Ah (C) be the class of all functions C → R defined on
the stripe with width h : |Im z| ≤ h, periodic with the period 2π, analytical and
bounded there by a constant C.

In this paper we apply AA to the functional space defined above. Using some
particular properties of Ah (C), we get an explicit form of the AA for Ah (C)
and prove an upper bound on its performance.

Any function f ∈ Ah (C) can be written down in the Fourier series form:

f(x) =
+∞∑

k=−∞
ckeikx.

We call ck Fourier coefficients.

Proposition 2. For any f ∈ Ah (C), f(x) =
∑+∞

k=−∞ ckeikx its Fourier coeffi-
cients satisfy |ck| ≤ Ce−|k|h.

Proposition 3. The following upper bound on the remainder of the Fourier
series holds:

|Rn| =

∣∣∣∣∣f(x) −
n∑

k=−n

ckeikx

∣∣∣∣∣ ≤ 2Ce−nh e−h

1 − e−h
, (3)

where
∑+∞

k=−∞ ckeikx is the Fourier series form of f(x) ∈ Ah (C).

Aggregating Algorithm for a Space of Analytic Functions 219

These statements can be easily proved using Definition 1 and their proofs can
be found in [7]. If C → ∞, h → 0 then the restriction Ah (C) on [0, 2π] is dense
in the space of continuous functions defined on [0, 2π].

Definition 2. Let us call An
h (C) the functional class consisting of all partial

sums of 2n + 1 elements of Fourier series of functions lying in Ah (C), i. e. :

f(x) = An
h (C) ={ n∑

k=−n

ckeikx : ∃c−∞, . . . , c−n−1, cn+1, . . . , c∞ ∈ C,

∞∑
k=−∞

ckeikx ∈ Ah (C)
}

.

In this paper we set the a priori distribution on the experts (P0(dθ)) as follows:
ck = Ce−|k|h(θ2k + iθ2k+1), where θk are Gaussian independently distributed
random variables. We will use predictions generated by this distribution, but
some of them may be outside An

h (C) because their Fourier coefficients can exceed
Ce−|k|h as a random variable distributed as N(0, 1) has its values in (−∞,∞).
It will not interfere with our result as we prove will prove it now for a wider
class of experts and thus our algorithm is not much worse than any expert from
An

h (C) (or Ah (C) as it will proved later) as it is a subset of the set for which
the result also holds.

Lemma 1. Let the set of experts Θ be An
h (C), the loss function be quadratic,

and P0(dθ) be such that ck

Ce−|k|h are distributed as θ2k+iθ2k+1 for k = −n, . . . , n,
where θk are Gaussian independently distributed random variables. Then we
have:

gT (ω) = logβ B

∫
Θ

β(
∑T −1

t=1 (ωt−−→
V ′

t

−→
θ)

2
+(ω−−→

V ′
T

−→
θ)2)−ln β

∑ 2n+1
k=−2n

θ2
k
2 d

−→
θ ,

where

C4n+2 " −→
V j = (v−2n,j , v−2n+1,j , . . . , v2n,j , v2n+1,j)

′,

vk,j = i
1−(−1)k

2 Ce−|[k
2]|h+i[k

2]xj ,

[x] is the integer part of x, −→γ ∈ R4n+2 is the vector containing γk,−2n ≤ k ≤
2n + 1, and R " B > 0 is independent of ω.

Proof.

gT (ω) = logβ

∫
Θ

βλ(ω, ξT (θ))P ∗
T−1(dθ) =

logβ

∫
Θ

β(ω−∑n
k=−n ck(θ)eikxT)

2

P ∗
T−1(dθ),

220 M. Dashevskiy

where ck(θ),−n ≤ k ≤ n, are the coefficients of the Fourier series of the predic-
tion, corresponding to θ. Let us calculate PT−1(dθ) using formula (1):

PT−1(dθ) = βλ(ωT −1, ξT −1(θ))PT−2(dθ) = β(ωT −1−
∑n

k=−n ckeikxT −1)2PT−2(dθ)

= β(ωT −1−
∑n

k=−n ckeikxT −1)2(β(ωT −2−
∑n

k=−n ckeikxT −2)2PT−3(dθ))

= β(ωt−1−
∑n

k=−n ckeikxT −1)2+(ωT −2−
∑n

k=−n ckeikxT −2)2PT−3(dθ)

= . . . = β
∑T −1

j=1 (ωj−
∑n

k=−n ckeikxj)2P0(dθ).

Note that P ∗
T−1(dθ) differs from PT−1(dθ) only on a multiplicative constant,

which is the same for all ω ∈ Ω; thus we can include it in constant B from the
statement of the theorem. From the last formula we have:

gT (ω) = logβ

∫
Θ

β(ω−∑n
k=−n ckeikxT)

2

P ∗
T−1(dθ) =

logβ(B
∫

Θ

β(ω−∑n
k=−n ckeikxT)

2

β
∑T −1

j=1 (ωj−
∑n

k=−n ckeikxj)2P0(dθ)).

Recall that the definition of P0(dθ) means that ck = Ce−|k|h(θ2k+iθ2k+1), where
θk are Gaussian independently distributed random variables and

∑n
k=−n ckeikxj

=
−→
V ′

j

−→
θ , where

C4n+2 " −→
V j = (Ce−nh−inxj , iCe−nh−inxj , Ce−(n−1)h−i(n−1)xj ,

iCe−(n−1)h−i(n−1)xj , . . . ,Ce−(n−1)h+i(n−1)xj , iCe−(n−1)h+i(n−1)xj ,

Ce−nh+inxj , iCe−nh+inxj)
′

and
−→
θ = (θ−2n, θ−(2n−1), . . . , θ2n, θ2n+1)

′.

gT (ω) = logβ

∫
Θ

β(ω−∑n
k=−n ckeikxT)

2
+
∑T −1

j=1 (ωj−
∑n

k=−n ckeikxj)2P0(dθ)+

logβ B = logβ

∫
Θ

β
∑T −1

j=1 (ωj−−→
V ′

j

−→
θ)

2
+(ω−−→

V ′
T

−→
θ)2e

∑2n+1
k=−2n

θ2
k
2 d

−→
θ + logβ B. �	

Proposition 4. When we apply AA to An
h (C), γT from (2) can be written down

in the following form:

γT =
1
2

⎛⎝T−1∑
j=1

2ωj
−→
V ′

j

⎞⎠′⎛⎝ T∑
j=1

−→
V j

−→
V ′

j +
1
2

⎞⎠−1(−→
V ′

T

)
,

where
−→
V j are the same as in previous lemma.

Aggregating Algorithm for a Space of Analytic Functions 221

Proof. Using (2) we have:

γT =
1

4Y
logβ

βgT (−Y)

βgT (Y)
=

1
4Y

logβ

∫
e−η(

∑T −1
j=1 (ωj−−→

V ′
j
−→γ)

2
+(Y +

−→
V ′

T
−→γ)2)−∑2n+1

k=−2n

γ2
k
2 d−→γ∫

e−η(
∑T −1

j=1 (ωj−−→
V ′

j
−→γ)

2
+(Y −−→

V ′
T
−→γ)2)−∑ 2n+1

k=−2n

γ2
k
2 d−→γ

=

1
4Y

logβ

∫
e−η(

∑T−1
j=1 (ω2

j−2ωj
−→
V

′
j
−→γ +γ′−→

V j
−→
V

′
j
−→γ)+(Y 2+2Y

−→
V

′
T
−→γ +−→γ ′−→

V T
−→
V

′
T
−→γ))− 1

2
−→γ ′−→γ d−→γ∫

e−η(
∑T−1

j=1 (ω2
j−2ωj

−→
V ′

j
−→γ +−→γ ′−→V j

−→
V ′

j
−→γ)+(Y 2−2Y

−→
V ′

T
−→γ +−→γ ′−→V T

−→
V ′

T
−→γ))− 1

2
−→γ ′−→γ d−→γ

=

1
4Y

logβ

∫
e−(−→γ ′(η(

∑T−1
j=1

−→
V j

−→
V ′

j+
−→
V T

−→
V ′

T)+ 1
2)−→γ)−η(

∑T−1
j=1 −2ωj

−→
V ′

j+2Y
−→
V ′

T)−→γ d−→γ∫
e−(−→γ ′(η(

∑T −1
j=1

−→
V j

−→
V ′

j+
−→
V T

−→
V ′

T)+ 1
2)−→γ)−η(

∑T −1
j=1 −2ωj

−→
V ′

j−2Y
−→
V ′

T)−→γ d−→γ
=

1
4Y

F

⎛⎝⎛⎝T−1∑
j=1

−→
V j

−→
V ′

j +
1
2

⎞⎠ , −
T−1∑
j=1

2ωj
−→
V ′

j , 2Y
−→
V ′

T

⎞⎠ ,

where

F
(
A,

−→
b , −→c

)
=

inf−→γ ∈R4n+2

(−→γ ′A−→γ +
−→
b ′−→γ + −→c ′−→γ

)
− inf−→γ ∈R4n+2

(−→γ ′A−→γ + b
′−→γ −−→c ′−→γ

)
.

It was found in [9] that the function F can be transformed into

F
(
A,

−→
b , −→c

)
= inf−→γ ∈R4n+2

(−→γ ′A−→γ +
−→
b ′−→γ + c′γ

)
−

inf−→γ ∈R4n+2

(−→γ ′A−→γ +
−→
b ′γ −−→c ′−→γ

)
= −b′A−1c.

Thus, finally we have

γT = − 1
4Y

⎛⎝−
T−1∑
j=1

2ωj
−→
V ′

j

⎞⎠′⎛⎝T−1∑
j=1

−→
V j

−→
V ′

j +
1
2

⎞⎠−1(
2Y

−→
V ′

T

)
. �	

From now on we would like to show explicitly that
−→
Aj and γt depend on n, so

we will write
−→
An

j and γn
t .

4 Upper Bound

In this section we prove an upper bound on the regret term of the algorithm
described above. Let us denote AAA as the Aggregating Algorithm applied to
Ah (C).

222 M. Dashevskiy

Algorithm 1. AA for Ah (C)
Require: Parameters C, h

for t = 2, 3, . . . do
get Nature’s signal xt

if t < 6 OR [log2 log2(t − 1)] �= [log2 log2 t] then
n :=

[
([log2t]+1) ln 2

h

]
+ 1

for j = 1, . . . , t do−→
V n

j := (v−2n,j , v−2n+1,j , . . . , v2n,j , v2n+1,j)
′ ∈ C4n+2, vl,j

= i
1−(−1)l

2 Ce−|[l
2]|h+i[l

2]xj

end for
else−→

V n
t := (v−2n,t, v−2n+1,t, . . . , v2n,t, v2n+1,t)

′ ∈ C4n+2, vl,t

= i
1−(−1)l

2 Ce−|[l
2]|h+i[l

2]xt

end if
γn

t := 1
2

(∑t−1
j=1 2ωj(

−→
V n

j)
′)′

·
(∑t

j=1

−→
V n

j (
−→
V n

j)
′
+ 1

2

)−1(
(
−→
V n

t)
′)

give γn
t as the final prediction

get Nature’s output ωt

end for

Theorem 1. Let LT (AAA) be the total loss of Algorithm 1 over T steps. For
T > 3 the following inequality holds:

LT (AAA) − inf
f∈Ah (C)

(LT (f)) ≤

1024R2

3h
log2

2 T + log2 T

(
34R2

h
+ 73R2

)
+ 50R2 +

4R

h
,

where R := max{1, C}.

Proof. Let LT (AAA(T)) be the total loss of AA algorithm which “knows” the
number of steps T over all of them. From Proposition 1 we have:

LT (AAA (T)) ≤ inf
θ∈An

h (C)

(
LT (θ) + a‖θ‖2

)
+ NY 2 ln

(
TX2

a
+ 1

)
,

where N is the dimension of Θ. On each step of the prediction protocol the
difference between the optimal prediction in Ah (C) and some prediction in
An

h (C) is no more than 2Ce−nh e−h

1−e−h , according to (3). Hence, the total loss of
this algorithm can be estimated as

LT (AAA (T)) ≤ inf
θ∈Ah (C)

(
LT (θ) + a‖θ‖2

)
+

(4n + 2)Y 2 ln
(

TX2

a
+ 1

)
+ 2TCe−nh e−h

1 − e−h
(4)

Aggregating Algorithm for a Space of Analytic Functions 223

and this inequality holds for any n > 0. Now we can adjust this formula to our
particular case: a = 1, because ‖θ‖2 is the norm of coefficients of a function in
its Fourier series, X = π, because the functions from our class are π-periodic
and, finally, Y = C because they are bounded by constant C everywhere.

Now we will try to get rid of n in this formula, looking for the best value
of n. Thus, we can consider formula (4) as a minimization problem and we are
looking for the minimum of

(4n + 2)C2 ln
(
Tπ2 + 1

)
+ 2TCe−nh e−h

1−e−h , varying n:

(
(4n + 2)C2 ln

(
Tπ2 + 1

)
+ 2TCe−nh e−h

1 − e−h

)′

n

=

4C2 ln
(
Tπ2 + 1

)
− 2hTCe−nh e−h

1 − e−h
⇒ e−nh =

4C ln
(
Tπ2 + 1

)
2hT

1 − e−h

e−h

and

n =
1
h

(
ln T − ln ln

(
Tπ2 + 1

)
− ln 2 + lnh − h − ln C − ln

(
1 − e−h

))
.

However, looking the best value of n is not always the best way of looking for a
solution. For instance, if we take n =

[
ln T
h

]
+ 1 the formula of the upper bound

will be more understandable. Thus we have

LT (AAA (T)) ≤ inf
θ

(LT (θ))+ (4n + 2)C2 ln
(
Tπ2 + 1

)
+ 2TCe−nh e−h

1 − e−h
≤

inf
θ

(LT (θ)) + (4n + 2)C2 ln
(
Tπ2 + 1

)
+ D ≤

infθ (LT (θ)) +
4 lnT + 6h

h
C2 ln

(
Tπ2 + 1

)
+ D,

where D is an additive constant equal to C + 2C e−h

1−e−h .
Now we will consider the step of the algorithm where we change the parameter

n. The algorithm changes the parameter when the number of the current step is
2, 3, 4, 5, 16, 256, 65536, Let us calculate the following sum:

[log2 log2 T]+1∑
i=0

∣∣∣Lmin{22i ,T}
(
AAA

(
22i

))
− inf

f∈Ah (C)

(
Lmin{22i ,T} (f)

) ∣∣∣ ≤
[log2 log2 T]+1∑

i=0

(
2i4 ln 2 + 6h

h
C2 ln

(
22i

π2 + 1
)

+ D

)
.

In order to make our inequality simpler, we will use some rough estimations.
This will make our result less precise but will give an easier understanding of
the upper bound. Now we need some inequalities to make the result simpler:

ln(Tπ2 + 1) < ln(Tπ2) + 1, C < R2,
e−h

1 − e−h
<

1
h

, 1 < ln T.

224 M. Dashevskiy

Substituting the corresponding parts of the inequality, we get:

[log2 log2 T]+1∑
i=0

∣∣∣Lmin{22i ,T}
(
AAA

(
22i

))
− inf

f∈Ah (C)

(
Lmin{22i ,T} (f)

) ∣∣∣ ≤
[log2 log2 T]+1∑

i=0

((
4C22i

h
+ 6C2

)(
4 + 2i

)
+ C +

2C

h

)
≤

[log2 log2 T]+1∑
i=0

22i 4C2

h
+

[log2 log2 T]+1∑
i=0

2i

(
4C2

h
+ 6C2

)
+

(log2 log2 T + 2)
(

24C2 + C +
2C

h

)
≤

1024C2

3h
log2

2 T − 1 + log2 T

(
32C2

h
+ 48C2

)
− 1+

(log2 T + 2)
(

24C2 + C +
2C

h

)
≤

1024R2

3h
log2

2 T + log2 T

(
34R2

h
+ 73R2

)
+ 50R2 +

4R

h

since
T∑

i=0

2i = 2T+1 − 1.

Now, to end the proof of the theorem, it is enough to show that

LT (AAA) − inf
f∈Ah (C)

(LT (f)) ≤

[log2 log2 T]+1∑
i=0

∣∣∣Lmin{22i ,T}
(
AAA

(
22i

))
− inf

f∈Ah (C)

(
Lmin{22i ,T} (f)

) ∣∣∣.�	
This bound is an intermediate estimate between O(log T) and O(

√
T). The result

shows that there are algorithms with other (not found yet) estimates of the upper
bound on the regret term.

5 Conclusion

In this paper we developed an algorithm which competes with a class of experts
from a specific functional space. This functional space is a wide class of experts
and the algorithm gives an idea on how to approach the problem of competing
with experts in the form of continuous functions. An upper bound on the regret
term of the total loss of the algorithm is proven. The regret term is of an order,
different from the orders of the regret terms of the existing algorithms. Thus this

Aggregating Algorithm for a Space of Analytic Functions 225

result approaches the problem of finding the correspondence between a class of
experts and the upper bound on the regret term of an algorithm competing with
these experts.

This paper suggests a number of directions for further research. One of them
is related to the algorithm itself. If we could find an efficient way of aggregating
experts from Ah (C), then we could mix predictions from Ah (C), C → ∞, h → 0
and thus compete with continuous functions. We suggest that in the trade-off
richness of a class of experts—low upper bound on the regret term of the algo-
rithm the class of continuous functions is a fairly large class of experts for most
applications. Unfortunately, we have not yet found a way to use the described
techniques to compete with continuous function.

Another direction for further research concerns the correspondence between
a class of experts and the upper bound of the AA competing with this class
of experts. Finding more classes of experts with different upper bounds on the
regret term leads to a better decision on choosing the class of experts as there
exists the trade-off mentioned in the previous paragraph.

To solve the problem of Prediction with Expert Advice (PEA) in applications
one usually chooses either the error rate they can tolerate or a class of experts
which reflects what kind of dependence can be expected between the signals and
the outcomes. To make a decision regarding choosing initial parameters of an
algorithm in PEA it is useful to have groups of three (algorithm, set of experts,
upper bound on the regret term) with different upper bounds on the regret
term. Our result adds one more group to the set of existing results (where the
only known group with the upper bound in the form of O(log2 T) is the result
described in this paper) and approaches solving the problem of competing with
continuous functions.

Acknowledgements. This work was supported by EPSRC through grant EP/
E000053/1, “Machine Learning for Resource Management in Next-Generation
Optical Networks”. The author is grateful to Volodya Vovk, Alexey Chernov
and Brian Burford for valuable discussions and to reviewers for comments which
led to improvements in the paper.

References

[1] Auer, P., Cesa-Bianchi, N., Gentile, C.: Adaptive and selfconfident on-line learning
algorithms. Journal of Computer and System Sciences 64, 48–75 (2002)

[2] Azoury, K.S., Warmuth, M.K.: Relative Loss Bounds for On-Line Density Esti-
mation with the Exponential Family of Distributions. Machine Learning, 211–246
(2001)

[3] Cesa-Bianchi, N., Long, P.M., Warmuth, M.K.: Worstcase quadratic loss bounds
for on-line prediction of linear functions by gradient descent. IEEE Transactions
on Neural Networks 7, 604–619 (1996)

[4] Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge Uni-
versity Press, Cambridge (2006)

226 M. Dashevskiy

[5] Freund, Y.: Predicting a binary sequence almost as well as the optimal biased
coin. In: Proc. 9th Annu. Conf. on Comput. Learning Theory, pp. 89–98 (1996)

[6] Hazan, E., Kalai, A., Kale, S., Agarwal, A.: Logarithmic Regret Algorithms for
Online Convex Optimization. Machine Learning 69(2-3), 169–192 (2007)

[7] Kolmogorov, A.N., Tikhomirov, V.M.: ε-Entropy and ε-Capacity of Sets in a Func-
tional Space. Usp. Mat. Nauk 14(2), 3–86 (1959); Russian Mathematical Surveys
17, 277 (1961) (Translation)

[8] Vovk, V.: On-line regression competitive with reproducing kernel Hilbert spaces
(2008), http://arxiv.org/abs/cs.LG/0511058

[9] Vovk, V.: Competitive On-line Statistics. International Statistical Review 69, 213–
248 (2001)

[10] Vovk, V.: Metric entropy in competitive on-line prediction (2006),
http://arxiv.org/abs/cs.LG/0609045

[11] Vovk, V., Nouretdinov, I., Takemura, A., Shafer, G.: Defensive forecasting for
linear protocols (2005), http://arxiv.org/abs/cs.LG/0506007

http://arxiv.org/abs/cs.LG/0511058
http://arxiv.org/abs/cs.LG/0609045
http://arxiv.org/abs/cs.LG/0506007

Smooth Boosting for Margin-Based Ranking

Jun-ichi Moribe, Kohei Hatano, Eiji Takimoto, and Masayuki Takeda

Department of Informatics, Kyushu University
{moribe,hatano,eiji,takeda}@i.kyushu-u.ac.jp

Abstract. We propose a new boosting algorithm for bipartite ranking
problems. Our boosting algorithm, called SoftRankBoost, is a modifica-
tion of RankBoost which maintains only smooth distributions over data.
SoftRankBoost provably achieves approximately the maximum soft mar-
gin over all pairs of positive and negative examples, which implies high
AUC score for future data.

1 Introduction

Learning of ranking has been extensively studied recently [5, 12, 9, 4, 15, 6, 14,
1, 13]. Ranking is quite useful in information retrieval, recommendation tasks,
bioinformatics and so on. A basic ranking problem called the bipartite ranking
problem is defined over two classes, where the algorithm takes as input a set
of positive and negative instances, and outputs a ranking function, which maps
any instance to a real number. The goal is to obtain such a ranking function
that for most pairs of positive and negative instances, it gives a higher value to
the positive instance than to the negative instance.

A standard measure for evaluating the quality of a ranking function is its
ROC curve [2, 8]. An ROC curve of a ranking function is obtained by plotting
its true positive rate and false positive rate while changing its threshold. More
precisely, the ROC curve of a ranking function h is defined as the line graph
that passes through the points (αθ, βθ) with threshold θ ranging form −∞ to
∞, where αθ is the fraction of the negative instances x such that h(x) ≥ θ (false
positives) and βθ is the fraction of positive instances x such that h(x) ≥ θ (true
positives). Thus, any ROC curve is monotonically increasing and contains the
points (0, 0) and (1, 1). Intuitively, a ranking function is better if its ROC curve
goes through points with larger β-coordinates. So, the goodness of ROC curve is
summarized as the area under the curve, which is called the AUC (Area Under
the ROC Curve). There are many researches to learn functions achieving higher
AUC values (See e.g., [12, 4]).

A major approach to learn good ranking functions is to reduce ranking prob-
lems into classification problems over pair of positive and negative instances [12,
9, 4, 15, 14]. More precisely, for the reduction, we consider a new instance space
consisting of all pairs (xi,x

′
j) of positive instances xi and negative instances x′

j ,
and consider a hypothesis class consisting of functions defined over pairs (xi,x

′
j)

of the form of h(xi)−h(x′
j) for some ranking functions h. Thus, we have a usual

classification problem by considering all pairs (xi,x
′
j) to be labeled positive.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 227–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 J. Moribe et al.

Some generalization bounds are known as well [15, 1]. Among such results,
Rudin et al. showed that large margin over pairs of positive and negative exam-
ples implies high AUC score for future examples under the standard assumption
that data is drawn i.i.d. under the underlying distribution. Several researchers
apply large margin classifiers such as SVMs over pairs of instance [12, 9, 4].
However, a disadvantage of this pairwise approach is that the sample size might
become quadratically larger than the original data.

In this paper, we propose a new boosting algorithm which achieves large
margin over pairs of instances while avoiding quadratically large data of pairs.

First of all, we begin with showing a simple observation that RankBoost, a
boosting algorithm proposed by Freund et al. which is explicitly designed for
ranking, provably maximizes the AUC, given that “weak rankers” are available.
This result simplifies the result of Long and Servedio [13] by removing internal
randomization in their algorithm.

Second, we further investigate general situations where given pairs of positive
and negative instances are not separable by any linear combinations of base func-
tions. In this case, based on a soft margin formulation over pairs, we propose a
“smooth” version of RankBoost which we call SoftRankBoost. SoftRankBoost is
a successor of “smooth” boosting algorithms, such as MadaBoost [7], Smooth-
Boost [18], AdaFlat [10], GiniBoost [11], and FilterBoost [3] which are designed
to maintain only smooth distributions over data, i.e., distributions that are close
to the original distribution (typically the uniform distribution over data).

Under the soft margin boosting framework by Warmuth et al. [19] we show
that SoftRankBoost approximately achieves the maximum soft margin over large
amount of pairs. More precisely, given p positive and n negative instances, preci-
sion parameters δ (0 < δ < 1), ν ∈ {1, 2, . . . ,min{p, n}}, SoftRankBoost outputs
a linear combination of base functions which has margin (1 − δ)γ∗ over at least
1 − (p+n)ν

pn , in fractions of all pn pairs, where γ∗ is the maximum soft margin
defined under the parameter ν.

We note that if we apply the standard soft margin optimization over pairs of
instances, the same margin (1− δ)γ∗ is guaranteed for at least 1− ν

pn fraction of
pairs, which is better than our result. However, our algorithm does not expand
data quadratically unlike standard methods. Also, our bound is still reasonable
unless data is biased, i.e., p << n or p >> n.

2 Preliminaries

Let X+ and X− be the sets of positive instances and negative instances, respec-
tively and let X = X+ ∪ X−. Let d be a distribution over X . We say that a
distribution d over X is nontrivial if d has non-zero probability over both pos-
itive and negative instances. Given a non-trivial distribution d, we denote d+

and d− as the marginal distribution of d over positive and negative instances,
respectively. A ranking function h is any function from X to [−1,+1]. The AUC
of hypothesis h with respect to a non-trivial distribution d over X is given as

Smooth Boosting for Margin-Based Ranking 229

AUCd(h) = Pr
xi∼d,x′

j∼d
{h(xi) > h(x′

j) | xi ∈ X+,x′
j ∈ X−},

where each xi and x′
j are drawn independently from d.

Let S be a set of m(= p + n) instances drawn i.i.d. from d, which includes p
positive instances and n negative instances, respectively. We denote the subsets
of positive and negative instances as S+ = {x1, . . . ,xp} and S− = {x′

1, . . . ,x
′
n},

respectively. Given ρ > 0, we define

Pr
S+,S−

{h(xi) − h(x′
j) < ρ} =

∑p
i=1

∑n
j=1 I(h(xi) − h(x′

j) < ρ)
pn

,

where I(·) is the indicator function. Given S, we define

AUCS(h) =

∑p
i=1

∑n
j=1 I(h(xi) − h(x′

j) > 0)
pn

.

The following theorem was shown by Rudin et al.

Theorem 1 (Rudin et al. [15]). Let F be a set of functions from X to R.
Then, for any ε > 0, ρ > 0, for any h ∈ F , it holds that

1 −AUCd(h) ≤ Pr
S+,S−

{h(xi) − h(xj) ≤ ρ} + ε (1)

with probability at least 1 − 2N
(
F , ερ

8

)
exp

{
−mε2E2

8

}
, where E is the expec-

tation of I(xi ∈ X+,x′
j ∈ X−) when xi and x′

j are drawn independently from
d, and N (F , ε) is the covering number of F , which is defined as the minimum
number of balls of radius ε needed to cover F using L∞ norm.

Here, note that the covering number is smaller if ρ is larger. So, a robust approach
to learn a hypothesis with high AUC is to enlarge the margin ρ over the pairs
of positive and negative instances.

In this paper, we assume a finite set H ={h1, h2, . . . , hN} of functions from
X to [−1,+1]. For convenience, we further assume that if H contains h, it also
contains g = −h. Our hypothesis class F is the set of convex combination of
functions in H, that is,

F =

{
f
∣∣∣ f(x) =

N∑
k=1

αkhk(x),
N∑

k=1

αk = 1, αk ≥ 0

}
.

Now, our goal is to find a function f ∈ F which has large margin ρ over pairs of
instances in S+ and S−.

3 Boosting the AUC

In this section, before investigating large margin classification over linearly in-
separable pairs of instances, we first review RankBoost [9]1 and we show that
1 More precisely, we review RankBoost.B [9] which is an efficient implementation of

RankBoost for bipartite ranking problems.

230 J. Moribe et al.

RankBoost(S+, S−, ν, δ)

1. Let d+
1 = (1/p, . . . , 1/p) ∈ Rp, d−

1 = (1/n, . . . , 1/n) ∈ Rn.
2. For t = 1, . . . , T , repeat the following procedures:

(a) Get a hypothesis ht : X → [−1, +1] ∈ H which maximizes
the quantity γt defined below.

(b) Let γt = (
P

i d+
t,iht(xi) −

P
j d−

t,jht(x
′
j))/2.

(c) Let h′
t(x) = (ht(x) + bt)/2, where

bt = −
P

i d+
t,iht(xi) +

P
k d−

t,jht(x
′
j)

2
.

(d) Update

d+
t+1,i =

exp{−ft(xi)}P
i exp({−ft(xi)}

, and

d−
t+1,j =

exp{ft(x
′
j)}P

i exp({ft(x′
j)}

where ft(x) =
Pt

k=1 αkh′
k(x) and

αt =
1

2
ln

1 + γt

1 − γt
.

3. Output f̃T (x) = fT (x)/
P

t αt.

Fig. 1. RankBoost. Note that the bias term bt is redundant. We add the bias term
only to prove the convergence property of RankBoost.

RankBoost provably maximizes the AUC over given training data, provided that
a set H always contains a “weak ranker” with respect to any distribution. More
precisely, we employ the following assumption 2.

Definition 1 (Weak AUC ranker assumption, Long and Servedio [13]).
We assume that for any non-trivial distribution d over S, a set of functions H
contains a function h : X → [−1,+1] such thatAUCd(h) ≥ 1/2+γ (0 < γ < 1/2).

Then we review RankBoost, whose full description is given in Figure 1. Note that,
at 2(c) in Figure 1, we introduce the bias term bt which does not appear in the
original RankBoost. Although this modification does not change the behavior
of RankBoost, but it gives a simple proof and leads us to our new boosting
algorithm which we will explain later.

The following lemma shows a weak AUC ranker can be transformed into a
weak learner for distributions in which positive and negative instances are equally
likely.
2 In the result of Long and Servedio[13], they use a slightly different definition of AUC:

AUCd(h) = Prxi∼d+,xj∼d−{h(xi) > h(xj)} + 1
2

Prxi∼d+,xj∼d−{h(xi) = h(xj)}.
Our following proof also holds under their definition.

Smooth Boosting for Margin-Based Ranking 231

Lemma 1. If there is a function h̃ : X → R such that AUCd(h) ≥ 1/2 + γ for
a dt over S defined as

dt(x) =

{
d+

t (x)
2 x ∈ S+

d−
t (x)
2 x ∈ S−,

(2)

then, there exits a function h : X → {−1,+1} such that∑
i d

+
t,ih(xi) −

∑
i d

−
t,jh(xj)

2
≥ γ.

Proof. The definition of a ROC curve of h̃ implies that, there exists a threshold
θ such that

Pr
d+

t

{h̃(x) ≥ θ} ≥ Pr
d−

t

{h̃(x) ≥ θ} + γ.

Now consider the binary function h(x) = sign(h̃(x) − θ). Let tp, fn, fp, tn
be probabilities of true positive, false negative, false positive, and true negative
instances with respect to h and dt, respectively. Then, using this notation, the
last inequality is written as

tp

tp + fn
≥ fp

fp + tn
+ γ.

Note that tp + fn = 1/2 and fp + tn = 1/2. So, by rearranging, we have

2tp ≥ 2fp + γ.

Since tp + fn = fp + tn = 1/2 and tp− fp = tn− fn, we get∑
i d

+
t,ih(xi) −

∑
i d

−
t,jh(xj)

2
≥ γ. �	

Then we prove a simple lemma which is a core of our analysis.

Lemma 2. At each iteration t,∑
i

d+
t,ih

′
t(xi) = −

∑
j

d−t,jh
′
t(x

′
j) =

γt

2
.

Proof. Since bt varies in [−1,+1], the range of h′ is [−1,+1] as well. Then, we
have ∑

i

d+
t,ih

′
t(xi) =

1
2

∑
i

d+
t,iht(xi) +

bt

2

=

∑
i d

+
t,iht(xi) −

∑
j d

−
t,jht(x′

j)
4

=
1
2
γt,

as claimed. Similarly, we obtain
∑

j −d−t,jh
′
t(x′

j) = γt/2. and we complete the
proof. �	

232 J. Moribe et al.

Now we prove the AUC-maximizing property of RankBoost.

Theorem 2. Under the weak ranker assumption on H, RankBoost output a
function whose AUC is at least 1 − ε in O(ln(1/ε)

γ2) iterations.

Proof.

AUCS(sign(fT)) = Pr
S+,S−

{sign(fT (xi)) > sign(fT (xj))}

= Pr
S+

{sign(fT (xi)) = 1)}Pr
S−

{sign(fT (xi)) = 0)}

≥ 1 − Pr
S+

{fT (xi) < 0} − Pr
S−

{fT (xj) > 0}.

Now, according to Lemma 2 and using an analysis of AdaBoost [16], both terms
PrS+{fT (xi) < 0} and PrS−{fT (xi) > 0} are bounded respectively by e−2cTγ2

for some constant c > 0. So, AUC(sign(fT)) is at least 1−ε after T = O(ln(1/ε)
γ2)

iterations. �	

4 Boosting the Margin over Pairs of Instances

In this section, we propose a new boosting algorithm which achieve large margin
over pair of instances.

More formally, based on the recent result of Warmuth et al. [19], we formulate
our problem as optimizing the soft margin over pairs as follows: For positive and
negative sets of instances S+ and S−, the set H of functions, and any fixed
ν ∈ {1, . . . , pn}, we consider the following problem:

ρ∗ = max
α,ρ,ξ

ρ− 1
ν

p∑
i=1

n∑
j=1

ξij

sub.to∑
k

αk(hk(xi) − hk(x′
j))/2 ≥ ρ− ξij (i = 1, . . . , p, j = 1, . . . , n)

N∑
k=1

αk = 1, αk ≥ 0 (k = 1, . . . , N)

ξij ≥ 0 (i = 1, . . . , p, j = 1, . . . , n)

Then, using Lagrangian multipliers, the dual problem is given as

γ∗ = min
d,γ

γ

sub.to∑
i,j

dij(hk(xi) − hk(x′
j))/2 ≤ γ (k = 1, . . . , N)

Smooth Boosting for Margin-Based Ranking 233

0 ≤ dij ≤ 1
ν

(i = 1, . . . , p, j = 1, . . . , n)
p∑

i=1

n∑
j=1

dij = 1.

By duality, we have ρ∗ = γ∗. Further, it can be shown that (see, e.g., [17,
19]), the optimal solution guarantees the number of pairs (xi,x

′
j) for which∑

k αk(hk(xi) − hk(x′
j))/2 ≤ ρ∗ is at most ν.

For a fixed ν ≥ 1, we assume that the optimal solution exists. From now
on, based on this assumption, we construct a new boosting algorithm. We note
that our new algorithm does not solve the soft margin optimization problem as
described above. Instead, our algorithm is guaranteed to produce a final classifier
having margin (1 − δ)γ∗ over a large amount of pairs of positive and negative
instances, where δ (0 < δ < 1) is an input parameter.

4.1 Our New Boosting Algorithm

Our boosting algorithm SoftRankBoost uses the following “potential” function
(which was first used in MadaBoost [7]).

L(x) =

{
ex, if x ≤ 0
x + 1 if x > 0.

The derivative of L(x), denoted as �(x) is given as

�(x) =

{
ex, if x ≤ 0
1 if x > 0.

A benefit of using this potential function is that during the course of boosting,
weights over instances are always bounded. This property plays an important
role in smooth boosting algorithms [7, 18, 10, 11, 3].

The description of SoftRankBoostis given in Figure 2. For simplicity of the
description, for any γ > 0, and a function f : X → R we denote

err+γ (f) = |{xi ∈ S+ | f(xi) < γ}|, and

err−γ (f) = |{x′
j ∈ S− | − f(x′

j) < γ}|,

respectively.
Then we prove the following lemma.

Lemma 3. If min{err+γ̂t
(f̃t), err−γ̂t

(f̃t)} > ν, then maxi,j d
+
t,id

−
t,j ≤ 1/ν.

Proof. Without loss of generality, we assume that err+γ̂t
(f̃t) < err−γ̂t

(f̃t). Then we
have

err−γ̂t
(f̃t) ≥ ν.

234 J. Moribe et al.

SoftRankBoost(S+ , S−, ν, δ)

1. Let d+
1 = (1/p, . . . , 1/p) ∈ Rp, d−

1 = (1/n, . . . , 1/n) ∈ Rn.
2. For t = 1, . . . ,, repeat the following procedures:

(a) Get a hypothesis ht : X → [−1, +1] ∈ H
which maximizes the quantity γt defined below.

(b) Let γt = (
P

i d+
t,iht(xi) −

P
j d−

t,jht(x
′
j))/2.

(c) Let h′
t(x) = (ht(x) + bt)/2, where

bt = −
P

i d+
t,iht(xi) +

P
k d−

t,jht(x
′
j)

2
.

Let γ̂t = (1 − δ) mint γt.
(d) Update

d+
t+1,i =

	(−ft(xi) + γ̂t

Pt
k=1 αk)

P
i 	(−ft(xi) + γ̂t

Pt
k=1 αk)

, and

d−
t+1,j =

	(ft(x
′
j) + γ̂t

Pt
k=1 αk)

P
i 	(ft(x′

j) + γ̂t

Pt
k=1 αk)

,

where ft(x) =
Pt

k=1 αkh′
k(x) and

αt =
γt − γ̂t

2(1 + γ̂2
t)

.

(e) If max{err+γ̂t
(f̃t), err

−
γ̂t

(f̃t)} ≤ ν, then T = t and break.

3. Output f̃T (x) = fT (x)/
P

t αt.

Fig. 2. SoftRankBoost

Therefore we obtain

d−t,j =
�(ft(x′

j) + γ̂t

∑t
k=1 αt)∑

i �(ft(xi) + (γ̂t

∑t
k=1 αt)

≤
�(ft(x′

j) + γ̂t

∑t
k=1 αt)

err−γ̂t
(f̃t)

≤
�(+ft(x′

j) + γ̂t

∑t
k=1 αt)

ν
≤ 1

ν
.

Since d+
t,i ≤ 1, we get d+

t,id
−
t,j ≤ 1

ν . �	

Lemma 3 guarantees the smoothness of distributions d+
t and d−t during iterations

of the algorithm. Then we use the following Lemma later.

Smooth Boosting for Margin-Based Ranking 235

Lemma 4 (Hatano[11]). For any a ∈ R and any x ∈ [−1,+1], it holds that

L(x + a) ≤ L(a) + �(a)x + �(a)x2.

Now we analyze the decrease of the potential function L per iteration.

Lemma 5. For any iteration t in which err+γ̂t
(f̃t) ≥ ν,

1
p

∑
i

L(−ft+1(xi) +
t+1∑
k

γ̂kαk) − 1
p

∑
i

L(−ft(xi) +
t∑
k

γ̂kαk) ≤ −νδ2γ̂2
t

8p
.

Also, for any iteration t in which err−γ̂t
(f̃t) ≥ ν,

1
n

∑
j

L(ft+1(x′
j) +

t+1∑
k

γ̂kαk) − 1
n

∑
j

L(ft(x′
j) +

t∑
k

γ̂kαk) ≤ −νδ2γ̂2
t

8n
.

Proof. We only prove the first inequality. The second inequality can be proved
symmetrically. Note that

|αt(−yih
′
t(xi) + γ̂t)| ≤

γt − γ̂t

2(1 + γ̂2)
(1 + γ̂t) ≤

1
2
· 2 ≤ 1.

So, by applying Lemma 4,

1
p

∑
i

L(−ft+1(xi) +
t+1∑
k

γ̂kαk) − 1
p

∑
i

L(−ft(xi) +
t∑
k

γ̂kαk)

≤1
p

∑
i

�(−ft(xi) +
∑

k

γ̂kαk) · {αt(−γt + γ̂t) + α2
t (1 − 2γtγ̂t + γ̂2

t)}

≤1
p

∑
i

�(−ft(xi) +
∑

k

γ̂kαk) · {αt(−γt + γ̂t) + α2
t (1 + γ̂2

t)}

def=∆(αt)

Letting αt = (γt−γ̂t)
2(1+γ̂2

t)
, we obtain

∆t(αt) = −1
4

(γt − γt)2

1 + γ̂2
t

1
p

∑
i

�(−ft(xi) +
∑

k

γ̂kαk)

≤ −ν

4
(γt − γt)2

(1 + γ̂2
t)p

≤ −νδ2γ̂2
t

8p
�	

Theorem 3. After T = O((p+n)
νδ2γ∗2) iterations, SoftRankBoost terminates and it

holds that

Pr
S+,S−

{
f̃T (xi) − f̃T (x′

j)
2

≤ (1 − δ)γ∗
}

≤ (p + n)ν
pn

.

236 J. Moribe et al.

Proof. Since γt ≥ γ∗, we have

Pr
S+,S−

{
f̃T (xi) − f̃T (x′

j)
2

≤ (1 − δ)γ∗
}

≤ Pr
S+,S−

{f̃T (xi) − f̃T (x′
j) ≤ 2γ̂T }

Note that f̃t(xi) − f̃t(x′
j) < 2γ̂t implies f̃t(xi) < γ̂t or −f̃t(x′

j) < γ̂t. So, by
using the union bound, we have

Pr
S+,S−

{f̃T (xi) − f̃T (x′
j) ≤ 2γ̂T }

≤ 1
pn

∑
i

∑
j

I(f̃T (xi) < γ̂T) +
1
pn

∑
i

∑
j

I(−f̃T (x′
j) < γ̂T)

=
1
p

∑
i

I(f̃T (xi) < γ̂T) +
1
n

∑
j

I(−f̃T (x′
j) < γ̂T)

≤1
p

∑
i

L(−fT (xi) + γ̂T

∑
t

αt) +
1
n

∑
i

L(fT (x′
j) + γ̂T

∑
t

αt)

By Lemma 5, after T = 8 max{p,n}
νδ2γ∗2 iterations, the first term in the right hand

side of the last inequality is bounded by

1 − T
νδ2γ∗2

8p
≤ ν

p
.

The second term is also bounded by 1− T
νδ2γ2

t

8n ≤ ν
n . So, SoftRankBoost termi-

nates in T iterations. Then, after T iterations,

Pr
S+,S−

{
f̃T (xi) − f̃T (x′

j)
2

≤ (1 − δ)γ∗
}

≤ ν

p
+

ν

n
=

(p + n)ν
pn

. �	

5 Experiments

We conduct preliminary experiments over artificial datasets generated by a
sparse linear classifier with random noise over labels. Each artificial dataset
consists of n-dimensional {−1, +1}-valued vectors with n = 100. Each vec-
tor is labeled with a threshold function f , which is represented as f(x) =
sign(xi1 + · · · + xik

+ 1) for some i1, . . . , ik s.t. 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n.
For k = 30 we generate random m = 1000 examples labeled by the linear
threshold function, so that positive and negative examples are equally likely. In
addition, we add random noise over labels by flipping the labels randomly with
probability 5%, 10%, and 15%, respectively.

For each dataset, we prepare decision stumps and the constant hypothesis +1
(i.e. the hypothesis that always answers +1) as weak hypotheses. For each ±1-
valued attribute of each example, we prepare the decision stump which answers
the value of the attribute.

Smooth Boosting for Margin-Based Ranking 237

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
U

C

Rounds

SoftRankBoost
RankBoost

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
U

C

Rounds

SoftRankBoost
RankBoost

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
U

C

Rounds

SoftRankBoost
RankBoost

Fig. 3. Test AUCs of boosting algorithms for balanced artificial datasets with random
noises 5% (upper left), 10% (upper right), and 15% (lower) over labels. Here, positive
and negative examples are generated equally likely.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
U

C

Rounds

SoftRankBoost
RankBoost

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
U

C

Rounds

SoftRankBoost
RankBoost

Fig. 4. Test AUCs of boosting algorithms for unbalanced artificial datasets with ran-
dom noises 5% Here, the ratios of positive and negative examples are roughly 7 : 3
(left) and 9 : 1 (right), respectively

We evaluate the boosting algorithms by cross validation. We split each data
randomly 20 times, where each example is put into a training set with probability
70% and a test set with with probability 30%. For each training set, we run
RankBoost in 10000 steps, and run SoftRankBoostwith parameters δ = 0.5,
and ν = (0.1)m. Note that, 10000 steps are sufficiently long for RankBoost to

238 J. Moribe et al.

converge over the datasets. The AUC of the final hypothesis of each algorithm
is evaluated over test data and we average the AUC over 20 trials. The results
are summarized in Figure 3. As can be seen in Figure 3, SoftRankBoost achieves
higher AUCs than RankBoost over balanced datasets with noises.

Then we change the ratio of positive and negative examples and examine how
SoftRankBoost behaves for unbalanced datasets. More precisely, we change the
probability of generating a negative instance to be 70% and 90%, respectively.
Here we fix the random noise probability with 5%.

The result is summarized in Figure 4. Even though our theoretical guarantee is
not good for unbalanced datasets, SoftRankBoost still outperforms RankBoost.

6 Conclusions and Future Work

In this paper, for bipartite ranking problems, we propose SoftRankBoost, a
smooth version of RankBoost which achieves large margin over pairs of posi-
tive and negative instances. As future work, we would like to understand Sof-
tRankBoost deeply. In particular, many boosting algorithms can be viewed as
optimizers of some optimization problems (e.g., [19]). Clarifying the underlying
optimization problem might give us a better algorithm. Also, we plan to evaluate
the performance of SoftRankBoost over real datasets.

References

[1] Balcan, N., Bansal, N., Beygelzimer, A., Coppersmith, D., Langford, J., Sorkin,
G.B.: Robust reductions from ranking to classification. In: Proceedings of the 20th
Annual Conference on Learning Theory, pp. 604–619 (2007)

[2] Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recognition 30, 1145–1159 (1997)

[3] Bradley, J.K., Shapire, R.: Filterboost: Regression and classification on large
datasets. In: Advances in Neural Information Processing Systems 20, pp. 185–
192 (2008)

[4] Brefeld, U., Scheffer, T.: Auc maximizing support vector learning. In: Proceedings
of the ICML Workshop on ROC Analysis in Machine Learning (2005)

[5] Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of
Artificial Intelliegence Research 10, 243–279 (1999)

[6] Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization. In: Advances
in Neural Information Processing Systems 16 (2004)

[7] Domingo, C., Watanabe, O.: MadaBoost: A modification of AdaBoost. In: Pro-
ceedings of 13th Annual Conference on Computational Learning Theory, pp. 180–
189 (2000)

[8] Fawcett, T.: Roc graphs: Notes and practical considerations for researchers. Tech-
nical report, HPL-2003-4, HP (2003)

[9] Freund, Y., Iyer, R., Shapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)

[10] Gavinsky, D.: Optimally-smooth adaptive boosting and application to agnostic
learning. Journal of Machine Learning Research (2003)

Smooth Boosting for Margin-Based Ranking 239

[11] Hatano, K.: Smooth boosting using an information-based criterion. In: Proceed-
ings of the 17 th International Conference on Algorithmic Learning Theory, pp.
304–319 (2006)

[12] Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining (2002)

[13] Long, P.M., Servedio, R.A.: Boosting the area under the roc curve. In: Advances
in Neural Information Processing Systems 20 (2008)

[14] Rudin, C.: Ranking with a p-norm push. In: Proceedings of 19th Annual Confer-
ence on Learning Theory, pp. 589–604 (2006)

[15] Rudin, C., Cortes, C., Mohri, M., Shapire, R.E.: Margin-based ranking meets
boosting in the middle. In: Proceedings of the 18th Annual Conference on Learning
Theory, pp. 63–78 (2005)

[16] Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3), 297–336 (1999)

[17] Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector
algorithms. Neural Computation 12(5), 1207–1245 (2000)

[18] Servedio, R.A.: Smooth boosting and learning with malicious noise. Journal of
Machine Learning Research 4, 633–648 (2003)

[19] Warmuth, M., Glocer, K., Rätsch, G.: Boosting algorithms for maximizing the soft
margin. In: Advances in Neural Information Processing Systems 20, pp. 1585–1592
(2008)

Learning with Continuous Experts

Using Drifting Games

Indraneel Mukherjee and Robert E. Schapire

Princeton University
Department of Computer Science

35 Olden Street
Princeton, NJ 08540

{imukherj,schapire}@cs.princeton.edu

Abstract. We consider the problem of learning to predict as well as the
best in a group of experts making continuous predictions. We assume
the learning algorithm has prior knowledge of the maximum number
of mistakes of the best expert. We propose a new master strategy that
achieves the best known performance for online learning with continuous
experts in the mistake bounded model. Our ideas are based on drifting
games, a generalization of boosting and online learning algorithms. We
also prove new lower bounds based on the drifting games framework
which, though not as tight as previous bounds, have simpler proofs and
do not require an enormous number of experts.

1 Introduction

We consider the problem of learning to predict as well as the best in a group of
experts. Our model consists of a series of rounds. In each round, experts make
predictions in [−1, +1]. This can be interpreted as giving a binary prediction, for
example, if it will rain or not, with a certain degree of confidence. In particular,
this means that an expert can choose to abstain from giving any prediction at
all, in which case it predicts 0. The problem is to design a master algorithm that
combines the expert predictions in each round to give its own binary prediction
in {−1, +1}. At the end of each round, nature (or an adversary) reveals the
truth, which is a value in {−1, +1}. The experts and the master suffer loss that
depends on the amount by which their predictions deviated from the truth. Our
goal is to ensure that our master algorithm does not suffer much loss relative to
the best expert.

An important feature of our model, which we define rigorously in Section 2,
is that we assume the master algorithm has prior knowledge of a bound k on
the total loss that the best expert will suffer. With binary experts, outputting
predictions in {−1, +1}, this problem was essentially solved entirely by Cesa-
Bianchi et al. [3] who proposed the Binomial Weights (BW) algorithm. However,
their work cannot be applied to our setting since here the experts are contin-
uous, with predictions in [−1, +1]. In such a setting, other methods, notably

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 240–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning with Continuous Experts Using Drifting Games 241

exponential-weight algorithms [2, 6, 7], can be used instead. However, such al-
gorithms do not enjoy the same level of tight optimality of the BW algorithm,
and it has been an open problem since the introduction of BW as to whether
this method can be generalized to continuous experts.

In this paper, we present just such a generalization. In Section 3, we propose
a new master strategy which gives the best known performance for this problem.
Our algorithm predicts using a weighted majority of the experts’ predictions in
each round, where the weights are carefully chosen to ensure that the master’s
loss is small relative to k. We also show that our algorithm runs in polynomial
time.

Our algorithm is based on the drifting games framework introduced by
Schapire [9]. This framework generalizes a number of online and boosting learn-
ing algorithms, including boost-by-majority [4], AdaBoost [6], the weighted
majority algorithm [7] and Binomial Weights [3]. We apply the drifting games
framework directly both to derive our algorithm, and to analyze its performance
which, as seen in Section 4, relies heavily on properties of drifting games.

We also provide in Section 5 new lower bound constructions for master algo-
rithms which employ weighted-majority predictions. These are slightly weaker
than those provided by Cesa-Bianchi et al. [3] which already show that our al-
gorithm is nearly the best possible when the number of experts is very large.
However, their techniques are based on Spencer’s [10] sophisticated results for
Ulam’s game, and require an enormous number of experts. In contrast, our lower
bounds use simpler arguments based on the drifting games framework, and are
meaningful for any number of experts.

A consequence of our results is that learning in our framework with continu-
ous experts is apparently no harder than learning with abstaining experts, i.e.,
experts whose predictions are restricted to be in {−1, 0, +1} (assuming that 2k
is an integer), although there does appear to be a small gap between abstaining
and binary experts.

Other related work. Abernethy et al. [?] extended the BW algorithm to the
setting where the experts remain binary, but the master is allowed to predict
continuously. Their results also apply to a setting where experts can split them-
selves to randomly predict −1 or +1. Note that such splitting experts, although
superficially similar to the ones in the current paper, are in fact quite different,
and as a consequence, their results cannot be applied immediately to our setting.

Continuous-time versions of drifting games, with potential applications to on-
line learning, were studied by Freund and Opper [5]. In their setting, learning
rounds are no longer discrete, but are instead continuous.

2 Expert Learning Model

Our expert learning model can be viewed as the following game. The players of
the game are a fixed set of m experts, a master algorithm, and an adversary.
The game proceeds through T rounds. In each round t, the following happen:

242 I. Mukherjee and R.E. Schapire

– The master chooses real weights wt
1, . . . , w

t
m over the experts.

– Each expert i makes a prediction xt
i ∈ [−1, +1]. The experts’ predictions

are controlled by the adversary; we distinguish between the experts and the
adversary for clarity of exposition.

– The master predicts ŷt �= sign(
∑

i wt
ix

t
i) ∈ {−1, 0, +1}. The sign function

maps positive reals to 1, negative reals to −1 and 0 to itself.
– The adversary then chooses a label yt ∈ {−1, +1}, causing expert i to suffer

loss 1
2 |yt−xt

i|, and the master to suffer loss 1(yt �= ŷ), where 1 is the indicator
function. Note that predicting 0 counts as a mistake.

The total loss of any player is the sum of the losses in each round. It is guaranteed
that some expert will suffer less than k total loss, where k is known ahead of
time to the master. The goal of the master is to come up with a strategy to
choose distributions wt in each round, so as to minimize his loss against the
worst possible adversary. The performance of every fixed strategy will thus be a
function of m and k.

We will only consider conservative master algorithms, i.e., algorithms that
ignore rounds where it does not make a mistake, so that the weights it chooses
in a certain round depend only on past rounds where it made a mistake. This will
also allow us to assume that as long as the game can continue, the master makes
a mistake in every round. Since one can easily convert any master algorithm
in a mistake bounded model like ours to a conservative one without loss of
performance, we do not lose generality with this assumption.

3 Choosing Weights

We describe a strategy of the master for choosing a distribution on the expert in
each round. Computing this strategy requires playing a different type of game
called a drifting game introduced by Schapire ([9]). We begin with an abstract
definition of the game, and then go on to show how such games can be used
to derive the BW algorithm [3], which is the optimal (in the broadest possible
sense) master strategy in the case of binary experts. We then show how similar
ideas can be used to derive a master algorithm for continous experts.

3.1 Drifting Games

A drifting game is played by a shepherd and m sheep (also known as chips in
[9]) floating in Rd. In the rest of the paper, the dimension d of every drifting
game considered is 1. The game proceeds through T rounds. In each round t,
the following happen:

– The shepherd chooses a weight wt
i ∈ R for each sheep i. The sign indicates

the direction he intends the sheep to move, and the magnitude encodes the
importance he places on that sheep.

Learning with Continuous Experts Using Drifting Games 243

– Sheep i responds by shifting by zt
i , where the limited imagination of sheep-

kind forces zt
i to belong to a fixed set of directions B. Additionally, the

prowess of the shepherd demands that the following drifting constraint be
obeyed

m∑
i=1

wt
iz

t
i ≥ δ

m∑
i=1

|wi|. (1)

Here δ ≥ 0 and B ⊆ R are parameters of the game.

The shepherd suffers a loss L(s) for every sheep that is at location s ∈ R at the
end of the game; here L : R → R is a real function on the space. Initially, all
the sheep are at the origin, so at the end of the game, sheep i is at

∑T
t=1 zt

i .
The goal of the shepherd is to choose weights in a way that would minimize its
average loss 1

m

∑
i L(

∑
t zt

i), assuming the worst behavior from the sheep.
Schapire [9] suggests a shepherd strategy, OS, based on a set of potential

functions φt : Rd → R defined recursively as follows:

– φT (x) = L(x)
– φt−1(x) = min

w∈R

max
z∈B

(φt(x + z) + wz − δ|w|)

Denoting by st
i the position of sheep i at time t, the OS algorithm chooses wt

i

as follows

wt
i ∈ argmin

w∈R

max
z∈B

(φt+1(st
i + z) + w − δ|w|).

(In this paper, we regard argmin or argmax as returning the set of all values
realizing the minimum or maximum.) Schapire [9] provides an upper bound
on the performance of the OS algorithm, and argues that (under some natural
assumptions) it is optimal when the number of sheep m is very large. We record
the results in the theorem below.

Theorem 1 (Drifting Games [9]). Under some technical assumptions on B
and L, the loss suffered by the OS algorithm is upper bounded by φ0(0) where
φ is defined as above. Further, given any ε > 0, for sufficiently large m, the
sheep can force any shepherd algorithm playing for T rounds to suffer a loss of
φ0(0) − ε.

3.2 Learning with Binary Experts Using Drifting Games

Consider our expert learning model with the change that experts make {−1, +1}
instead of continous predictions. The Binomial Weights algorithm [3] is the best
possible master strategy for this problem, even among master algorithms not
restricted to predicting a weighted majority of the experts’ predictions at each
stage. We show how a master can simulate a drifting game to derive a strategy
for choosing weights on the experts so as to perform as well as the BW algorithm.

The drifting game takes place in R, so that d = 1. Its parameters are B =
{−1, +1} and δ = 0, and the loss function is L(s) = 1(x ≤ 2k−T). The number

244 I. Mukherjee and R.E. Schapire

of rounds is T = T0 + 1 where T0 will be specified later. For every expert, there
is a sheep. At the beginning of a round, the master uses the shepherd’s choice
w1, . . . , wm for that round to assign weights to experts. After seeing the expert
predictions xi and the label y produced by the adversary, the master causes
sheep i to drift by zi = −yxi. The drifting constraint (1) holds since we are in
the conservative setting and assume a mistake is made by the master in each
round. Schapire [9] shows that the resulting algorithm is equivalent to BW, for
a certain choice of T0.

We use the notation
(

q
≤k

)
to denote

∑k
i=0

(
q
i

)
.

Theorem 2 (Learning with Binary Experts [3],[9]). Consider the expert
learning model described in Section 2, with the change that the expert predictions
lie in {−1, +1}. For this problem, when T0 is set to be

max
{

q ∈ N : q ≤ lg m + lg
(

q

≤ k

)}
the number of mistakes made by the master algorithm described in this section is
upper bounded by T0. Further, the resulting algorithm can be computed efficiently.

Proof. At the heart of the proof, and the reason behind our choice of T0, lies
the following result which was proved by Schapire [9]: If a drifting game with
parameters δ = 0, B = {−1, +1} and loss function L(x) = 1(x ≤ 2k − T) is
played for T rounds, then φt can be computed exactly, yielding

φ0(0) = 2−T

(
T

≤ k

)
. (2)

Note that the position of a sheep after t rounds is 2M − t, where M is the loss
suffered by the corresponding expert till then. Since we are guaranteed a mistake
bound of at most k on some expert, we always have

∑
i L(st

i) ≥ 1, where st
i is

sheep i’s position after t rounds of play. If the game could continue for T = 1+T0

rounds, using Theorem 1 and (2) we would have the following contradiction:

1
m

≤ 1
m

∑
i

L(sT
i) ≤ φ0(0) = 2−T

(
T

≤ k

)
<

1
m

The last inequality follows from the fact that T0 was chosen to satisfy T0 =
max{ # of rounds : φ0(0) ≥ 1

m)}. This upper bounds the maximum number of
rounds for which the game can continue, or equivalently, the maximum number
of mistakes our master algorithm makes, by T0. �	

3.3 Drifting Games for Continuous Experts

The same approach from the previous section can be applied to our expert
learning model, where experts make [−1, +1] predictions. The drifting game
parameter B changes to B = [−1, +1], and a new expression for T0 has to be
chosen; everything else remains the same. We summarize the master strategy in
Algorithm 1, where we choose T0 = max{q ∈ N : q ≤ lg m + lg

(
T+1
≤k

)
}. We can

now state our first main result.

Learning with Continuous Experts Using Drifting Games 245

Algorithm 1. Master algorithm for continuous experts
Require: k - mistake bound, m - number of experts

T0 ← max{q ∈ N : q ≤ lg m + lg(
�

T+1
≤k

�
)}

T ← 1 + T0, B ← [−1, +1]
δ ← 0, L ← 1(x ≤ 2k − T)
Setup drifting game with T, B, δ, L, and shepherd OS

{Note: Game cannot continue beyond T0 rounds}
for t = 1 to T0 do

Accept wt
1, . . . , w

t
m from shepherd

Accept predictions xt
1, . . . , x

t
m from experts.

Predict ŷt = sign(
�

i wix
t
i)

Accept label yt from adversary.

For each i, make sheep i drift by zt
i

�
= −ytxt

i

end for

Theorem 3 (Learning with Continuous Experts). Consider the expert
learning model described in Section 2. For that problem, the loss of the mas-
ter algorithm described in Algorithm 1 is upper bounded by T0, which is equal to

max
{

q ∈ N : q ≤ lg m + lg
(

q + 1
≤ k

)}
. (3)

As in learning with binary experts, the choice of T0 in Theorem 3 is dictated by
the analysis of the drifting game used for playing with continuous experts. This
analysis also constitutes our main technical contribution, and is summarized in
the next theorem, but we defer a proof till the next section.

Theorem 4 (Drifting Games for [−1, +1] Experts). Consider the drifting
game with parameters δ = 0, B = [−1, +1], total number of rounds T and loss
function L(x) = 1(x ≤ 2k−T). The value of the potential function for this game
at any integer point s is given by

φT−t(s + 2k − T) =

{
1 if s ≤ 0
1 − 2−t

∑s−1
i=0

(
t

� t+i
2 �

)
else.

(4)

In particular we have

φ0(0) = 2−T

(
T + 1
≤ k

)
.

Further, the OS strategy for this game can be computed efficiently.

Proof of Theorem 3. Observe that T0 = max{ # of rounds : φ0(0) ≥ 1
m)},

where φ0 is the potential associated with the drifting game in Theorem 4. The
rest of the proof is the same as that for Theorem 2. �	
We can loosely upper bound the expression for the number of mistakes in The-
orem 3 by

2k + lnm

(
1 +

√
1 +

4k

ln m

)
− 1.

246 I. Mukherjee and R.E. Schapire

In Section 5 we will prove that, when the number of experts m is around 2k,
the mistake guarantee given in Theorem 3 is the best possible, up to an addi-
tive O(log k) term, when considering master algorithms that predict a weighted
majority of the experts’ predictions in each round.

4 Analysis of Drifting Games for Continuous Experts

Throughout we will be using the following two facts: φt is decreasing, and takes
values in [0, 1]. These facts were proved more generally by Schapire [9].

We begin with a technical result necessary for proving Theorem 4.

Theorem 5 (Piecewise Convexity). For every round t, φt is piecewise con-
vex with pieces breaking at integers, i.e., for every integer n, φt is convex in
[n, n + 1].

The proof of this theorem is complicated and we defer it to Section 6. The proof
relies on Lemma 1, which will also be useful otherwise. This lemma can be proved
using a more general result in [9], but here we give a direct proof for the case of
interest.

Lemma 1. If φt is piecewise convex with pieces breaking at integers, then for
s �∈ Z,

φt−1(s) = max
{zφt(s + z′) − z′φt(s + z)

z − z′
: z, z′ ∈ Z, zz′ < 0

}
(5)

where
Z = {z ∈ [−1, +1] : s + z ∈ Z} ∪ {−1, +1}. (6)

For s integral, φt−1(s) is the maximum of φt(s) and the above expression.

Proof. By definition

φt−1(s) = min
w

max
z∈[−1,+1]

(φt(s + z) + wz).

For fixed s and w, our assumptions imply that φt(s+z)+wz is piecewise convex
in z. As z varies over the convex set [−1, +1], the maximum will be realized
either at an endpoint, −1 or 1, or when s + z lies at one of the endpoints of the
convex pieces, which happens at the integers. This shows that we can restrict z
to Z while evaluating φt−1(s).

Denote by ∆ the simplex of distributions over Z. By the discussion above,

φt−1(s) = min
w

max
z∈Z

(φt(s + z) + wz)

= min
w

max
p∈∆

Ez∼p [φt(s + z) + wz]

= max
p∈∆

min
w

Ez∼p [φt(s + z) + wz]

Learning with Continuous Experts Using Drifting Games 247

where the last equality comes from Corollary 37.3.2 of [8]. Interpreting the right
side as the Lagrangean dual we may compute φt−1(s) as the solution to the
following optimization problem

maxp∈∆ Ez∼p [φt(s + z)]
s.t. Ez∼p[z] = 0.

The above is a linear program and is hence optimized at vertices of the polytope
{p ∈ ∆ : Ez∼p[z] = 0}, which are mean-zero distributions supported on two
points z, z′ of opposite signs, or concentrated on 0 when feasible i.e. when s ∈ Z.
Maximizing Ez∼p [φt(s + z)] over such vertices p yields the lemma. �	

It is now straightforward to prove Theorem 4.

Proof of Theorem 4: Theorem 5 and Lemma 1 imply that for integer points s

φt−1(s) = max
{

φt(s),
φt(s − 1) + φt(s + 1)

2

}
. (7)

One can finish the proof by directly substituting into (7) the expression for φt(s)
given in (4), and verifying that the inequality holds. We omit calculations.

For efficiency, note that the value of any φt at any point s depends upon values
at Z and s+ Z. One can easily check that, for all t, φt(s) = 1 for s ≤ 2k−T and
φt(s) = 0 for s ≥ T . Since the value at integers can be easily computed from the
expression in the theorem, we can compute φt(s) by applying standard dynamic
programming techniques in time polynomial in T . �	
Notice that (7) is the same as what we would get if the sheep were allowed to
drift only by −1, 0, +1 at each time step. Correspondingly, in terms of provable
upper bounds, our algorithm performs no worse with continuous experts than
it does with abstaining experts, while with binary experts, the upper bound on
performance is a tiny bit better.

5 Lower Bounds

In this section we provide lower bounds for online learning with continuous
experts which almost match the upper bounds of Theorem 3, thus showing that
the drifting game based Algorithm 1 is near optimal.

Theorem 6 (Lower bound for expert learning). Consider the expert learn-
ing model defined in section 2. For every master algorithm, the adversary can
choose labels and cause the experts to make predictions in each round in a man-
ner so as to force the master algorithm to suffer a loss of

max
{

q ∈ N : q < lg
(

m√
k

)
+ lg

(
q + 1
≤ k

)
+ Θ(1)

}
, (8)

where Θ(1) is a quantity bounded between some absolute constants c1 and c2.

248 I. Mukherjee and R.E. Schapire

The loss bound given above, and the upper bound in 3 define the smallest
integer T such that 2−T

(
T+1
≤k

)
is less than 1

m and O(
√

k
m) respectively. Since

O(log m) rounds will always be necessary, and 2−T
(
T+1
≤k

)
decreases exponentially

fast when T > 3k, we see that the gap between the upper and lower bounds is
only O(log k) when the number of experts m is around 2k. We believe that a
more careful analysis will show that the real gap between the upper and lower
bounds is much smaller.

The proof of Theorem 6 consists of showing how an adversary in the expert
model can exploit adversarial sheep movement in the drifting game to force any
master algorithm to suffer high loss. We then resort to the following result on
drifting games, whose proof is deferred to the next section, to complete our
argument. This is the converse of what we saw in Section 3.3, where a well
performing shepherd algorithm gave rise to master algorithms suffering low loss.

Theorem 7. Consider the drifting game with parameters δ = 0, B = [−1, +1],
number of rounds T and loss function 1(x ≤ 2k−T). For any shepherd algorithm,
there exists a strategy for the sheep that causes the shepherd to suffer a loss of

φ0(0) − Θ(
√

k)
m

at the end of the game.

Proof of Theorem 6: The adversary in our expert model (defined in Section
2) simulates a drifting game in R, with parameters as above. The drifting game
is played for T rounds, where T is given by the expression (8). For every ex-
pert, there is a sheep. At the beginning of a round, if the master places weights
w1, . . . , wm on the experts, the adversary causes the shepherd to drive each sheep
i in direction wi. If the sheep drift in direction z1, . . . , zm, he causes expert i to
predict xi = zi (remember the adversary controls expert predictions). The drift-
ing constraint

∑
i wizi ≥ δ = 0 ensures that the weighted majority prediction of

the master is 0 or 1. The adversary then outputs the label y = −1, causing the
master to make a mistake in each round.

Note that the position of a sheep after t rounds is 2M − t where M is the
loss suffered by the corresponding expert till then; thus an expert has suffered at
most k loss if and only if the corresponding sheep lies at a point less than 2k−T
at the end of the game. Hence, by our choice of loss function, the mistake bound
on the experts is equivalent to ensuring the constraint that the loss suffered by
the shepherd algorithm is strictly positive at the end of the game, so that at
least one sheep has a final loss of 1.

Theorem 7 guarantees that the sheep can drift in a way so that the shepherd
suffers at least φ0(0) − Θ(

√
k)/m loss, where we know from Theorem 4 that

φ0(0) =
(
T+1
≤k

)
. Our choice of T satisfies φ0(0) − Θ(

√
k)/m > 0, completing the

proof. �	

Learning with Continuous Experts Using Drifting Games 249

5.1 Lower Bound for Drifting Game

We prove Theorem 7. Schapire ([9]) provides a similar though slightly weaker
lower bound (φ0(0) − O(T/

√
m) instead of φ0(0) − (

√
k/m)) which leads to

considerably weaker expert learning lower bounds. The reason is that Schapire’s
arguments hold for much more general drifting games. By carefully tailoring his
proof to our specific learning model, we achieve signficant improvements.

Proof of Theorem 7: We will show that on round t, the sheep can choose to
drift in directions zi so that

1
m

∑
i

φt+1(st+1
i) ≥ 1

m

∑
i

φt(st
i) −

Ut

m
. (9)

Here st
i is the position of sheep i in round t, and

Ut
�= max

st

φt+1(st − 1) − φt+1(st + 1)
2

(10)

where the maximum is taken over all possible integral positions st of any sheep
in round t. Note that this is different from the set of all possible positions,
since the movement of the sheep is restricted to change by at most +1 or −1 in
each round. Among the possible positions, we take supremum over only those
positions which happen to lie at an integer.

Repeatedly applying the above yields

1
m

∑
i

L(sT
i) ≥ φ0(0) − 1

m

∑
t

Ut.

Appealing to Lemma 4 will then produce the desired bound.
For each i, s0

i = 0. Our sheep strategy will choose every drift to be in
{−1, 0, 1}. Hence we may assume st

i ∈ Z for each i, t.
Fix a round t. From Lemma 1 we have

φt(s) = max
{

φt+1(s),
φt+1(s − 1) + φt+1(s + 1)

2

}
.

Let I = {1, . . . , m}, I0 = {i : φt(st
i) = φt+1(st

i)}, I1 = I \ I0. For each i ∈ I0

we set zt
i = 0. This ensures∑

i∈I0

φt+1(st+1
i) =

∑
i∈I0

φt(st
i).

For each i ∈ I1 we must have

φt(st
i) =

φt+1(st
i − 1) + φt+1(st

i + 1)
2

For such i we will choose zt
i in {−1, +1}. Define at

i
�= φt+1(st

i−1)−φt+1(s
t
i+1)

2 .
Then, for each i ∈ I1,

φt+1(st+1
i) = φt(st

i) − zt
ia

t
i

250 I. Mukherjee and R.E. Schapire

since st+1
i = st

i + zt
i . Thus∑

i∈I1

φt+1(st+1
i) =

∑
i∈I1

φt(st
i) −

∑
i∈I1

zt
ia

t
i

Note that at
i ∈ [0, Ut] by definition. If the shepherd weights for this round are

wt
1, . . . , w

t
m, it suffices to ensure that

∑
i∈I1

wt
iz

t
i ≥ 0 while keeping

∑
i∈I1

at
iz

t
i

below Ut.
By Lemma 2, there exists a subset P ⊆ I1 such that∣∣∣∣∣∣

∑
i∈P

at
i −

∑
j∈I1\P

at
j

∣∣∣∣∣∣ ≤ Ut.

Assume without loss of generality that
∑

i∈P wt
i −

∑
i∈I1\P wt

j ≥ 0. Then as-
signing zt

i = +1 for i ∈ P and zt
i = −1 for i ∈ I1 \ P would ensure the drifting

constraints as well as (9), completing our proof. �	

Lemma 2. For any sequence a1, . . . , an of numbers in [0, U]

min
P⊆I

∣∣∣∣∣∣
∑
i∈P

ai −
∑

j∈I\P

aj

∣∣∣∣∣∣ ≤ U

where I = {1, . . . , n}.

Proof. Define discrepancy to be the argument of the min, and let P ∗ realize the
minimum. If P ∗’s discrepancy were greater than U , we could transfer any ai from
the heavier group to get a partition with lower discrepancy, a contradiction.

Notice that the Ut can be trivially bounded by 1, since the φt take values in
[0, 1]. That would give us a lower bound of φ(0)− T

m . By being more careful, we
get the following improvement.

Lemma 3. Define Ut as in (10). Then

UT−t =

{
2−t

(
t
k

)
if t > 2k

2−t
(

t
� t

2 �
)

if t ≤ 2k.

Proof. Using (4), we have, for s ≥ 0

1
2
[φT−t(s − 1 + 2k − T) − φT−t(s + 1 + 2k − T)]

= 2−t−1

((
t

t+s−1
2 $

)
+
(

t

t+s
2 $

))
. (11)

Let s + 2k − T be the position of a sheep at the end of T − t rounds. Since
it can drift by at most −1 in the negative direction in any round, we have

Learning with Continuous Experts Using Drifting Games 251

s+2k−T ≥ t−T so that s ≥ t−2k. We take two cases, depending on the value
of k.

Suppose t > 2k. Then s ≥ t − 2k ≥ 1. Since (11) is larger for smaller (and
non-negative) s, we can plug in s = t − 2k to compute UT−t.

UT−t =2−t−1

((
t

2t−2k−1
2 $

)
+
(

t

2t−2k
2 $

))
= 2−t

(
t

t − k

)
= 2−t

(
t

k

)
.

When t ≤ 2k, s can be less than 1. If s < 0, the left hand side of (11) is zero.
If s = 0, the right hand side of the same equation equals 2−t

(
t

� t
2 �
)
. Hence for

t ≤ 2k, UT−t = 2−t
(

t
� t

2 �
)
.

Lemma 4. Define Ut as in (10). Then,
∑

t Ut ≤ Θ(
√

k).

Proof. Lemma 3 yields∑
t

Ut =
∑
t>2k

Ut +
∑
t≤2k

Ut =
∑
t>2k

2−t

(
t

k

)
+

∑
t≤2k

2−t

(
t

t
2$

)
.

The terms in the first summation decrease by at least a factor of 3/4 successively,
so that we can upper bound it by 4

(
2k
k

)
. Stirling’s approximation yields

(
t

� t
2 �
)

<
O(1)√

t
for all positive integers t. Hence we have∑

t

Ut ≤
4√
2k

+
∑
t≤2k

O(1)√
t

= Θ(
√

k)

completing our proof.

6 Proof of Theorem 5

Proof of Theorem 5: Lemma 5 shows that φt is convex in (n, n + 1). Since φt

is decreasing, it is right-convex at n. Theorem 10.1 in [8] shows φt is continuous
in (n, n + 1); therefore to show convexity in [n, n + 1] we need φt to be left-
continuous at n + 1. Inductively, φt+1 is decreasing and convex in [n, n + 1], and
hence necessarily left-continuous at n + 1. Along with (5), and a little arguing
(omitted due to lack of space), φt is left-continuous at n + 1. �	

Lemma 5. For every integer n and round t, φt is convex in (n, n + 1).

Proof. By backwards induction on t. The base case holds since φT is the loss
function 1(x ≤ 2k − T). Assume φt+1 is piecewise convex. Fix any integer
n ∈ Z. We have to show that φt is convex in (n, n + 1). Recall that, for
non-integral points s, (5),(6) states that φt = max{H13, H23, H14, H24} where
Hij(s) = ziφt+1(s+zj)−zjφt+1(s+zi)

zi−zj
, and (z1, z2, z3, z4) = (−1, n−s, n+1−s, +1).

Checking that H14 and H23 are convex is straightforward. It turns out that H13

and H24 need not be convex. However, below we show that max{H23, H24} is

252 I. Mukherjee and R.E. Schapire

convex, and a very similar proof works for showing max{H23, H13} is convex. As
the supremum of convex functions is convex (Theorem 5.5 [8]), and because φt

can be written as φt = max{max{H23, H13}, max{H23, H24}, H14}, we are done.
We begin by making our task of showing max{H23, H13} is convex a little eas-

ier. The next lemma shows that it suffices to show only local convexity, meaning
every point in the domain has a neighborhood over which the function is convex.
The proofs of this and other technical lemmas are given later.

Lemma 6. A locally convex function on (0, 1) is convex.

We eliminate a degenerate case before proceeding. If φt+1(n) = 0, then φt+1(s)
is zero for s ≥ n, and H24 ends up being the 0 function. In this case, max{H23,
H24} = H23 is convex. So assume φt+1(n) > 0.

If H24 were locally convex, then max{H23, H24} locally convex would follow
immediately. Unfortunately, H24 may fail to be convex in some neighborhood.
We instead show that in any neighborhood, either H24 is convex, or H23 ≥
H24, which suffices. The conditions for each fact to hold are given in the next
two lemmas. With the degenerate case ruled out, we simplify the conditions by
introducing functions f, g : (0, 1) → R

f(x) =
φt+1(n + 1 + x)

φt+1(n)
, g(x) =

f(x) − 1
1 + x

, (12)

and we continuously extend them at 0.

Lemma 7. Let f, g be as in (12). Then, max{H23, H24} = H23 at a point (n+x)
if g(0) ≥ g(x).

Proof. Using φt+1 is decreasing, f(0) ≤ φt+1(n+1)
φt+1(n) . The rest is simple algebra. �	

Lemma 8. Let f, g be as in (12). Then, the left derivative fL of f exists, and
H24 is convex in a neighborhood (n + U) if ∀x ∈ U, g(x) ≤ fL(x).

The conditions in Lemma 7, 8 motivate the following definition.

Definition 1. Let f : [0, 1) → R have a left-derivative fL at all points, and define
g : [0, 1) → R as in (12). Then f satisfies the dichotomy if around every point there
is a neighborhood U ⊆ [0, 1) for which at least one of the following holds:

– ∀x ∈ U : g(0) ≥ g(x).
– ∀x ∈ U : g(x) ≤ fL(x).

If f satisfies the dichotomy, then our proof is complete, since then either Lemma 7
or Lemma 8 will apply. In either case, max{H23, H24} is locally convex. A picture
providing intuition for why this might happen is given in Figure 1.

Continuing with our proof, observe that (12) defines f to be a positive scaling
of φt+1, which is convex by the inductive assumption. By construction f is
continuous at 0 and hence convex in [0, 1). By Theorem 10.1 of [8], convexity of
f implies continuity in (0, 1) as well. It turns out by the next lemma, that these
properties are sufficient.

Lemma 9. Every convex, continuous f : [0, 1) → R satisfies the dichotomy. �	

Learning with Continuous Experts Using Drifting Games 253

A=−1 Y−1X−1 X C=1B=0 Y

h(0)=1

f(x)

g(0)=g(Y)

h(Y)

h(X)

g(x)=f’(x)

Fig. 1. The diagram shows how any convex, continuous f : [0, 1) → R satisfies the
dichotomy in Definition 1. The slopes of the dotted lines trace the function g, while
the bold curved line indicates f . X is the x-coordinate of the point of contact of the
tangent from (A, 1) to f . The value Y is the x-coordinate of the point where the line
joining (A, 1) and (B, f(0)) hits the curve f again. For every point z in the region
(B, Y), g(0) ≥ g(z). The other case, i.e. g(z) ≤ fL(z) happens for every point in
the region (X, C). Also included in the figure is a geometric intuition for the function

h(x) = 1+xf(x)
1+x

, used in the proof of Lemma 8.

Below we give proofs of some of the lemmas mentioned above. We will use the
following standard fact about convex functions (Theorems 23.1 and 24.1 in [8]).

Lemma 10. If f is convex in a neighborhood, then its left derivative fL exists
and may be defined as

fL(x) = sup
y<x

f(x) − f(y)
x − y

. (13)

Further, fL is non-decreasing and left continuous.

Proof of Lemma 6. Suppose a function F is convex on (a, b) and (c, d) with
a < c < b < d. We show F is convex on (a, d). Take any three points x < y < z ∈
(a, d). It suffices to show sx,y ≤ sy,z where sp,q denotes the slope between points
(p, F (p)) and (q, F (q)). Consider any two points u, v ∈ (c, b). Let the set of five
points {x, y, z, p, q} in increasing order be p1, . . . , p5. Then every three adjacent
points lie entirely in (a, b) or (c, d); hence the slopes spi,pi+1 are increasing, and
it follows that sx,y ≤ sy,z will hold.

Now consider any compact set [a, b] with 0 < a ≤ b < 1. Since F is locally
convex, every point in (0, 1) has an open interval containing it where F is convex.
These form an open cover of [a, b] and hence there is a minimal finite subcover
(a1, b1), . . . , (aN , bN) with a1 < · · · < aN and b1 < · · · < bN by minimality.

254 I. Mukherjee and R.E. Schapire

Using the procedure outlined above, we may conclude that F is convex over
[a, b]. Since this holds for arbitrary 0 < a and b < 1, F is convex over (0, 1). �	

Proof of Lemma 8. As noted in the proof of Lemma 5, f is convex, so that by
Lemma 10, its left derivative exists. Next observe that function h, defined as1

h(x) �= 1+xf(x)
1+x = H24(n+x)

φt+1(n) , is convex in a neighborhood U iff H24 is convex in
n + U . For any points 0 < x < y < 1, and convex combination z = λx + µy, we
get, after some algebra,

λh(x) + µh(y) − h(z) =
λµ(y − x)

1 + z
(g(y) − g(x)) +

z(λf(x) + µf(y) − f(z))
1 + z

.

The second term isnon-negative since f is convex, and the first term isnon-negative
if g is non-decreasing. Hence h, and thus H24, is convex in a region where g is not
decreasing, which happens if 0 ≤ gL(x) = fL(x)−g(x)

1+x , i.e., fL(x) ≥ g(x). �	

Proof of Lemma 9. We will need the following fact. For any points x < y ∈
(0, 1)

g(y) is a weighted average of g(x) and
f(y) − f(x)

y − x
. (14)

We take cases to show that for every point x, there is a neighborhood U con-
taining it where either g(0) ≥ g(y)∀y ∈ U , or fL(y) ≥ g(y)∀y ∈ U .

case 1: g(0) > g(x): By the continuity of f and hence g, we get g(0) ≥ g(y)
for y in an interval containing x.

case 2: g(0) < g(x): We have g(x) < f(x)−f(0)
x (by (14)) ≤ fL(x) (by (13)).

By left continuity, fL(y) > g(y) in a left neighbourhood of x. For any y > x,
g(y) ≤ max{g(x), f(y)−f(x)

y−x } (by (14)) ≤ max{g(x), fL(y)} (by (13)) = fL(y),
since fL is increasing and fL(x) > g(x). Thus fL(y) ≥ g(y) holds in a neigh-
bourhood of x.

case 3: g(0) = g(x): We have g(x) = f(x)−f(0)
x (by (14)) ≤ fL(x) (by (13)) .

If strict inequality holds, then we are done as in case 2. Otherwise we have
fL(x) = f(x)−f(0)

x . By Lemma 10, fL(x) = supy<x
f(y)−f(x)

y−x , so that for any

y < x, f(x)−f(y)
x−y ≤ f(x)−f(0)

x . If strict inequality holds then, since f(x)−f(0)
x

is a weighted average of f(x)−f(y)
x−y and f(y)−f(0)

y , we get fL(x) = f(x)−f(0)
x <

f(y)−f(0)
y ≤ fL(y), a contradiction, since f convex implies fL is non-decreasing.

Hence f(x)−f(y)
x−y = f(x)−f(0)

x for all y < x and the segment of the curve f between

(0, x) is a straight line. It follows from (14) that g(y) = f(x)−f(0)
x , which in turn

is equal to fL(y), for y in a left neighborhood around x; since fL(x) ≥ g(x)
implies fL(y) ≥ g(y) for y in a right neighborhood of x (as shown in case 2), we
have fL(y) ≥ g(y) in some neighborhood of x.

We have considered all cases. The proof follows. �	
1 For geometric intuition about h, refer to Figure 1.

Learning with Continuous Experts Using Drifting Games 255

Acknowledgements. Thanks to Jake Abernethy and Yoav Freund for many
helpful discussions. This research was supported by NSF grants IIS-0325500.

References

[1] Abernethy, J., Langford, J., Warmuth, M.K.: Continuous experts and the bin-
ning algorithm. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI),
vol. 4005, pp. 544–558. Springer, Heidelberg (2006)

[2] Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., War-
muth, M.K.: How to use expert advice. Journal of the Association for Computing
Machinery 44(3), 427–485 (1997)

[3] Cesa-Bianchi, N., Freund, Y., Helmbold, D.P., Warmuth, M.K.: On-line prediction
and conversion strategies. Machine Learning 25, 71–110 (1996)

[4] Freund, Y.: Boosting a weak learning algorithm by majority. Information and
Computation 121(2), 256–285 (1995)

[5] Freund, Y., Opper, M.: Continuous drifting games. Journal of Computer and
System Sciences, 113–132 (2002)

[6] Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

[7] Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information
and Computation 108, 212–261 (1994)

[8] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
[9] Schapire, R.E.: Drifting games. Machine Learning 43(3), 265–291 (2001)

[10] Spencer, J.: Ulam’s searching game with a fixed number of lies. Theoret. Comput.
Sci. 95(2), 307–321 (1992)

Entropy Regularized LPBoost

Manfred K. Warmuth1, Karen A. Glocer1, and S.V.N. Vishwanathan2

1 Computer Science Department
University of California, Santa Cruz

CA 95064, U.S.A
{manfred,kag}@cse.ucsc.edu

2 NICTA, Locked Bag 8001
Canberra ACT 2601, Australia

SVN.Vishwanathan@nicta.com.au

Abstract. In this paper we discuss boosting algorithms that maximize
the soft margin of the produced linear combination of base hypotheses.
LPBoost is the most straightforward boosting algorithm for doing this.
It maximizes the soft margin by solving a linear programming problem.
While it performs well on natural data, there are cases where the number
of iterations is linear in the number of examples instead of logarithmic.

By simply adding a relative entropy regularization to the linear ob-
jective of LPBoost, we arrive at the Entropy Regularized LPBoost al-
gorithm for which we prove a logarithmic iteration bound. A previous
algorithm, called SoftBoost, has the same iteration bound, but the gener-
alization error of this algorithm often decreases slowly in early iterations.
Entropy Regularized LPBoost does not suffer from this problem and has
a simpler, more natural motivation.

1 Introduction

In the boosting by sampling setting, we are given a training set of ± labeled
examples and an oracle for producing base hypotheses that are typically not very
good. A boosting algorithm is able to find a linear combination of hypotheses
that is a better classifier than the individual base hypotheses. To achieve this, the
boosting algorithms maintain a distribution on the examples. At each iteration,
this distribution is given to the oracle, which must return a base hypothesis that
has a certain weak guarantee w.r.t. the current distribution on the examples. The
algorithm then redistributes the weight on the examples so that more weight is
put on the harder examples. In the next iteration, the oracle again provides
a base hypothesis with the same weak guarantee for the new distribution and
incorporates the obtained base hypothesis into the linear combination, and so
forth. When the algorithm stops, it outputs a linear combination of the base
hypotheses obtained in all iterations.

When the data is linearly separable, then maximizing the margin is a prov-
ably effective proxy for low generalization error [20] and in the inseparable case,
maximizing the soft margin is a more robust choice. The soft margin can be max-
imized directly with a linear program, and this is precisely the approach taken

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 256–271, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Entropy Regularized LPBoost 257

by a variant LPBoost [9, 16, 3]. Unless otherwise specified, the name LPBoost
stands for this variant. While this algorithm has been shown to perform well in
practice, no iteration bounds are known for it. As a matter of fact, the number
of iterations required by LPBoost can be linear in the number of examples [24].
So what is the key to designing boosting algorithms with good iteration bounds?
Clearly, linear programming is not enough.

To answer this question, let us take a step back and observe that in boost-
ing there are two sets of dual weights/variables: the weights on the fixed set of
examples and the weights on the set of currently selected hypotheses. In our
case, both sets of weights are probability distributions. It has been shown that
AdaBoost determines the weights on the hypotheses by minimizing a sum of ex-
ponentials [7]. Many boosting algorithms are motivated by modifying this type
of objective function for determining the weights of the hypotheses [4]. Alter-
natively AdaBoost can be seen as minimizing a relative entropy to the current
distribution subject to the linear constraint that the edge of the last hypothe-
sis is nonnegative [11, 12]. All boosting algorithms whose iteration bounds are
logarithmic in the number of examples are motivated by either optimizing a
sum of exponentials in the hypothesis domain or a cost function that involves
a relative entropy in the example domain. This line of research culminated in
the boosting algorithm SoftBoost [24], which requires O(1

ε2 ln N
ν) iterations to

produce a linear combination of base hypotheses whose soft margin is within ε of
the maximum minimum soft margin. Here ν ∈ [1, N] is the trade-off parameter
for the soft margin.1 More precisely, SoftBoost minimizes the relative entropy
to the initial distribution subject to linear constraints on the edges of all the
base hypotheses obtained so far. The upper bound on the edges is gradually de-
creased, and this leads to the main problem with SoftBoost: the generalization
error decreases slowly in early iterations.

Once the relative entropy regularization was found to be crucial in the de-
sign of boosting algorithms, a natural algorithm emerged: simply add 1

η times
the relative entropy to the initial distribution to the maximum soft edge ob-
jective of LPBoost and minimize the resulting sum. We call this algorithm En-
tropy Regularized LPBoost. A number of similar algorithms (such as ν-Arc [16])
were discussed in Gunnar Rätsch’s Ph.D. thesis[14], but no iteration bounds
were proven for them even though they were shown to have good experimen-
tal performance. Most recently, a similar boosting algorithm was considered
by [18, 19] based on the Lagrangian dual of the optimization problem that mo-
tivates the Entropy Regularized LPBoost algorithm. However the O(1

ε>3 lnN)
iteration bound proven for the recent algorithm is rather weak. In this paper,
we prove an O(1

ε2 ln N
ν) iteration bound for Entropy Regularized LPBoost. This

bound is similar to the lower bound of O(ln N
g2) for boosting algorithms [5] for the

hard margin case, where g is the minimum guaranteed edge of the weak learner.
In related work, the same bound was proved for another algorithm that involves
a tradeoff with the relative entropy [21]. This algorithm, however, belongs to

1 An earlier version of this algorithm called TotalBoost dealt with the separable case
and maximized the hard margin [23].

258 M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan

the “corrective” family of boosting algorithms (which includes AdaBoost) that
only update the weights on the examples based on the last hypothesis. LPBoost,
SoftBoost and the new Entropy Regularized LPBoost are “totally corrective” in
the sense that they optimize their weight based on all past hypothesis. While the
corrective algorithms are always simpler and faster on an iteration by iteration
basis, the totally corrective versions require drastically fewer iterations and, in
our experiments, beat the corrective variants based on total computation time.
Also the simple heuristic of cycling over the past hypotheses with a corrective
algorithm to make it totally corrective is useful for quick prototyping but in
our experience this is typically less efficient than direct implementations of the
totally corrective algorithms based on standard optimization techniques.

Outline: In Section 2 we discuss the boosting setting and motivate the Entropy
Regularized LPBoost algorithm by adding a relative entropy regularizer to a
linear program formulated in the weight domain on the examples. We give the
algorithm in Section 3 and discuss its stopping criterion. The dual of Entropy
Regularized LPBoost’s minimization problem in given in Section 4, and our main
result, the iteration bound, is covered in Section 5. Finally, Section 6 contains our
experimental evaluation of Entropy Regularized LPBoost and its competitors.
The paper concludes with an outlook and discussion in Section 7.

2 The Boosting Setting and LPBoost

In the boosting setting, we are given a set of N labeled training examples
(xn, yn), n = 1 . . .N , where the instances xn are in some domain X and the la-
bels yn ∈ ±1. Boosting algorithms maintain a distribution d on the N examples,
so d lies in the N dimensional probability simplex SN . Intuitively, the examples
that are hard to classify are given more weight. In each iteration t = 1, 2, . . . the
algorithm gives the current distribution dt−1 to an oracle (a.k.a. the weak learn-
ing algorithm), which returns a new base hypothesis ht : X → [−1, 1] from some
base hypothesis class H. The hypothesis returned by the oracle comes with a
certain guarantee of performance. This guarantee will be discussed in Section 3.

One measure of the performance of a base hypothesis ht w.r.t. the current
distribution dt−1 is its edge, which is defined as

∑N
n=1 dt−1

n ynh
t(xn). When the

range of ht is ±1 instead of the interval [-1,1], then the edge is just an affine
transformation of the weighted error εht of hypothesis ht. A hypothesis that
predicts perfectly has edge 1 and a hypothesis that always predicts incorrectly
has edge −1, while a random hypothesis has edge approximately 0. The higher
the edge, the more useful the hypothesis is for classifying the training examples.
The edge of a set of hypotheses is defined as the maximum edge of the set.

It is convenient to define an N -dimensional vector ut that combines the base
hypothesis ht with the labels yn of the N examples: ut

n := ynh
t(xn). With this

notation, the edge of the hypothesis ht becomes ut · dt−1.
After a hypothesis ht is received, the algorithm must update its distribution

dt−1 on the examples using ut. The final output of the boosting algorithm is al-
ways a convex combination of base hypotheses fw(xn) =

∑T
q=1 wqh

q(xn), where

Entropy Regularized LPBoost 259

Algorithm 1. Entropy Regularized LPBoost
1. Input: S = {(x1, y1), . . . , (xN , yN)}, accuracy parameter ε > 0, regularization

parameter η > 0, and smoothness parameter ν ∈ [1, N].
2. Initialize: d0 to the uniform distribution.
3. Do for t = 1, . . .

(a) Send dt−1 to oracle and obtain hypothesis ht.
Set ut

n = ynht(xn)
Assume ut · dt−1 ≥ g, where g need not be known.

(b) Set δt = minq=1...t P q(dq−1) − P t−1(dt−1),
where P t(d) = maxq=1,2,...,t uq · d + 1

η
∆(d,d0).

(c) If δt ≤ ε/2 then set T = t − 1 and break.
(d) Else Update the distribution to [dt, γt] = argmin

d,γ
γ + 1

η
∆(d,d0),

s.t. uq · d ≤ γ, for 1 ≤ q ≤ t, and dn ≤ 1/ν, for 1 ≤ n ≤ N,
�

n dn = 1.
This can be done using sequential quadratic programming.

4. Output: fw(x) =
�T

q=1 wqh
q(x), where the coefficients wq maximize the soft

margin over the hypothesis set {h1, . . . , hT } using the LP soft margin problem (2).

wq is the coefficient of the hypothesis hq added at iteration q. Ideally, all examples
should be on the correct side of the hyperplane defined by the linear combination
fw. In other words, for all examples (xn, yn), we want ynfw(xn) > 0. The hard
margin of an example (xn, yn) measures by how much an example is on the right
side and is defined as ynfw(xn). The hard margin of a set of examples is taken
to be the minimum margin of the set. When the sign of the convex combination
is consistent with the labels, the examples are separated by the hyperplane fw,
and this margin is positive. Note that edges are linear in the distribution over
the examples and margins are linear in the distribution over the current set of
hypotheses.

There is a simple linear programming problem that defines a basic boosting
algorithm: update to any distribution that minimizes the maximum edge of the
t hypotheses seen so far. That is, dt ∈ argmind∈SN maxq=1,2,...,t uq · d. The
resulting boosting algorithm is the hard margin version of LPBoost ([9]). By
linear programming duality, the minimum-maximum edge equals the maximum-
minimum margin:

min
d∈SN

max
q=1,2,...,t

uq · d = max
w∈St

min
n=1,2,...,N

t∑
q=1

uq
n wq. (1)

In the case when examples are not separable by a linear combination of the
base hypotheses, then the hard margins are naturally replaced by the soft mar-
gins. The term “soft” here refers to a relaxation of the margin constraint. We
now allow examples to lie below the margin but penalize them linearly via slack
variables ψn. The resulting optimization problem (2) is again a linear program,

max
w∈St, ψ≥0

min
n=1,2,...,N

(
t∑

q=1

uq
n wq + ψn

)
− 1

ν

N∑
n=1

ψn, (2)

260 M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan

where the trade-off parameter ν is chosen in the range [1..N]. Adding slack
variables in the hypothesis domain (2) gives rise to the capping constraints
d ≤ 1

ν 1 in the dual example domain (see e.g. [16, 3] for an early discussion
of capping):

min
d∈SN , d≤ 1

ν 1
max

q=1,2,...,t
uq · d. (3)

This suggests that boosting algorithms that cap the weight on the examples do
well on inseparable data for the same reasons as algorithms that maximize the
soft margin.2 By linear programming duality, the value at iteration t = 1, 2, . . .
of (2) is equal to the value of its dual (3), and we will denote this value by
P t

LP. When t = 0, then the maximum is over an empty set of hypotheses and is
defined as −1 (i.e. P 0

LP := −1).

3 The Entropy Regularized LPBoost Algorithm

In the minimization problem that motivates the main algorithm of this paper,
Entropy Regularized LPBoost, a relative entropy is added to the linear program-
ming problem in the example domain (3). The relative entropy between distri-
butions d and d0 is defined as ∆(d,d0) =

∑N
n=1 dn ln dn

d0
n
. The factor 1/η is a

trade-off parameter between the relative entropy and the maximum edge. The
modified mini-max problem is defined as follows:

min
d · 1 = 1
d ≤ 1

ν 1

max
q=1,2,...,t

uq · d +
1
η
∆(d,d0)︸ ︷︷ ︸

:=P t(d)

. (4)

Note that the constraint d ≥ 0 was dropped because the relative entropy is
not defined for negative dn, and therefore the constraints d ≥ 0 are enforced
implicitly. The relative entropy term makes the objective function P t(d) strictly
convex and therefore the min has a unique solution, which we denote as dt. We
also define P t(d) when t = 0. In this case the maximum is over an empty set of
hypotheses and is defined as −1 as before. Thus P 0(d) becomes −1+ 1

η∆(d,d0),
which is minimized at d0 and therefore P 0(d0) := −1.

The Entropy Regularized LPBoost algorithm, shown in Algorithm 1 predicts
at trial t with this distribution dt. Note that in the statement of the algorithm
we reformulated (4) into an equivalent convex optimization problem. If the reg-
ularization term 1

η∆(d,d0) is dropped from the optimization problem then this
algorithm becomes the original LPBoost, whose solution is not unique and de-
pends on the LP solver that is used.
2 When ν = 1, then the capping constraints in (3) are vacuous and this problem is

equivalent to the l.h.s. of (1). Similarly, when ν = 1, then the derivatives of the
objective of the maximization problem (2) w.r.t. each slack variable ψn are all at
most zero and ψ = 0 is an optimal solution for the maximization over ψ. This makes
the slack variables disappear and (2) becomes the r.h.s. of (1).

Entropy Regularized LPBoost 261

In each iteration t, the boosting algorithm sends a distribution dt−1 to the
oracle and the oracle returns a hypothesis ht from the base hypotheses set H.
The returned hypothesis satisfies a certain quality assumption. The strongest
assumption is that the oracle returns a hypothesis with maximum edge, i.e. ht

lies in argmaxh∈H uh · dt−1. Iteration bounds for this oracle essentially follow
from the work of [22] who use bundle methods to optimize functions of the form

min
d ≤ 1

ν 1
d · 1 = 1

1
η
∆(d,d0) + max

h∈H
uh · d.

They show that O(η
ε) iterations suffice to get within ε/2 of the optimum value

of this optimization problem. However, the algorithm requires the computation
of the gradient of maxh∈H uh · d evaluated at the current distribution dt−1.
The hypothesis returned by the above maximum edge oracle is such a gradient.
Setting η = lnN

ε and using a version of the below lemma gives the bound.
This strong oracle is also assumed for the recent corrective algorithm of [21].

In contrast, in this paper we follow [17, 23, 24] and only require a lower bound
g on the edge of the hypothesis returned by the oracle. Iteration bounds for this
weaker oracle are much harder to obtain.

Fig. 1. Depiction of the stopping criterion: δT+1 ≤
ε/2 implies g − P T

LP ≤ ε

Assumption on the weak
learner: We assume that given
any distribution dt−1 ∈ SN on
the examples, the oracle returns
a hypothesis ht with edge at
least g. We call g the guarantee
of the oracle. In other words, if
ut is the vector that combines
the base hypothesis ht with the
labels of the examples, then ut ·
dt−1 ≥ g. In a moment we well
discuss the range of admissible
values of g.

Stopping criterion: The al-
gorithm monitors δt :=
minq=1,2,...,t P

q(dq−1) − P t−1

(dt−1), and stops when δT+1 ≤
ε/2, for a predefined threshold ε > 0. Recall that the output of the algorithm
is a linear combination fw(x) =

∑T
q=1 wqh

q(x), where the coefficients wq are
an optimal solution of the LP soft margin problem (3) over the hypothesis set
{h1, . . . , hT }. We first bound the number of iterations T needed before the value
PT

LP of this optimization problem gets within ε of the guarantee g. All relevant
quantities used in the proof are depicted in Figure 1.

Lemma 1. If η ≥ 2
ε ln N

ν in (4), then δT+1 ≤ ε/2 implies g − PT
LP ≤ ε, where g

is the guarantee of the oracle.

262 M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan

Proof. Since ∆(d,d0) ≤ ln N
ν and η ≥ 2

ε ln N
ν , we have 1

η∆(d,d0) ≤ ε/2 and

PT (dT) ≤ PT
LP + ε/2. (5)

On the other hand, from the fact that ∆(d,d0) ≥ 0 and the assumption on the
weak learner, we know that

g ≤ min
q=1,2,...,T+1

uq · dq−1 ≤ min
q=1,2,...,T+1

P q(dq−1).

Subtracting PT (dT) and using the stopping criterion we have

g − PT (dT) ≤ min
q=1,2,...,T+1

P q(dq−1) − PT (dT) = δT+1 ≤ ε/2.

Adding (5) to the above yields g ≤ PT
LP + ε. �	

Now we must consider the range of the guarantee g that an oracle can achieve.
Because ut ∈ [−1,+1]N , it is easy to achieve g ≥ −1. We claim that the maxi-
mum achievable guarantee is g = PLP, where PLP is defined as the value of (3)
w.r.t. the entire hypothesis set H from which oracle can choose. That is,

PLP := min
d∈SN d≤ 1

ν 1
sup
h∈H

uh · d

and therefore, for any distribution d such that d ≤ 1
ν 1, we have maxh∈H uh ·d ≥

PLP. Thus, there always exists a hypothesis in H with edge at least PLP. Also,
for any optimal distribution that realizes the value PLP, there is no hypothesis
of edge strictly greater than PLP.

For computational reasons, the guarantee g of an oracle may be less that PLP,
and therefore we formulate our algorithm and iteration bound for an oracle w.r.t.
any guarantee g ∈ [−1, PLP]. It should be emphasized that our algorithm does
not need to know the guarantee g achieved by the oracle.

The line PLP is depicted in Figure 1. The sequence 〈P t
LP 〉 approaches this line

from below and the sequence 〈minq=1...t+1 P q(dq−1)〉 approaches the line g from
above. When g < PLP, as shown in Figure 1, then both sequences cross, and
when g = PLP, then both sequences get arbitrarily close.

Note that the strong oracle discussed earlier which always returns a hypothesis
in H of maximum edge w.r.t. the provided distribution clearly has the maximum
guarantee PLP. Indeed, on many data sets, this more computationally expensive
oracle converges faster than an oracle that only returns a hypothesis of edge PLP

(see [17] for an experimental comparison), even though there are no improved
iteration bounds known for this stronger oracle.

Our algorithm produces its final linear combination based on the soft margin
linear programming problem (3). Alternatively, it could produce a final weight
vector w based on the dual of the regularized minimum-maximum edge problem
(4) given in the next section. When η ≥ 2

ε ln N
ν , then the regularization term

1
η∆(d,d0) is at most ε/2, implying that the values of the regularized problems
in the example domain are always at most ε/2 larger than the corresponding

Entropy Regularized LPBoost 263

unregularized problems. Therefore computing the final w in Entropy Regularized
LPBoost via the dual of the regularized problem is also a reasonable choice. In
our experiments (not shown) this did not affect the generalization error of the
algorithm.

4 The Dual Optimization Problem of Entropy
Regularized LPBoost

In this section we compute the Lagrangian dual of (4) and discuss the dual rela-
tionship between the the problem of optimizing the distribution on the examples
versus optimizing the distribution on the current set of hypotheses. We state the
following lemma without proof; the proof is standard and follows from standard
arguments (see e.g. [2]).

Lemma 2. The Lagrangian dual of (4) is

max
w

Θ̂t(w,ψ), s.t. w ≥ 0, w · 1 = 1,ψ ≥ 0,

where Θ̂t(w,ψ) := −1
η

ln
N∑

n=1

d0
n exp(−η(

t∑
q=1

uq
nwq + ψn)) − 1

ν

N∑
n=1

ψn.

The optimal solution dt of (4) can be expressed in terms of the dual variables
wt and ψt as follows:

dt
n :=

d0
n exp(−η(

∑t
q=1 uq

nw
t
q + ψt

n))∑
n′ d0

n′ exp(−η(
∑t

q=1 uq
n′wt

q + ψt
n))

. (6)

Furthermore, the value of the primal is equal to the value of the dual. Also, for
the optimal primal solution dt and optimal dual solution wt,

t∑
q=1

wt
q uq · dt = max

q=1,2,...,t
uq · dt.

Note that Θ̂t(w,ψ) is a “smoothed” minimum soft margin of the examples for
the linear combination w of the first t hypotheses. As η → ∞, this margin
becomes the minimum soft margin. Similarly, P t(d) is the smoothed maximum
edge of the first t hypothesis when the distribution on the examples d lies in the
capped probability simplex. Again as η → ∞, this edge becomes the maximum
edge over the capped simplex. Smoothing is done by different means in the primal
versus the dual domain. In the primal it is done by adding one over η times a
relative entropy to the max. In the dual, the log partition function smoothes the
minimum soft margin.

A smoothing effect can also be seen in the distribution dt over the examples.
Whereas LPBoost puts its entire weight onto the examples with minimum soft
margin w.r.t. the current hypothesis set {h1, . . . , ht}, Entropy Regularized LP-
Boost spreads the weight to examples with higher soft margins by taking the

264 M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan

soft min of these margins. The degree of the smoothing is controlled by η. As
η → ∞, Entropy Regularized LPBoost reverts to an instantiation of LPBoost
(i.e. all weight is put on examples with minimum soft margin).

5 Iteration Bound for Entropy Regularized LPBoost

This section contains our main result. For clarity, the number of iterations cor-
responds to the number of hypotheses incorporated into the final linear com-
bination, rather than calls to the oracle. The number of calls to the oracle is
T +1 but the number of hypotheses in the final linear combination is T . In other
words, the hypothesis hT+1 obtained in the last call to the oracle is discarded.

Our first technical lemma bounds the increase P t(dt) − P t−1(dt−1) in terms
of a quadratic term.

Lemma 3. If η ≥ 1
2 , then P t(dt)−P t−1(dt−1) ≥ 1

8η (P t(dt−1)−P t−1(dt−1))2.

Proof. First observe that P t(dt−1) − P t−1(dt−1) = maxq=1,2,...,t uq · dt−1 −
maxq=1,2,...,t−1 uq · dt−1. Clearly the first max is at least as large as the sec-
ond. If both are the same, then the lemma trivially holds because P t(dt−1) =
P t−1(dt−1). If P t(dt−1) > P t−1(dt−1), then the first max equals ut · dt−1. We
can also rewrite the second max by invoking Lemma 2 with t − 1 instead of t,
obtaining

P t(dt−1)−P t−1(dt−1) = ut ·dt−1−
t−1∑
q=1

wt−1
q uq ·dt−1 := (ut −

t−1∑
q=1

wt−1
q uq

︸ ︷︷ ︸
:=x

)·dt−1.

We still need to show that when x·dt−1 ≥ 0, P t(dt)−P t−1(dt−1) ≥ 1
8η (x·dt−1)2.

By Lemma 2, the value of the optimization problem defining Entropy Regu-
larized LPBoost, P t(d), equals the value of its dual problem. We begin by lower
bounding the increase of this value between successive iterations. Let wt and ψt

denote optimal parameters for the dual problem at iteration t. Because the dual is
a maximization problem, Θ̂t(wt,ψt) ≥ Θ̂t(w,ψ) for any suboptimal w ∈ Pt and
ψ ≥ 0. For our lower bound on the value we replace ψt by the suboptimal previ-

ous value ψt−1 and wt by wt(α) = (1 − α)
[
wt−1

0

]
+ α

[
0
1

]
, where α ∈ [0, 1] :

P t(dt) − P t−1(dt−1) = Θ̂t(wt,ψt) − Θ̂t−1(wt−1,ψt−1)

≥ Θ̂t(wt(α),ψt−1) − Θ̂t−1(wt−1,ψt−1)

= − 1
η

ln
N∑

n=1

d0
n exp

(
−η

t−1∑
q=1

uq
nw

t−1
q − ηαut

n + η α
t−1∑
q=1

uq
nw

t−1
q − ηψt−1

n

)

+
1
η

ln
N∑

n=1

d0
n exp

(
−η

t−1∑
q=1

uq
nw

t−1
q − ηψt−1

n

)

Entropy Regularized LPBoost 265

(6)
= − 1

η
ln

N∑
n=1

dt−1
n exp

⎛⎜⎜⎜⎜⎝−ηα

(
ut

n −
t−1∑
q=1

uq
nw

t−1
q

)
︸ ︷︷ ︸

:=xn

⎞⎟⎟⎟⎟⎠ .

This holds for any α ∈ [0, 1]. Since xn ∈ [−2, 2], then exp(xn) ≤
2+xn

4 exp(−2ηα) + 2−xn

4 exp(2ηα) and this lets us lower bound the above as

−1
η

ln
(

2 + x · dt−1

4
exp (−2ηα) +

2 − x · dt−1

4
exp (2ηα)

)
= 2α− 1

η
ln
(

1 − 2 − x · dt−1

4
(1 − exp(4ηα)

By applying the following inequality from [10]

∀c ∈ [0, 1] and r ∈ R : − ln(1 − c(1 − er)) ≥ −cr − r2

8
,

the above can be lower bounded by 2α− 2−x·dt−1

4 4α− 16ηα2

8 . This is maximized
at α = x·dt−1

4η which lies in [0,1] because x · dt−1 ∈ [0, 2] and η ≥ 1
2 . Plugging

this α into the above, we get (x·dt−1)2

8η as desired. �	

Recall the definition of δt that we monitor in our proof:

δt = min
q=1,2,...,t

P q(dq−1) − P t−1(dt−1).

As done in [22], we now prove a quadratic recurrence for δt.

Lemma 4. If η ≥ 1/2 and δt ≥ 0, then δt − δt+1 ≥ (δt)2

8η , for 1 ≤ t ≤ T.

Proof. We prove this recurrence by bounding the inequality of the previous
lemma from above and below. We upper bound the l.h.s. via

P t(dt) − P t−1(dt−1) ≤ min
1≤q≤t

P q(dq−1) − P t−1(dt−1)

� �� �
δt

− min
1≤q≤t+1

P q(dq−1) − P t(dt)

� �� �
δt+1

.

To lower bound the r.h.s. of the same inequality, first observe that

P t(dt−1) − P t−1(dt−1) ≥ min
1≤q≤t

P q(dq−1) − P t−1(dt−1) = δt,

Since we assumed δt ≥ 0, we can lower bound the r.h.s. as

(P t(dt−1) − P t−1(dt−1))2

8η
≥ (δt)2

8η
. �	

266 M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan

The lemma requires δt ≥ 0. The stopping criterion actually assures that δt > ε
2 ,

for 1 ≤ t ≤ T . Instead of using a recurrence relation, the standard approach
would be to show that the value of the underlying optimization problem drops
by at least a constant. See e.g. [23, 24] for examples for this type of proof. More
precisely, in our case we have

P t(dt−1) − P t−1(dt−1) ≥ (δt)2

8η
≥ 1

32η
ε2.

Unfortunately, for our solution to get ε-close to the guarantee g, we need that
η is inversely proportional to ε and therefore this proof technique only yields
the iteration bound of O(1

ε3 ln N
ν). We shall now see that our recurrence method

leads to an improved iterations bound of O(1
ε2 ln N

ν), which is optimal in the
hard margin case (when ν = 1).

Lemma 5. Let 〈δ1, δ2, . . .〉 be a sequence of non-negative numbers satisfying the
following recurrence, for t ≥ 1: δt − δt+1 ≥ c(δt)2, where c > 0 is a positive
constant. Then for all integers t ≥ 1,

1
c(t− 1 + 1

δ1c)
≥ δt.

This is Sublemma 5.4 of [1] which is is easily proven by induction.

Theorem 1. If η = max(2
ε ln N

ν , 1
2) in (4), then Entropy Regularized LPBoost

terminates in

T ≤ max(
32
ε2

ln
N

ν
,
8
ε
)

iterations with a final convex combination of hypotheses for which g−P t
LP ≤ ε.

Proof. Since η ≥ 1
2 , we can apply Lemma 4 with c = 1

8η . This give us δt ≤
8η

t−1+ 8η

δ1
, which can be rearranged to t ≤ 8η

δt − 8η
δ1 + 1 < 8η

δt , since η ≥ 1
2 and

0 ≤ δ1 ≤ 1. By the stopping criterion, δT > ε/2 and δT+1 ≤ ε/2. Thus the above
inequality implies that

T <
8η
δT

≤ 16η
ε

. (7)

By Lemma 1, δT+1 ≤ ε/2 implies tolerance ε if η ≥ 2
ε ln N

ν . Plugging η =
max(2

ε ln N
ν , 1

2) into the above inequality results in T ≤ max(32
ε2 ln N

ν , 8
ε). Because

the aborted iteration T + 1 is not counted, we arrive at the iteration bound of
the theorem. �	

Note that 2
ε ln N

ν ≥ 1/2 iff ε ≤ 4 ln N
ν . As pointed out before, when η → ∞ then

Entropy Regularized LPBoost morphs into a version of LPBoost. Notice that
the iteration bound (7) is linear in η. Therefore as η → ∞, the iteration bound
becomes vacuous.

Entropy Regularized LPBoost 267

6 Experimental Evaluation

All of our experiments utilize data from ten benchmark data sets derived from
the UCI benchmark repository as previously used in [15]. We compared the soft
margin algorithms LPBoost, Entropy Regularized LPBoost, and SoftBoost –
with AdaBoost, LogitBoost [8], and BrownBoost[6]. AdaBoost3 was chosen as
a comparator because it is the most common boosting algorithm overall. Logit-
Boost and BrownBoost were chosen because they are well known and designed
for inseparable data.

We used RBF networks as the base learning algorithm.4 The data comes in
100 predefined splits into training and test sets. For the soft margin algorithms
we set ε = 0.01. Then for each each of the splits we used 5-fold cross-validation
to select the optimal free parameters for each of the algorithms. Finally, in
Entropy Regularized LPBoost, η was set to 2

ε ln N
ν . This leads to 100 estimates

of the generalization error for each method and data set.

10
0

10
1

10
2

−0.1

−0.05

0

0.05

0.1

0.15

number of iterations

so
ft

m
ar

gi
n

ob
je

ct
iv

e

LPBoost
Ent. Reg. LPBoost
SoftBoost
Corrective ERLP

Fig. 2. Soft margin objective vs. the num-
ber of iterations on a single run for the Ba-
nana data set with ε = 0.01 and ν/N =
0.1. In Entropy Regularized LPBoost, η =
2
ε
ln N

ν
. Note that LPBoost is virtually in-

distinguishable from Entropy Regularized
LPBoost, and SoftBoost’s margin begins
increasing much later than the others.
Also, the corrective algorithm converges
more slowly than the totally corrective
version.

10
0

10
1

10
2

10
3

0.11

0.115

0.12

0.125

0.13

0.135

number of iterations

ge
ne

ra
liz

at
io

n
er

ro
r

LPBoost
Ent. Reg. LPBoost
SoftBoost
Corrective Ent. Reg. LPBoost

Fig. 3. Generalization error for the same
set of algorithms. The corrective algo-
rithm converges more slowly that the
totally corrective algorithms. To depict
them in the same figure, we use a logarith-
mic scale of the iteration number in both
plots. Note that eventually the generaliza-
tion error of the corrective algorithm ends
up in the same ball-park.

The first step in our empirical analysis of Entropy Regularized LPBoost, is
to verify that it actually maximizes the soft margin. Figure 2 shows the soft
margin vs. number of iterations for LPBoost, Entropy Regularized LPBoost,
and SoftBoost for a single run of the Banana data set from the UCI Benchmark

3 In AdaBoost, the parameter αt was chosen to minimize
�

n dt
n exp(−αut

n).
4 The data is from http://theoval.cmp.uea.ac.uk/∼gcc/matlab/index.shtml. The

RBF networks were obtained from the authors of [15], including the hyper-parameter
settings for each data set.

http://theoval.cmp.uea.ac.uk/~gcc/matlab/index.shtml

268 M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan

Table 1. Generalization error estimates and standard deviations for ten UCI bench-
mark data sets. As expected, there is no statistically significant difference between LP-
Boost, SoftBoost, and Entropy Regularized LPBoost, but they outperform AdaBoost
and BrownBoost on most data sets.

AdaBoost LogitBoost BrownBoost LPBoost SoftBoost ERLPBoost

Banana 13.3± 0.7 12.4±0.6 12.9±0.7 11.1± 0.6 11.1± 0.5 11.1±0.6
B.Cancer 32.1± 3.8 30.2±4.0 30.2±3.9 27.8± 4.3 28.0± 4.5 28.0±4.4
Diabetes 27.9± 1.5 26.4±1.7 27.2±1.6 24.4± 1.7 24.4± 1.7 24.4±1.7
German 26.9± 1.9 25.3± 1.6 24.8±1.9 24.6± 2.1 24.7± 2.1 24.8±2.2
Heart 20.1± 2.7 19.6±2.8 20.0±2.8 18.4± 3.0 18.2± 2.7 18.3±2.8
Ringnorm 1.9± 0.3∗ 1.9± 0.2 1.9± 0.2 1.9± 0.2 1.8± 0.2 1.7± 0.2
F.Solar 36.1± 1.5 35.5± 1.5 36.1±1.4 35.7± 1.6 35.5± 1.4 35.5±1.6
Thyroid 4.4± 1.9∗ 4.7±2.1 4.6± 2.1 4.9± 1.9 4.9± 1.9 4.7±1.9
Titanic 22.8± 1.0 22.8±0.9 22.8±0.8 22.8± 1.0 23.0± 0.8 22.8±1.0
Waveform 10.5± 0.4 10.1±0.4 10.4±0.4 10.1± 0.5 9.8± 0.5 10.1±0.5

repository, with parameters set according to the above description. The results
confirm out theoretical intuition that Entropy Regularized LPBoost maximizes
the soft margin and more generally, that it does not deviate much from LPBoost.
Moreover, it does not start as slowly as SoftBoost. Also included in this plot is
the corrective version of Entropy Regularized LPBoost proposed in [21].

Using data from the same run used to generate Figure 2, we also examine gen-
eralization error as a function of the number of iterations. The results, shown in
Figure 3, confirm that all of the algorithms have similar generalization in the end.
Although the corrective algorithm takes many more iterations to converge, its gen-
eralization error eventually approaches that of the totally corrective algorithm.

The means and standard deviations for the full benchmark comparison of Ad-
aBoost, LogitBoost, BrownBoost, LPBoost, SoftBoost, and Entropy Regularized
LPBoost and are given in Table 1.5 As we expected, the generalization perfor-
mances of the soft margin algorithms – LPBoost, Entropy Regularized LPBoost,
and SoftBoost – are very similar. In fact, because both SoftBoost and Entropy
Regularized LPBoost are intended to approximate LPBoost, we would have been
very surprised to see a significant different in their generalization error. The soft
margin algorithms outperform AdaBoost on most data sets, while the generaliza-
tion error of BrownBoost and LogitBoost lie between that of AdaBoost and the
soft margin algorithms. Comparing the soft margin algorithms with AdaBoost,
LogitBoost and BrownBoost reinforces the idea that maximizing the soft margin
results in good algorithms.

Finally, we compared the totally corrective Entropy Regularized LPBoost
with the corresponding corrective algorithm of [21]. While a single iteration of
the corrective algorithm is faster than a single iteration of the totally corrective
algorithm (implemented with sequential quadratic programming), the overall

5 Note that [15] contains a similar benchmark comparison. It is based on a different
model selection setup leading to underestimates of the generalization error. Presum-
ably due to slight differences in the RBF hyper-parameters settings, our results for
AdaBoost often deviate by 1-2%.

Entropy Regularized LPBoost 269

Table 2. Comparison of total training time in seconds until margin is within ε = 0.1
of optimum for LPBoost, Entropy Regularized LPBoost, and the corrective version

LPBoost Ent. Reg. LPBoost Corr. Ent. Reg. LPBoost

Ringnorm 822 2.83e3 2.08e5
Titanic 80 102 2.02e4

running time of the totally corrective algorithm was much faster in our exper-
iments. To demonstrate this, we selected ringnorm and titanic, the largest and
smallest datasets of Table 1 respectively, and compared the total running times
of LPBoost, Entropy Regularized LPBoost, and Corrective Entropy Regular-
ized LPBoost (Table 2). We used the CPLEX optimizer on a cluster with Intel
Xeon X5355 2.66GHz processors. The corrective algorithm of [21] does not come
with a stopping criterion, so for a fair comparison we first determined the opti-
mum margin to high precision. We then timed each algorithm until its margin
was within ε = 0.1 of the optimum. Observe that the corrective algorithm is
significantly slower than the totally corrective algorithms on both datasets.

7 Conclusion

We used duality methods instead of Bregman projections to obtain a simple
proof for the iteration bound of Entropy Regularized LPBoost6 We were not
able to prove the bound by making fixed progress in each iteration. Instead,
following [22] we arrived at a quadratic recurrence equation for the remaining
duality gap and, in solving this recurrence, achieved the optimal bound.

We show that the Entropy Regularized LPBoost algorithm has performance
comparable to LPBoost and SoftBoost on natural data. It fixes the slow start
problem of SoftBoost. We believe that the striking simplicity of the optimiza-
tion problem for Entropy Regularized LPBoost in which a relative entropy is
traded off against a linear objective will lead to further insights into the nature
of Boosting and its striking difference to the main other family of learning al-
gorithms (which includes Support Vector Machines (SVMs)) that are motivated
by regularizing with the squared Euclidean distance.

Acknowledgments. Thanks to Gunnar Rätsch for valuable cluster time. He
also helped us focus on the optimization problem underlying Entropy Regu-
larized LPBoost and develop its dual. The first author was supported by NSF
grant CCR 9821087, the second by Los Alamos National Labs and the third by
NICTA, Canberra.

6 This is not too surprising because Bregman projection methods and duality methods
are often interchangeable. See [13] for a number of cases where both methods are
given for proving iteration bounds on boosting algorithms.

270 M.K. Warmuth, K.A. Glocer, and S.V.N. Vishwanathan

References

[1] Abe, N., Takeuchi, J., Warmuth, M.K.: Polynomial learnability of stochastic rules
with respect to the KL-divergence and quadratic distance. IEICE Transactions on
Information and Systems E84-D(3), 299–316 (2001)

[2] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

[3] Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via
column generation. Mach. Learn. 46(1-3), 225–254 (2002)

[4] Duffy, N., Helmbold, D.: Potential boosters? In: Solla, S., Leen, T., Müller, K.-R.
(eds.) Advances in Neural Information Processing Systems 12, pp. 258–264. MIT
Press, Cambridge (2000)

[5] Freund, Y.: Boosting a weak learning algorithm by majority. Inform. Com-
put. 121(2), 256–285 (1995); In: COLT 1990

[6] Freund, Y.: An adaptive version of the boost by majority algorithm. In: Proceed-
ings of the 12th annual conference on Computational learning theory, pp. 102–113.
ACM Press, New York (1999)

[7] Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

[8] Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical
View of Boosting. The Annals of Statistics 38(2) (2000)

[9] Grove, A.J., Schuurmans, D.: Boosting in the limit: maximizing the margin of
learned ensembles. In: AAAI 1998/IAAI 1998, Menlo Park, CA, USA, pp. 692–
699 (1998)

[10] Helmbold, D., Schapire, R.E., Singer, Y., Warmuth, M.K.: A comparison of new
and old algorithms for a mixture estimation problem. Machine Learning 27(1),
97–119 (1997)

[11] Kivinen, J., Warmuth, M.K.: Boosting as entropy projection. In: Proc. 12th Annu.
Conf. on Comput. Learning Theory, pp. 134–144. ACM Press, New York (1999)

[12] Lafferty, J.: Additive models, boosting, and inference for generalized divergences.
In: Proceedings of the 12th Annual Conference on Computional Learning Theory,
pp. 125–133. ACM Press, New York (1999)

[13] Liao, J.: Totally Corrective Boosting Algorithms that Maximize the Margin. PhD
thesis, University of California at Santa Cruz (December 2006)

[14] Rätsch, G.: Robust Boosting via Convex Optimization: Theory and Applications.
PhD thesis, University of Potsdam (2001)

[15] Rätsch, G., Onoda, T., Müller, K.-R.: Soft margins for adaboost. Mach.
Learn. 42(3), 287–320 (2001)

[16] Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.-R.: Robust
ensemble learning. In: Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.
(eds.) Advances in Large Margin Classifiers, pp. 207–219. MIT Press, Cambridge,
MA (2000)

[17] Rätsch, G., Warmuth, M.: Efficient margin maximizing with boosting. Journal of
Machine Learning Research 6, 2131–2152 (2005)

[18] Rudin, C., Schapire, R., Daubechies, I.: Boosting based on a smooth margin. In:
Proceedings of the 17th Annual Conference on Computational Learning Theory,
pp. 502–517 (2004)

[19] Rudin, C., Schapire, R., Daubechies, I.: Analysis of boosting algorithms using the
smooth margin function. The Annals of Statistics 6(35), 2723–2768 (2007)

Entropy Regularized LPBoost 271

[20] Schapire, R., Freund, Y., Bartlett, P., Lee, W.: Boosting the margin: A new ex-
planation for the effectiveness of voting methods. The Annals of Statistics 26(5),
1651–1686 (1998)

[21] Shalev-Shwartz, S., Singer, Y.: On the equivalence of weak learnability and linear
separability: New relaxations and efficient boosting algorithms. In: Proceedings
of the 21st annual conference on Computational learning theory, pp. 311–321.
Omicron (2008)

[22] Smola, A., Vishwanathan, S.V.N., Le, Q.: Bundle methods for machine learning.
In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Infor-
mation Processing Systems 20, pp. 1377–1384. MIT Press, Cambridge (2008)

[23] Warmuth, M., Liao, J., Rätsch, G.: Totally corrective boosting algorithms that
maximize the margin. In: ICML 2006, pp. 1001–1008. ACM Press, New York
(2006)

[24] Warmuth, M.K., Glocer, K., Rätsch, G.: Boosting algorithms for maximizing the
soft margin. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in
Neural Information Processing Systems 20. MIT Press, Cambridge (2007)

Optimally Learning Social Networks with

Activations and Suppressions

Dana Angluin, James Aspnes�, and Lev Reyzin��

Department of Computer Science, Yale University
{angluin,aspnes}@cs.yale.edu, lev.reyzin@yale.edu

Abstract. In this paper we consider the problem of learning hidden
independent cascade social networks using exact value injection queries.
These queries involve activating and suppressing agents in the target net-
work. We develop an algorithm that optimally learns an arbitrary social
network of size n using O(n2) queries, matching the information theo-
retic lower bound we prove for this problem. We also consider the case
when the target social network forms a tree and show that the learn-
ing problem takes Θ(n log(n)) queries. We also give an approximation
algorithm for finding an influential set of nodes in the network, without
resorting to learning its structure. Finally, we discuss some limitations
of our approach, and limitations of path-based methods, when non-exact
value injection queries are used.

1 Introduction

Social networks are used to model interactions within populations of indi-
viduals. These interactions could include distributing information, spreading a
disease, or passing trends among friends. Viral marketing is an often used exam-
ple of a process well modeled by social networks. In viral marketing, a company
may want to market a product to some population. The idea is to carefully
choose some people to target. This can be done, for instance, by giving these
people a free sample of the product. The targeted people have relationships in
their population, and they will possibly virally spread interest in this product
to their friends, and so on.

Social networks are often used to describe this type of phenomenon, and there
are many different models of social networks. All of these models (imperfectly)
approximate these complicated real world phenomena. One of the most basic and
well-studied models is the independent cascade model [6,10,9], and it is the
one we consider in this paper. Informally, in the independent cascade model each
individual, or agent, has some probability of influencing each other agent. When
an agent is targeted with a product, he becomes activated, and then attempts to
influence each of his friends, and so on. This model is called independent cascade

� Supported in part by NSF grant CNS-0435201.
�� This material is based upon work supported under a National Science Foundation

Graduate Research Fellowship.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 272–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimally Learning Social Networks with Activations and Suppressions 273

because each agent’s success probability in attempting to influence a friend is
independent of the history of previous activation attempts in the network.

Social networks belong to the wider class of probabilistic networks. Proba-
bilistic networks are circuits whose gate functions specify, for each combination
of inputs, a probability distribution on the output. In the case of social networks,
these gates compute rather simple functions of their inputs.

A natural question to ask is: what can we learn about the structure of these
networks by experimenting with their behavior? Given access to a pool of agents
in our network, one intuitive way in which we could experiment on this net-
work would be to artificially excite some set of agents, for example by sending
them political brochures in support of some measure, and then observe the con-
sequences of the experiment. Furthermore, we will allow for the possibility of
suppressing agents; when an agent is suppressed, he cannot be excited by an-
other agent. To make things more realistic, and theoretically more interesting,
we will not assume that we can observe the entire network. We will instead have
an output agent, whose state at the end of this process we can see, for example
the probability the president supports the measure.

Thus, in this paper we consider the setting where an we can inject values
into the network; we fix the states (or values) of any subset of agents in the
target network and only observe the state of some specified agent, whom we
think of as the output of the network. This is the value injection query model.

The idea of value injection queries was inspired both from hardness results in
learning circuits by only manipulating inputs [5,11,8] and by models of gene sup-
pression and gene overexpression in the study of gene interaction networks [1,7]
and was proposed by Angluin et al [4]. They show that acyclic deterministic
boolean circuits with constant fan-in and O(log n) depth are learnable in poly-
nomial time with value injection queries. Angluin et al. [3] extend these re-
sults to circuits with polynomial-size alphabets. They show that transitively
reduced acyclic deterministic circuits that have polynomial-size alphabets, con-
stant fan-in, and no depth bound are learnable in polynomial time with value
injection queries. Then, Angluin et al. [2] extend this work to probabilistic cir-
cuits. They show that constant fan-in acyclic boolean probabilistic circuits of
O(log(n)) depth can be approximately learned in polynomial time, but that this
no longer necessarily holds once the alphabet becomes larger than boolean.

However, unlike in previous work on the value injection model, we allow our
target social networks to have cycles. In many classes of networks, allowing for
cycles would make the problem ill-defined in the value injection model, as the
values on the nodes of the network may not be stable. In the social networks case,
the values of the nodes in the network converge. Also, unlike in previous work,
our learnability results do not require a degree bound on the target network. This
gives us a nice theoretical model whose properties are interesting to explore.

In Section 2 we formally define the model, value injection queries, and learning
criteria. In Section 3 we develop an algorithm that learns any social network in
O(n2) queries and prove a matching lower bound for this problem. In Section 4
we show that in the special case when the network comes from the class of

274 D. Angluin, J. Aspnes, and L. Reyzin

trees, learning the network takes Θ(n log(n)) queries. In Section 5 we show some
limitations of using path-based methods for learning social networks when value
injection queries do not return exact probability distributions of value of the
output node, which is the case in real-world settings. In Section 6 we give an
approximation algorithm for learning influential sets of nodes in a social network.

2 Model

2.1 Social Networks

We consider a class of circuits that represents social networks. We are specifically
interested in a variant of the model of deterministic circuits defined in [3,4]. The
social networks have no distinguished inputs – instead, value-injection experi-
ments may be used to override the values on any subset of the agents.

An independent cascade social network S consists of a finite nonempty
set of independent excitation agents A, one of which is designated as the output
agent. Agents take values from a boolean alphabet Σ = {0, 1}, corresponding
to the states waiting and activated, respectively. The size of the social network
is n = |A|.

An independent excitation agent function f on k inputs has k parameters:
the probabilities p1, . . . , pk. If the inputs to the agent are (b1, . . . , bk) ∈ {0, 1}k,
then the probability that f(b1, . . . , bk) is 0 is

k∏
i=1

(1 − pi)bi .

We define 00 = 1.
If we are told, in an arbitrary order, which inputs to f are 1, then we may

sample from the correct output distribution for f as follows. Initially the output
is 0. Given that bi = 1, then with probability pi we set the output to 1 and with
probability (1− pi) we leave it unchanged. This corresponds to our intuitive no-
tion of the behavior of social networks; when a neighbor of an agent is activated,
the agent has some probability of becoming activated as well, and an agent will
remain inactive if it was not activated by any of its neighbors.

2.2 Graphs of Social Networks

The weighted network graph of the social network has vertices A and a directed
edge (u, v) if agent u is one of the inputs of agent v. If u is an input to v with
activation probability p(u,v), then the edge has weight p(u,v). We say an edge
exists if it has positive weight. The weighted network graph of a social network
captures all relevant information about the social network. Therefore, we will
often refer to a social network in terms of its graph. The depth of a node in
the network is the number of edges in the shortest path from the node to the
output. The depth of the network is the maximum over the depths of all the

Optimally Learning Social Networks with Activations and Suppressions 275

nodes in the network. The network is acyclic if the network graph contains no
directed cycles. Unlike in previous work on value injection queries, in this paper
we consider networks that may have cycles.

2.3 Experiments

The behavior of a social network consists of its responses to all possible value-
injection experiments. In an experiment, some agents are fixed to values from
[0, 1] and others are left free. Fixing an agent to a 1 corresponds to activating
or firing the agent, fixing to a 0 corresponds to suppressing the agent, and
leaving an agent free allows it to function as it normally would. Fixing an agent
to a value c between 0 and 1 corresponds to firing the agent with probability c
and suppressing it with probability 1 − c.

Formally, a value-injection experiment (or just experiment) e is a mapping
from A to {[0, 1] ∪ {∗}}. If e(g) is ∗, then the experiment e leaves agent g
free; otherwise g is fixed to the value e(g) ∈ [0, 1]. If e is any experiment and
a ∈ [0, 1] ∪ {∗}, the experiment e|w=a is defined to be the experiment e′ such
that e′(w) = a and e′(u) = e(u) for all u ∈ A such that u �= w.

We can define the behavior of a social network S as a function of a value-
injection experiment in two different ways. The first is a percolation model. For
each edge (u, v), we leave it “open” with probability p(u,v) and “closed” with
probability 1−p(u,v). For each node w in S, such that e(w) = c for some c ∈ [0, 1],
we make node w fired with probability c and suppressed with probability 1 − c.
We let the indicator variable I = 1 if there is direct path using open edges from
some fired node to the output node via free nodes, and we let I = 0 otherwise.
This determines a probability distribution on assignments of 0 and 1 to I. We
define the output S(e) to be E(I).

The following process, equivalent to the percolation model, defines the behav-
ior of social network as a function of a value-injection experiment e. It is also the
process that will guide the intuition and proofs in this paper. Initially every node
is tentatively assigned the value 0. There is a queue of nodes to be assigned val-
ues, which initially contains the nodes fixed to values > 0 by e. The assignments
are complete when the queue becomes empty. While the queue is nonempty, its
first node v is dequeued. If e(v) = ∗, v is assigned the value 1. If e(v) �= ∗, v
is assigned a 1 with probability e(v), and 0 with probability (1 − e(v)). If v is
assigned a 1, for every node u such that v is an input to u, do the following.

1. If u is fixed to any value, or already assigned 1 or present in the queue, do
nothing.

2. Otherwise, with probability p(v,u) add u to the queue, and with probability
(1 − p(v,u)) do nothing.

This process determines a joint probability distribution on assignments of 0 and
1 to the nodes of the social network S. In this case, the output S(e) is the
expected value of the output node given by e.

276 D. Angluin, J. Aspnes, and L. Reyzin

2.4 Behavior and Equivalence

The behavior of a network is the function that maps experiments e to output
excitation probabilities S(e). Two social networks S and S′ are behaviorally
equivalent if they have the same set of agents, the same output agent, and the
same behavior, that is, if for every value-injection experiment e, S(e) = S′(e). We
also define a concept of approximate equivalence. For ε ≥ 0, S is ε-behaviorally
equivalent to S′ if they contain the same agents, the same output agent and
for every value-injection experiment e, |S(e) − S′(e)| ≤ ε.

2.5 Queries

The learning algorithm gets information about the target network by repeatedly
specifying an experiment e and observing the value assigned to the output node.
Such an action is termed a value injection query. A value-injection query
does not return S(e), but instead returns a {0, 1} value selected according to
the probability S(e). This means that the learner must repeatedly sample to
approximate S(e). To separate the effects of this approximation from the inherent
information requirements of this problem, we define an exact value injection
query to return S(e). The focus of this paper is on exact value injection queries.

2.6 The Learning Problem

The learning problem we consider is: by making exact value injection queries to
a target network S drawn from a known class of social networks, find a network
S′ that is behaviorally equivalent to S. The inputs to the learning algorithm are
the names of the agents in S and the name of the output agent.

To help with terminology, let S be a social network. Let S′ be any social
network that differs only in edge (u, v). We say edge (u, v) is discoverable for
S if there exists an experiment e such that S(e) �= S′(e). Otherwise we say that
the edge is not discoverable. We could also view the learning problem in terms
of finding the discoverable edges and their probabilities.

2.7 A Note on the Generality of This Model

The model introduced in this section allows for the observation of the network by
looking at the output of one selected node. However, this model is surprisingly
general. One may wish to consider, for example, the ability to observe the number
of nodes to fire as a result of an experiment. Such a scenario could be simulated
in our model – given any social network, one could make a new output node
that is activated by each node with some fixed, chosen probability. Now the
probability the output is activated corresponds to the number of network nodes
that are activated in an experiment.

One could also imagine networks where some nodes spontaneously fire with
some probability. We can again simulate this in the model we introduced. We
add a node that is fired with probability 1 whenever any node in the network

Optimally Learning Social Networks with Activations and Suppressions 277

fires (all other nodes have 1-edges to the new node), and the new node can
have edges to each node in the network, with probabilities corresponding to the
desired spontaneous firing probabilities of the network nodes.

3 General Social Networks

In this section we prove the following theorem.

Theorem 1. Any social network with n agents can be learned up to behavioral
equivalence with O(n2) exact value injection queries and time polynomial in the
number of queries.

First, we develop excitation paths, which are a variant of test paths, a concept
central in previous work on learning deterministic circuits [3,4]. An excitation
path for an agent a is a value-injection experiment in which a subset of the free
agents form a simple directed path1 in the circuit graph from (but not including)
a to the output agent. All agents not on the path with inputs into the path are
fixed to 0. A shortest excitation path is an excitation path of length equal
to the depth of a.

Let G be the network graph of A. In G, the up edges are edges from nodes
of larger depth to nodes of smaller depth, level edges are edges among nodes
of the same depth, and down edges are edges from nodes of smaller depth
to nodes of larger depth. An edge (u, v) is a shortcut edge if there exists a
directed path in G of length at least two from u to v.

Lemma 1. Let e be a shortest excitation path for node a and π be the nodes on
the path. Let p1 · · · pk be the weights of the up edges in π∪a. Then for 0 ≤ c ≤ 1

S(e|a=c) = c
k∏

i=1

pi.

Proof. In a shortest excitation path, if some node on the path does not activate,
no node at smaller depth will activate, because a shortest excitation path cannot
have shortcuts to nodes further along the path. Hence, all up edges must fire to
fire the output. This happens exactly with probability

∏k
i=1 pi. We note that this

lemma still holds when a takes probability c, not only when its set to c by e. �

Lemma 2. Let e be an excitation path experiment for node v and let π =
vk, . . . , v0 be the nodes along π in order from v to the output (with v0 being
the output node), such that there are no shortcut edges (vi, vj) for j < i along
π. Let u /∈ π be a node such that all edges from u to nodes on π are known and
have weights < 1. Let e′ = e|v=∗,u=1. Then, given S(e′) we can compute p(u,v).

Proof. We observe that because there are no shortcuts along π, no node vi will
activate in e′ unless either u activated it, or vi+1. Hence, any edge (vj , vk) where

1 A path with no repeated vertices is called simple.

278 D. Angluin, J. Aspnes, and L. Reyzin

j < k does not affect S(e′). Therefore, we can compute S(e′) by summing over
all the ways v0 can activate. Either u activates it directly with probability p(u,v0),
or if not (with probability 1 − p(u,v0)) we look at the probability u activates v1

and the probability of v1 firing the output, and so on. These quantities can be
computed using the logic of Lemma 1. For the calculation below, we rename
node v to vk+1.

S(e′) =
k+1∑
i=0

⎛⎝p(u,vi)

∏
j<i

(1 − p(u,vj))(p(vj+1,vj))

⎞⎠
This equation is linear in p(u,vk+1), which we can solve for because the other

quantities are known. �

We now present Algorithm 1 for learning social networks.

Algorithm 1. Learning Arbitrary Social Networks
Let S be the target social network.
Initialize G to have the agents as vertices and no edges.
Run Find-Up-Edges to learn the leveled graph of S.
Add learned weighted edges to G.
Let C = ∅ be the complete set.
for Each level i in the graph, from the deepest level to the output node do

Run Find-Remaining-Edges(G,C,i) to learn all level and down edges.
Add all nodes at the current level to C.

end for
Output G and halt.

The subroutine Find-Up-Edges builds a leveled graph of S. Let level i
be the set of all nodes at depth i. Find-Up-Edges assigns each node to a level
and finds all up edges in the graph. Starting at the top level and proceeding
downward, for each pair of nodes u and v, such that u is one level deeper than
v, Find-Up-Edges finds a shortest excitation path for u that goes through v to
learn p(u,v). This experiment leaves the path free and suppresses all other nodes
in the graph. We show correctness by induction on the level. For the base case,
the edges from nodes at depth 1 form the paths. Considering nodes at depth i
we assume we know all up edges on the induced subgraph at depths 0 to i− 1.
Therefore, for each node at depth i−1 we have a shortest excitation path to the
root. Thus, for each node u not yet assigned a level, we can try experiments with
excitation paths via each node v at depth i − 1. Let e be such an experiment
with π as the excitation path. And let p1 · · · pi−1 be the weights of the up edges
in π. By Lemma 1 we can compute

p(u,v) =
S(e|u=1)∏i−1

j=1 pj

.

If p(u,v) > 0 we assign node u to level i.

Optimally Learning Social Networks with Activations and Suppressions 279

After Find-Up-Edges is run, the remaining edges that need to be found are
down and level edges. The subroutine Find-Remaining-Edges, shown in Algo-
rithm 2, accomplishes this task. The algorithm keeps a complete set C in which
all discoverable edges are known. C starts at the largest level and grows toward
smaller levels. Find-Remaining-Edges finds all discoverable edges from the level
it is on to the complete set. It also finds all discoverable edges between nodes at
the level it is on. Then, that level is added to C.

Algorithm 2. Find-Remaining-Edges(Current Graph G, Complete Set C, Level
i)

Let L be the set of nodes at the current level i.
Let M = L ∪ C.
Let Π be a collection of paths.
Keep an |L| by |M | table T . ∀ wi ∈ L, xj ∈ M s.t. wi �= xj , T (wi, xj) = 1.
loop

Set Π = ∅.
for Each node wi ∈ L do

Find Awi , the set of all nodes reachable from wi by 1-edges (incl. wi) in G.
for Each node xj ∈ M where T (wi, xj) = 1 do

Find the shortest path πwi,xj in G − Awi from xj to the root.
Π = Π ∪ πwi,xj .

end for
end for
if Π = ∅ then return.
Let wi, xj minimize the length of πwi,xj ∈ Π .
Let experiment e fire wi, leave πwi,xj free, and suppress the rest of the nodes.
Query S(e) and compute p(wi,xj) by Lemma 2.
Set T (wi, xj) = 0.
If p(wi,xj) > 0 then add (wi, xj) to G.

end loop

Let L be the set of nodes on level i. To find down and level edges from nodes in
L, Find-Remaining-Edges keeps a table T , with an entry for each possible edge
originating from a node in L. Each entry is initially set to 1. After determining
whether an edge is present, its corresponding entry becomes marked 0. The
potential edges whose corresponding entries are marked 1 we call “unprocessed.”

For each unprocessed edge (u, v), we find the set of all nodes we know are
guaranteed to be activated when u is fired. This is the set of nodes reachable by
edges of weight 1 from u in G. We call this set Au. Now, we find the shortest
path πu,v (if one exists) in G − {Au} from v to the output. If no unprocessed
edge has such a path, then Find-Remaining-Edges terminates and the algorithm
proceeds to the next level.

Otherwise, we take an edge (u, v) that minimizes the distance from v to the
output in G − {Au}. Let e be the experiment where u is fired, all nodes along
πu,v are left free, and the rest of the nodes are suppressed. We will show that
S(e) is enough to determine p(u,v). Then, the entry for this edge is marked to 0

280 D. Angluin, J. Aspnes, and L. Reyzin

in the table, and if it is present, is added to G. Then the algorithm continues,
recomputing the sets Au for the remaining unprocessed edges.

We now show that the value of S(e), as defined above, is sufficient to learn
edge (u, v). All edges from u to π are either up edges or have already been
processed by the time edge (u, v) is considered, otherwise there would be an
unprocessed edge from u to a node on π with a shorter distance to the root in
G−Au. All edges on π in G−C are known from Find-Up-Edges, and the rest of
the edges are known because they are in C. Hence, by Lemma 2, we can compute
the weight of edge (u, v), and add it to G if its weight is positive.

Find-Remaining-Edges returns when all remaining unprocessed down and
level pairs of nodes u, v do not have a path from v to the root in G − Au.
The algorithm does not attempt to learn these edges. We will argue that when
an execution of Find-Remaining-Edges terminates, all of the unprocessed edges
are not discoverable. Let u, v be such a pair. Let S be the graph of the complete
social network and Bu be the set of nodes reachable by edges of weight 1 in
S. If there is no path from v to the root in S − Bu, edge (u, v) is clearly not
discoverable. We note that Au ⊆ Bu.

By way of contradiction, we will assume there exist vertices u (on level i) and
v (on level ≥ i) such that there is a path of discoverable edges from v to the
root in S −Bu but not in G−Au at the time Find-Remaining-Edge exits. Once
this path reaches level i− 1 in G, then the path can be continued by following
up edges to the root. By assumption, G has all discoverable edges among the
complete set C, which contains all nodes at levels > i. Hence, there must be
some smallest set of edges U going from nodes at level i, that are in S but not
in G, such that if they were added to G, then then there would be a path from v
to the root node in G−Au. All of the edges in U must lie on a path π. Let edge
(x, y) ∈ U be the unprocessed edge closest to the root along the path. Because
edge (x, y) was unprocessed, there was a path of 1 edges from x to a node in π
above y; otherwise, there would be a path from y to the root in G−Ax and (x, y)
would have been processed. But taking the path of 1 edges from x to a node in
π gives a path from v to the root in G− Au using one fewer unprocessed edge.
This contradicts that U was the smallest set of edges that, if added to G, would
make a path from v to the root in G−Au. This contradicts our assumption that
a discoverable edge exists that Find-Remaining-Edges does not find.

To analyze number of queries used, we observe that every query either confirms
the absence of an edge or discovers one. Hence, Algorithm 1 performs at most
O(n2) queries.

3.1 A Matching Ω(n2) Lower Bound

We show an information theoretic lower bound for learning social networks that
matches the bound of the algorithm.

Theorem 2. Ω(n2) queries are required to learn a social network.

Proof. We give an information theoretic lower bound. We consider the following
class of graphs on vertices {v1, . . . , v2n+1}. We let v2n+1 be the output. The

Optimally Learning Social Networks with Activations and Suppressions 281

edges (vn+1, v2n+1), (vn+2, v2n+1), . . . , (v2n, v2n+1) all have weight 1. The edges
(v1, vn+1), (v2, vn+2), . . . , (vn, v2n) also all have weight 1. For 1 ≤ i ≤ n, n+1 ≤
j ≤ 2n, and j �= i+n, each edge (vi, vj) is either present with weight 1 or absent.
The rest of the edges are absent. There are 2Ω(n2) such graphs and the answer to
every exact value injection query is 1 bit because all present edges have weight 1.
Algorithm 1 differentiates all graphs in this class because all edges in this class
of graphs are up edges and are therefore discoverable. Hence, by an information
theoretic lower bound, at least log 2Ω(n2) = Ω(n2) queries are needed. �

4 Trees

In this section, we will consider the special case in which the target social net-
works come from the class of trees. A tree social network is a social network
whose edges are up edges that form a tree.

Theorem 3. Learning a social network tree takes Θ(n log n) exact value injec-
tion queries.

Proof. We first show the lower bound. Consider a directed path of nodes, with
the output node at an endpoint. All edges along the path have probability 1.
The only unknown is the ordering of the nodes along the path. Let u and v be
two nodes. We can test which of the two nodes has a smaller distance to the root
by the experiment that fires u and suppresses v. If this fires the output, then u
is closer to the root; otherwise, v is closer. Hence, all orderings can be distin-
guished. Because all edges have probability one, the result of any experiment is
deterministically a 1 or 0, a 1-bit answer. There are n! orderings of nodes. This
gives an Ω(log (n!)) = Ω(n log (n)) information-theoretic lower bound.

We now develop an algorithm that meets this bound for trees. Let T be the
target tree social network. In a tree, an ancestor of node u is any node on the
path from u to the output. We can test whether node v is an ancestor of node u
by firing u and suppressing v. If the result is > 0, then v is not an ancestor of u.
In general, to test whether there exists some node in V that is an ancestor of u,
we can fire u and suppress all nodes in V . This allows us to find all k ancestors
of a given node u by binary search in O(k log(n)) queries. Because the ancestors
of u form a path, we can sort them by their depth using O(k log(k)) queries (an
ancestor test involving two nodes provides a comparator) to get a directed path
from u to the output.

Now, we will use the observation above to make an algorithm for reconstruct-
ing trees. We keep a graph T ′ that is a connected subgraph of T that we build
up by adding new nodes until T ′ contains all the vertices in T . In attaching a
new node u to T ′, we first determine v, u’s deepest ancestor in T ′. We can do
this by recursively by splitting the nodes in T ′ into roughly equal halves H1 and
H2 such that no node in H2 is an ancestor of a node in H1. In one query we can
test whether v is in H1 by suppressing all nodes in H2 and firing u; thus, we can
find v in log(n) queries. We then find, by binary search, the set of all ancestors
of u in T that are not in T ′, and we sort them by their distance to the root in T .

282 D. Angluin, J. Aspnes, and L. Reyzin

This gives a path of vertices from u to v that we can append to T ′ and continue
this process until all the vertices are added to T ′.

In adding a new node u to T ′ we spend (log(n)) queries to find its deepest
ancestor in T ′, and O(k log(n)) queries to add u’s k ≥ 0 newly found ancestors to
T ′. This costs us an amortized O(log(n)) queries per node, giving an O(n log(n))
algorithm for learning the structure of the tree. We note that the structure is
learned using just zero/non-zero information from the queries.

Finally, to learn the weights of the edges in the tree, because we have a shortest
excitation path for each node, the edge weights can be discovered in n queries
by Lemma 2. �

5 Limitations of Excitation Paths

In this section, we construct a family of social networks in which there exists a
node, that when fired, activates the output node with high probability, but any
excitation path experiment for that node has an exponentially small probability
of activating the output. Namely, we will prove the following theorem.

Theorem 4. There exists a family of social networks S for which there exists a
node v ∈ S and an experiment e where only v is fired, such that for any excitation
path experiment eπ for v,

S(e) = 2Ω(
√

n)S(eπ)

Proof. Let {v1, · · · , vn} be nodes in this network, with v1 the output node. For all
1 < i < n−1, let p(i,i+1) = 1 - we call these back edges. For all i, j > 0 such that
i + j ≤ n, create a new node wij and let p(wij ,vi) = 1 and p(vi+j ,wij) = 2−j/

√
n.

Let e1 be an excitation path experiment for vn, where vn is fired. S(e1) is the
probability all edges along the path fire, which we can bound

S(e1) =
∏

fi:
�

fi≥n−1

2−
fi√

n

= 2−
�

fi√
n

= 2−Ω(
√

n)

The fi’s represent the number of nodes forward their corresponding edges jump.
Let e2 be the experiment where vn is fired and the remaining agents are set

free. We will show there exists a constant c > 0 such that S(e2) ≥ c.
We consider e2. The probability that vn does not fire any other nodes is∏n
i=1

(
1 − 2−i/

√
n
)
. Now, we can bound the probability of the root firing. Let

T (i) be the probability the root becomes activated given vi has fired. We set up
a recurrence

T (1) = 1

T (n) ≥
(

1 −
n−1∏
i=1

(
1 − 1

2

i/
√

n
))

T (n− 1)

Optimally Learning Social Networks with Activations and Suppressions 283

Where we have an inequality above because if vn activates any other node, then
vn−1 becomes activated due to the back edges.

Thus, T (n) ≥
(
1 − 1

2

√
n
)
T (n− 1) because the first

√
n terms of the product

above are ≤ 1/2. Unraveling the recurrence, we get

T (n) ≥
n−1∏
i=1

(
1 − 1

2

√
i
)
,

We know limn→∞ T (n) > 0 if
∑∞

i=1
1
2

√
i converges. By the Cauchy Condensation

Test,
∑∞

i=1
1
2

√
i converges if and only if

∑∞
i=1 2n 1

2

√
2n

converges [14]. The ratio

test easily tells us that
∑∞

i=1 2n 1
2

√
2n

converges. Therefore, there exists a constant
c > 0 such that ∀ n T (n) ≥ c. �

This example shows that many paths, each of which has an exponentially small
effect on the output, can add up to have a detectable effect on the output.
When using non-exact value injection queries, the goal is to learn a circuit to
approximate behavioral equivalence. Yet this example shows us that if the learner
has access to only non-exact value injection queries, then to learn this circuit by
only path based methods like our algorithms do, one would need an exponential
number of experiments to detect the effect on the output. This implies that
for non-exact value injection queries, either the circuits would need a depth
limitation, or non path-based algorithms would need to be developed.

6 Finding Small Influential Sets of Nodes

We now examine a seemingly easier problem. Instead of learning the entire social
network, we consider the task of finding a small set of influential nodes. More
formally, let I ⊂ V such that vn /∈ I, and let eI be the experiment where all
nodes in I are fired and the rest are left free. I has influence p if S(eI) ≥ p; we
call such a set influential. We first show that it is NP-Hard to find the smallest
set of certain influence, even if the structure of the network is known.

Theorem 5. Given a social network S of size n and a threshold probability p, it
is NP-Hard to approximate the size of the smallest set of nodes having influence
p within o(log(n)).

Proof. We reduce from Set Cover. Take an instance of Set Cover with points
{x1, . . . , xk} and sets {X1, . . . , Xl}. In the social network S, we create a nodes
{v1, . . . , vk} for the points and {w1, . . . , wl} for the sets in the original Set Cover
instance. If point xi belongs to set Xj , we make an edge from wj to vi with
associated probability of 1. We set the influence threshold parameter p to 1

2 .
We run edges from all nodes vi to the output, all with associated probability =
1− 1

2

1/k. Activating a node wi corresponds to choosing the set Xi and activating
a node vi corresponds to choosing an arbitrary set Xj that contains xi. The

284 D. Angluin, J. Aspnes, and L. Reyzin

output will fire with probability ≥ 1
2 only if all of the vi’s fire. This completes the

reduction. Because Set Cover is NP-Hard to approximate to within o(log n) [13],
so is approximating the size of the smallest influential set. �

Theorem 6. Let S be a social network of size n and let I be the smallest set
of nodes having influence p, where m = |I|. We can find a set of nodes of size
m log(p/ε) of influence (p−ε) using O(nm log(p/ε)) exact value injection queries.

Proof. Consider Algorithm 3.

Algorithm 3. An Algorithm for Finding a Set of Influential Nodes
Let S be the target social network.
Let p be the threshold probability.
Let ε be the error tolerance.
Let I = ∅.
Let eI be the experiment where all nodes in I are fired, and the rest are left free.
while S(eI) < p − ε do

Let v = arg maxvj∈V S(eI |vj=1)
I = I ∪ {v}

end while
Return I

Assume the optimal solution X , where S(eX) ≥ p, has size m. We claim that
at any stage of the algorithm, if S(eI) < p − ε, greedily adding one more node
w to I makes

S(eI∪{w}) ≥ S(eI) +
p− S(eI)

m
.

We can see this by noting that there exists a set of at most m nodes, namely X ,
that will get the probability all the way to p. By Lemma 3, some node will get
us at least 1

m th of the way there.
Let k be the number of rounds this algorithm is run. We look at the difference

between p and S(eI) after k rounds. By the observation above, we can compute
the number of rounds to get the difference to within ε. For

p

(
1 − 1

m

)k

< ε

it suffices that k > m log
(

p
ε

)
. Therefore, after m log(p

ε) rounds, S(eI) is within
ε of p. We check O(n) nodes each round, making for O(nm log(p

ε)) queries. �

We now reconcile the algorithm and the hardness of approximation result. Given
a social network created by the Set Cover reduction from Theorem 5, we can try
to learn the influential nodes using Algorithm 3. If we set

ε =
1
2

1
n

− 1
2

1
n−1

= Θ

(
1
n2

)
,

this makes ε small enough to force the algorithm to cover all of the vi’s. It would
find a set of (m log(pn2)) = O(m log(n)) nodes having influence p, which gives a

Optimally Learning Social Networks with Activations and Suppressions 285

O(log(n)) approximation and matches the lower bound. It is worth noting that
the greedy algorithm for Set Cover also matches its hardness of approximation
lower bound [15].

We will use Lemma 3, a version of which is derived in [10]. A function f is
submodular if f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B) whenever A ⊆ B.

Lemma 3. S(eI) is a positive monotone, submodular function of I. [10]

Corollary 1. If p is the maximum influence of any k node set in the network,
then Algorithm 3, with a threshold of 1, terminated after k steps, produces a set
with influence ≥ (1 − 1

e)p.

Proof. Nemhauser et al. [12] show that greedily maximizing a non-negative,
monotone, submodular function on sets gives a (1 − 1

e) approximation to the
function on k-element sets. Hence, this follows from Lemma 3. �

7 Open Problems

We leave open a number of interesting and challenging problems. Our results rely
on exact value injection queries. While these queries are theoretically elegant, in
real-world applications learners would normally only have access to non-exact
value injection queries, and for such queries our algorithms would need to be
modified, mainly because we look for shortest paths, not necessarily the paths
least diluted by the multiplication of probabilities. The Angluin et al. [2] results
on probabilistic networks adapt some exact value injection query algorithms to
work in non-exact settings, yet we see no clear way of similarly modifying our
algorithms. Furthermore, in moving to the non-exact setting, because of the
results from Section 5, either target network depth would need to be limited, or
algorithms would have to be invented that do not rely on excitation paths.

Another interesting topic to explore is what other classes of cyclic networks
can be learned using similar algorithms? Our algorithms rely on the indepen-
dence assumption in the independent cascade social network model. However,
there are other more general models of social networks, like the decreasing cas-
cade model [10]. It would be worthwhile exploring their learnability as well.

Finally, it is often the case that graph algorithms run faster on sparse graphs.
It would be interesting to design an algorithm for learning social networks whose
query complexity was a function of the size of the edge set in the target graph.

References

[1] Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of gene regula-
tory networks by strategic gene disruptions and gene overexpressions. In: SODA
1998: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, Philadelphia, PA, USA, pp. 695–702. Society for Industrial and Applied
Mathematics (1998)

[2] Angluin, D., Aspnes, J., Chen, J., Eisenstat, D., Reyzin, L.: Learning acyclic
probabilistic circuits using test paths. In: COLT 2008 (to appear, 2008)

286 D. Angluin, J. Aspnes, and L. Reyzin

[3] Angluin, D., Aspnes, J., Chen, J., Reyzin, L.: Learning large-alphabet and analog
circuits with value injection queries. In: The 20th Annual Conference on Learning
Theory, pp. 51–65 (2007)

[4] Angluin, D., Aspnes, J., Chen, J., Wu, Y.: Learning a circuit by injecting val-
ues. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of
Computing, pp. 584–593. ACM Press, New York (2006)

[5] Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
Syst. Sci. 50(2), 336–355 (1995)

[6] Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance
marketing theory development: Modeling heterogeneity effects on new product
growth through stochastic cellular automata. Academy of Marketing Science Re-
view (2001)

[7] Ideker, T., Thorsson, V., Karp, R.: Discovery of regulatory interactions through
perturbation: Inference and experimental design. In: Pacific Symposium on Bio-
computing 5, pp. 302–313 (2000)

[8] Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. J. ACM 41(1), 67–95 (1994)

[9] Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD 2003: Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 137–146. ACM,
New York (2003)

[10] Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for
social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

[11] Kharitonov, M.: Cryptographic hardness of distribution-specific learning. In:
STOC 1993: Proceedings of the twenty-fifth annual ACM symposium on The-
ory of computing, pp. 372–381. ACM Press, New York (1993)

[12] Nemhauser, G., Wolsey, L., F.M.: An analysis of the approximations for maximiz-
ing submodular set functions. Mathematical Programming 14, 265–294 (1978)

[13] Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: STOC 1997: Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing, pp.
475–484. ACM, New York (1997)

[14] Rudin, W.: Principles of Mathematical Analysis. International Series in Pure and
Applied Mathematics. McGraw-Hill, New York (1976)

[15] Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. In: STOC 1996:
Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-
ing, pp. 435–441. ACM, New York (1996)

Active Learning in Multi-armed Bandits

András Antos1, Varun Grover2, and Csaba Szepesvári1,2

1 Computer and Automation Research Institute
of the Hungarian Academy of Sciences

Kende u. 13-17, Budapest 1111, Hungary
antos@szit.bme.hu

2 Department of Computing Science
University of Alberta, Edmonton T6G 2E8, Canada

{varun,szepesva}@cs.ualberta.ca

Abstract. In this paper we consider the problem of actively learning the
mean values of distributions associated with a finite number of options
(arms). The algorithms can select which option to generate the next
sample from in order to produce estimates with equally good precision for
all the distributions. When an algorithm uses sample means to estimate
the unknown values then the optimal solution, assuming full knowledge
of the distributions, is to sample each option proportional to its variance.
In this paper we propose an incremental algorithm that asymptotically
achieves the same loss as an optimal rule. We prove that the excess
loss suffered by this algorithm, apart from logarithmic factors, scales as
n−3/2, which we conjecture to be the optimal rate. The performance of
the algorithm is illustrated in a simple problem.

1 Introduction

Consider the problem of production quality assurance in a factory equipped with
a number of machines that produce products of different quality. The quality can
be monitored by inspecting the products produced: An inspection of a product is
modeled as a random number say between zero and one, one meaning the best,
zero the poorest quality. The outcome will depend on random effects influencing
the production and how the inspection was done, but the main assumption is
that the mean of this random variable characterizes the maintenance state of
the machine. Due to the randomness of the inspection results, multiple measure-
ments are necessary to control the precision of the quality estimates. We are
interested in keeping the precision of the estimates equal across the machines.
If the inspection of a product is expensive (as is the case when inspection re-
quires the destruction of the product) then to keep the cost low, it is logical
to inspect machines that produce products of highly varying inspection results
more frequently. The problem is then to decide about exactly how frequently the
quality of each machine should be checked by inspecting a product produced on
it. The loss is measured by taking the largest of the mean-squared errors of the
estimates produced for the machines.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 287–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 A. Antos, V. Grover, and C. Szepesvári

The basic problem is to estimate unknown quantities corresponding to a finite
number of options by sequentially drawing random variables from distributions
associated with the options so as to keep the estimation error across all the op-
tions the same. Active learning problems involve estimating unknown parameters
by selectively and adaptively sampling from the input space. Hence, this problem
can be seen as an instance of active learning. The problem is also similar to multi-
armed bandit problems [7, 2] in that only one option (arm) can be probed at any
time. However, the performance criterion is different from that used in bandits
where the observed values are treated as rewards and performance during learn-
ing is what matters. Nevertheless, we will see that the exploration-exploitation
dilemma which characterizes classical bandit problems will still play a role here.
Because of this connection we call this problem the max-loss value-estimation
problem in multi-armed bandits.

The formal description of this problem is as follows: We are interested in
estimating the expected values (µk) of some distributions (Dk), each associated
with an option (or arm). If K is the number of options then 1 ≤ k ≤ K.
For any k, the decision maker can draw independent samples {Xkt}t from Dk.
The sample Xkt is observed when a sample is requested from option k the tth

time. (These samples correspond to the outcomes of inspections in the previous
example). The samples are drawn sequentially: Given the information collected
up to trial n the decision maker can decide which option to choose next. At any
time n, the decision maker keeps an estimate, µ̂kn, of the mean of Dk. The error
of estimate k is measured with the expected squared error:

Lkn = E
[
(µ̂kn − µk)2

]
.

The overall loss is measured by the worst-case loss over the K options:

Ln = max
1≤k≤K

Lkn.

This expresses the desire that all estimates are equally important. The goal of
the decision maker is to make this loss as small as possible.

For the sake of simplicity assume that the estimates µ̂kn are produced by
computing the sample means of the respective options:

µ̂kn =
1

Tkn

Tkn∑
t=1

Xkt,

where Tkn denotes the number of times a sample was requested from option k.
Consider the non-sequential version of the problem, i.e., the problem of choos-

ing T1n, . . . , TKn such that T1n + . . . + TKn = n so as to minimize the loss. Let
us assume for a moment full knowledge of the distributions, so there is no value
in making this choice data dependent. Due to the independence of samples

Lkn =
σ2

k

Tkn
,

Active Learning in Multi-armed Bandits 289

where σ2
k = Var [Xk1]. For simplicity assume that σ2

k > 0 holds for all k. It is not
hard to see then that the minimizer of Ln = maxk Lkn is the allocation {T ∗

kn}k

that makes all the losses Lkn (approximately) equal, hence (apart from rounding
issues)

T ∗
kn = n

σ2
k

Σ2
= λkn.

Here Σ2 =
∑K

j=1 σ2
j is the sum of the variances and

λk =
σ2

k

Σ2
.

The corresponding loss is

L∗
n =

Σ2

n
.

The optimal allocation is easy to extend to the case when some options have
zero variance. Clearly, it is both necessary and sufficient to make a single ob-
servation on such options. The case when all variances are zero (i.e., Σ2 = 0) is
uninteresting, hence we will assume from now on that Σ2 > 0.

We expect a good sequential algorithm A to achieve a loss Ln = Ln(A) close
to the loss L∗

n. We will therefore look into the excess loss

Rn(A) = Ln(A) − L∗
n.

Since the loss of option k can only decrease if we request a new sample from
Dk, one simple idea is to request the next sample from option k whose estimated
loss, σ̂2

kn/Tkn, is the largest amongst all estimated losses. Here σ̂2
kn is an estimate

of the variance of the kth option based on the history. The problem with this
approach is that the variance might be underestimated in which case the option
will not be selected for a long time, which prevents refining the estimated vari-
ance, ultimately resulting in a large excess loss. Thus we face a problem similar
to the exploration-exploitation dilemma in bandit problems where a greedy pol-
icy might incur a large loss if the payoff of the optimal option is underestimated.
One simple remedy is to make sure that the estimated variances converge to their
true values. This can be ensured if the algorithm is forced to select all the options
indefinitely in the limit, which is often called the method of forced selections in
the bandit literature. One way to implement this idea is to introduce phases
of increasing length. Then in each phase the algorithm could choose all options
exactly once at the beginning, while in the rest of the phase it can sample all
the options k proportionally to their respective variance estimates computed at
the beginning of the phase. The problem then becomes to select the appropriate
phase lengths to make sure that the proportion of forced selections diminishes at
an appropriate rate with an increasing horizon n. (An algorithm along these lines
have been described and analyzed by [5] in the context of stratified sampling.
We shall discuss this further in Section 5.) While the introduction of phases al-
lows a direct control of the proportion of forced selections, the algorithm is not
incremental and is somewhat cumbersome to implement.

290 A. Antos, V. Grover, and C. Szepesvári

In this paper we propose and study an alternative algorithm that implements
forced selections but remains completely incremental. The idea is to select the
option with the largest estimated loss except if some of the options is seriously
under-sampled, in which case the under-sampled option is selected. It turns out
that a good definition for an option being under-sampled is Tkn ≤ c

√
n with some

constant c > 0. (The algorithm will be formally stated in the next section.) We
will show that the excess loss of this algorithm decreases with n as Õ(n−3/2).1

2 Algorithm

The formal description of the algorithm, that we call GAFS-MAX (greedy al-
location with forced selections for max-norm value estimation), is as follows:

Algorithm GAFS-MAX
In the first K trials choose each arm once
Set Tk,K+1 = 1 (1 ≤ k ≤ K), n = K + 1
At time n do:

Compute σ̂2
kn = 1

Tkn

∑Tkn

t=1 X2
kt −

(
1

Tkn

∑Tkn

t=1 Xkt

)2

Let λ̂kn = σ̂2
kn/(

∑K
j=1 σ̂2

jn) if
∑K

j=1 σ̂2
jn �= 0,

otherwise let λ̂kn = 1/K.
Let Un = { k : Tkn <

√
n + 1 }

Let

In+1 =

{
minUn, if Un �= ∅
argmax1≤k≤K

λ̂kn

Tkn
, otherwise,

where in the second case ties are broken in an arbitrary,
but systematic manner.

Choose option In+1, let Tk,n+1 = Tk,n + I { In+1 = k }
Observe the feedback XIn+1,TIn+1,n+1.

Of course, the variance estimates can be computed incrementally. Further, it is
actually not necessary to compute λ̂kn because in the computation of the arm
index λ̂kn can be replaced by σ̂2

kn without effecting the choices.

3 Main Results

The main result (Theorem 3) for GAFS-MAX is a bound of the form Ln ≤ L∗
n +

Õ(n−3/2). We also prove high probability bounds on Tnk/n− λk (Theorem 1).
The proof is somewhat involved, hence we start with an outline: Clearly, the rate
of growth of Tkn controls the rate of convergence of λ̂kn to λk. In particular, we
will show that given Tkn ≥ f(n) it follows that λ̂kn converges to λk at a rate

1 A nonnegative sequence (an) is said to be Õ(f(n)), where f : N → R+, if an ≤
Cf(n) log(n) with a suitable constant C > 0.

Active Learning in Multi-armed Bandits 291

of O(1/f(n)1/2) (Lemma 2). The second major tool is a result (Lemma 3) that
shows how a faster rate for λ̂kn transforms into better bounds on Tkn. The actual
proof is then started by observing that due to the forced selections Tkn ≥

√
n.

The proof is developed through a series of Lemmata. First, we state Hoeffd-
ing’s inequality in a form that suits the best our needs:

Lemma 1 (Hoeffding’s inequality, [6]). Let Zt be a sequence of zero-mean,
i.i.d. random variables, where a ≤ Zt ≤ b, a < b reals. Then, for any 0 < δ ≤ 1,

P

(
1
n

n∑
t=1

Zt ≥
√

1
2

(b− a)2

n
log(1/δ)

)
≤ δ.

Let

∆(R2, n, δ) = R

√
log(1/δ)

2n
.

Let µ
(2)
k = E

[
X2

kt

]
, Rk be the size of the range of the random variables {Xkt}t

(i.e., |supp(Xkt)| ≤ Rk), Sk be the size of the range of the random variables
{X2

kt}t, and Bk be the size of the range of the random variables {|Xkt|}t. Note
that Bk ≤ Rk and Sk ≤ B2

k. Let

Aδ =

⎛⎝ ⋂
1≤k≤K,n≥1

{∣∣∣∣∣ 1n
n∑

t=1

X2
kt − µ

(2)
k

∣∣∣∣∣ ≤ ∆(S2
k, n, δn)

}⎞⎠⋂
⋂

1≤k≤K,n≥1

{∣∣∣∣∣ 1n
n∑

t=1

Xkt − µk

∣∣∣∣∣ ≤ ∆(R2
k, n, δn)

}
,

where δn = δ/(4K(n(n+1)). Note that δn is chosen such that
∑K

k=1

∑∞
n=1 δn =

δ/4. Hence, we observe that by Hoeffding’s inequality

P (Aδ) ≥ 1 − δ.

The sets {Aδ}δ will play a key role in the proof: Many of the statements will be
proved on these set.

Our first result connects a lower bound on Tkn to the rate of convergence of
λ̂kn. Let ak = |µk| + Bk, bk = Sk + akRk, and a′k = σ4

k/(4b
2
k).

Lemma 2. Fix 0 < δ ≤ 1 and n0 > 0, and assume that for n ≥ n0, 1 ≤ k ≤ K,
Tkn ≥ f(n) ≥ 2 holds on Aδ, where f(n) → ∞. Then there exists constants
N0 ≥ n0 and c > 0 such that for any n ≥ N0, 1 ≤ k ≤ K, on Aδ∣∣∣λ̂kn − λk

∣∣∣ ≤ c

√
log(δ−1

n)
f(n)

(1)

holds. In particular, c =
√

2(bk + λk

∑K
j=1 bj)/Σ2 ≤ 5

√
2(B2

k +
∑K

j=1 B2
j)/Σ2.

If f(n) = bnp (p > 0) then N0 = max(n0, n1), where n1 is a number such that
for n ≥ n1

logn ≤ ba′k
p

np −
1 + log

(
4K
δ

)
+ 2 log b

2p
. (2)

292 A. Antos, V. Grover, and C. Szepesvári

Proof. First, we develop a bound on |σ̂2
kn − σ2

k|. Let µ̂
(2)
kn = 1/Tkn

∑Tkn

t=1 X2
kt and

µ̂kn = 1/Tkn

∑Tkn

t=1 Xkt. Consider any element of Aδ. Then by the definition of
Aδ, |1/m

∑m
t=1 X2

kt − µ
(2)
k | ≤ ∆(S2

k,m, δm) holds simultaneously for any m ≥ 1.
Hence, for n ≥ n0 it also holds that∣∣∣∣∣ 1

Tkn

Tkn∑
t=1

X2
kt − µ

(2)
k

∣∣∣∣∣ ≤ ∆(S2
k, Tkn, δTkn

) ≤ ∆(S2
k, f(n), δf(n)),

where we have used that log(x(x + 1)/δ)/x is monotonically decreasing when
x ≥ 2 and Tkn ≥ f(n) ≥ 2. Similarly, we get that∣∣∣∣∣ 1

Tkn

Tkn∑
t=1

Xkt − µk

∣∣∣∣∣ ≤ ∆(R2
k, f(n), δf(n)).

Using σ̂2
kn = µ̂

(2)
kn − µ̂2

kn and σ2
k = E

[
X2

kt

]
− (E [Xkt])2 = µ

(2)
k − µ2

k, we get∣∣σ̂2
kn − σ2

k

∣∣ ≤ ∣∣∣µ̂(2)
kn − µ

(2)
k

∣∣∣ +
∣∣µ̂2

kn − µ2
k

∣∣
≤ ∆(S2

k, f(n), δf(n)) + ∆(R2
k, f(n), δf(n))(|µk| + Bk), (3)

where we used |a2 − b2| ≤ |a− b| (|a| + |b|).
Denote the right-hand side of (3) by ∆k(n, δ). Now, let us develop a lower

bound on λ̂kn in terms of λk. Then, for n ≥ n0,

λ̂kn =
σ̂2

kn
K∑

j=1

σ̂2
jn

≥ σ2
k −∆k(n, δ)

Σ2 +
K∑

j=1

∆j(n, δ)
≥ λk

⎛⎜⎜⎜⎝1 −

K∑
j=1

∆j(n, δ)

Σ2

⎞⎟⎟⎟⎠− ∆k(n, δ)
Σ2

,

where we used 1/(1 + x) ≥ 1 − x that holds for x > −1.
An upper bound can be obtained analogously: For n ≥ n0, if

Σ2 ≥ 2
K∑

j=1

∆j(n, δ) (4)

then

λ̂kn =
σ̂2

kn
K∑

j=1

σ̂2
jn

≤ σ2
k + ∆k(n, δ)

Σ2 −
K∑

j=1

∆j(n, δ)
≤ λk

⎛⎜⎜⎜⎝1 + 2

K∑
j=1

∆j(n, δ)

Σ2

⎞⎟⎟⎟⎠+ 2
∆k(n, δ)

Σ2
,

where we used 1/(1 − x) ≤ 1 + 2x that holds for 0 ≤ x ≤ 1/2. This constraint
follows from (4), that is implied if n is big enough so that

2∆j(n, δ) ≤ σ2
j , 1 ≤ j ≤ K. (5)

Active Learning in Multi-armed Bandits 293

The upper and lower bounds above together give

|λ̂kn − λk| ≤
2
Σ2

⎛⎝λk

K∑
j=1

∆j(n, δ) + ∆k(n, δ)

⎞⎠ .

Noting that ∆j(n, δ) equals to

(Sj + Rj(|µj | + Bj))

√
log(δ−1

f(n))

2f(n)
= bj

√
log(δ−1

f(n))

2f(n)
, (6)

where bj = Sj + Rj(|µj | + Bj), we get

|λ̂kn − λk| ≤
√

2
Σ2

⎛⎝λk

K∑
j=1

bj + bk

⎞⎠√
log(δ−1

f(n))

f(n)
.

Since f(n) ≤ Tkn ≤ n, δ−1
f(n) can be upper bounded by δ−1

n leading to (1).
At last, to satisfy (5), by (6), it suffices if

f(n) ≥
2b2j
σ4

j

log(δ−1
f(n)) =

2b2j
σ4

j

(log(f(n)(f(n) + 1)) + log(4K/δ))

that is guaranteed by f(n) → ∞ for n large enough.

If f(n) = bnp then bnp ≥ 2b2j
σ4

j
(2p logn + 2 log b + 1 + log(4K/δ)) will ensure

that. Reordering this gives (2). �	

Now we show how a rate of convergence result for λ̂kn can be turned into bounds
on Tkn/n−λk. Let λmin = min1≤j≤K λj . In what follows, unless otherwise stated,
we will assume that λmin > 0.

Lemma 3. Fix 0 < δ ≤ 1 and n0 > 0. Assume that f(n) ≤ n such that f(n)/n2

is monotone decreasing, and consider an event such that

|λ̂kn − λk| ≤ c

√
log(δ−1

n)/f(n), 1 ≤ k ≤ K (7)

holds with some c ≥ 1, for all n ≥ n0. Let

H(n, δ) = c

(
1 +

2
λmin

)
n

√
log(δ−1

n)
f(n)

.

Then the following inequalities hold for n ≥ n0 and 1 ≤ k ≤ K:

Tkn ≤ nλk + max(n0, 1 + H(n, δ)),
Tkn ≥ nλk − (K − 1)max(n0, 1 + H(n, δ)).

294 A. Antos, V. Grover, and C. Szepesvári

Proof. By definition Tk,n+1 = Tkn + I { In+1 = k }. Let Ekn = Tkn − nλk. Note
that

K∑
k=1

Ekn = 0 (8)

holds for any n ≥ 1. Notice that the desired result can be stated as bounds on
Ekn. Hence, our goal now is to study Ekn. If bjn is an upper bound for Ejn

(1 ≤ j ≤ K) then from (8) we get the lower bound Ekn = −
∑

j 	=k Ejn ≥
−
∑

j 	=k bjn ≥ −(K − 1)maxj bjn. Hence, we target upper bounds on {Ekn}k.
From the definition of Ekn and Tkn we get

Ek,n+1 = Ek,n − λk + I { In+1 = k } .

By the definition of the algorithm

I { In+1 = k } ≤ I

{
Tkn ≤ #

√
n$ or k = argmin

1≤j≤K

Tjn

λ̂jn

}
,

with the understanding that c/0 = +∞. Assume now that k is an index where
{Tjn

λ̂jn
}j takes its minimum, that is,

Tkn

λ̂kn

≤ min
j

Tjn

λ̂jn

.

Using Tjn = Ejn + nλj and reordering the terms gives

Ekn + nλk ≤ λ̂kn min
j

Ejn + nλj

λ̂jn

≤ λ̂kn

(
min

j

Ejn

λ̂jn

+ nmax
j

λj

λ̂jn

)
.

By (8), there exists an index j such that Ejn ≤ 0. Since λ̂jn ≥ 0 for any j, it
holds that minj

Ejn

λ̂jn
≤ 0. Hence, Ekn + nλk ≤ nλ̂kn maxj

λj

λ̂jn
. Using (7) and

1/(1 − x) = 1 + x/(1 − x) ≤ 1 + 2x, which holds for x ≤ 1/2, provided that
n ≥ n0, we get

λj

λ̂jn

≤ λj

λj − c
√

log(δ−1
n)/f(n)

≤ 1 +
2c
λj

√
log(δ−1

n)
f(n)

.

Using λ̂kn ≤ 1 and (7) again,

Ekn ≤ n(λ̂kn − λk) +
2cn
λmin

√
log(δ−1

n)
f(n)

≤ c

(
1 +

2
λmin

)
n

√
log(δ−1

n)
f(n)

.

Note that the right-hand side is H(n, δ). Hence,

I { In+1 = k } ≤ I
{
Tkn ≤ #

√
n$ or Ekn ≤ H(n, δ)

}
.

Active Learning in Multi-armed Bandits 295

Assume now that Tkn ≤ #√n$. We want to show that in this case Ekn ≤ H(n, δ).
By the definition of Ekn, from Tkn ≤ #

√
n$ it follows that Ekn = Tkn − nλk ≤

#
√
n$ ≤

√
2n. Hence, Ekn ≤ H(n, δ) follows if

√
2n ≤ H(n, δ). In particular, this

follows from the bounds on c, λmin, f(n), and δ. Therefore

I { In+1 = k } ≤ I {Ekn ≤ H(n, δ) } .

We need the following technical lemma:

Lemma 4. Let 0 ≤ λ ≤ 1. Consider the sequences En, Ẽn, In, Ĩn (n ≥ 1) where
In, Ĩn ∈ 0, 1, En+1 = En + In − λ, Ẽn+1 = Ẽn + Ĩn − λ, Ẽ1 = E1 and assume
that In ≤ Ĩn holds whenever En = Ẽn. Then En ≤ Ẽn holds for n ≥ 1.

Due to the lack of space we only sketch the proof of Lemma 4. The idea is
that Pn = Ẽn−En can only take on integer values and step 0 or 1. Then Pn ≥ 0,
n ≥ 1 follows since P1 = 0 and when in Pn = 0 then Pn+1 ≥ 0.
Now, returning to the proof of Lemma 3, define Ẽkn by

Ẽk,n+1 = Ẽk,n − λk + I

{
Ẽkn ≤ H(n, δ)

}
, n ≥ n0,

Ẽk,n0 = Ek,n0 .

The conditions of Lemma 4 are clearly satisfied from index n0. Consequently
Ek,n ≤ Ẽk,n holds for any n ≥ n0. Further, since H(n, δ) is monotone increasing
in n, Ẽk,n ≤ max(Ek,n0 , 1+H(n, δ)) ≤ max(n0, 1+H(n, δ)), finishing the upper-
bound. �	

Using the previous result we are now in the position to prove a linear lower
bound on Tkn:

Lemma 5. Let 0 < δ ≤ 1 arbitrary. Then there exists an integer N1 such that
for any n ≥ N1, Tkn ≥ nλk/2 holds on Aδ.

In particular,

N1 = max

(
2(K − 1)

λmin
max(3, N0), D2

2

[
logD2

2 +
1
2

(
log

(
4K
δ

)
+ 1

)]2
)

, (9)

where N0 = max
(
K2, (1/a′k)

2
[
log((1/a′k)2) + (1 + log(4K/δ))

]2) and D2 =

4(9c(K − 1))2/λ4
min.

For the proof we need the following technical lemma that quantifies the point
when for a > 0 the function at1/2 + b overtakes log t.

Lemma 6. Let q(t) = at1/2 + b, �(t) = log t, where a > 0. Then for any t ≥
(2/a)2

[
log((2/a)2) − b

]2, q(t) ≥ �(t).

The proof of this lemma is elementary and is hence omitted.

296 A. Antos, V. Grover, and C. Szepesvári

Proof (Lemma 5). Due to the forced selection of the options built into the al-
gorithm, Tkn ≥

√
n holds for n ≥ K2. Hence, we can apply Lemma 2 with

f(n) = n1/2. By Lemma 6, n1 defined by (2) can be chosen to be

(1/a′k)2
[
log((1/a′k)2) + (1 + log(4K/δ))

]2
.

Hence, for n ≥ N0 = max(K2, n1) and c > 0 as defined in Lemma 2, we get,

∣∣∣λ̂kn − λk

∣∣∣ ≤ c

√
log(δ−1

n)
n1/2

. (10)

Possibly replacing c with max(c, 1), we can assume that c ≥ 1. By Lemma 3, for
n ≥ max(N0, 1/λmin), Tkn ≥ nλk − (K−1)max(N0, 1+H(n, δ)), and H(n, δ) =

D1n
3/4

√
log(δ−1

n), where D1 = c
(
1 + 2

λmin

)
≤ 3c/λmin. Hence, Tkn ≥ nλk/2

by the time when n ≥ 2N0(K − 1)/λmin and n ≥ 2(K − 1)(1 + H(n, δ))/λmin.
Lemma 6 and some tedious calculations then show that these two constrained
are satisfied when n ≥ N1, where N1 is defined as in equation (9). �	

With the help of this result we can get better bounds on Tkn, resulting in our
first main result:

Theorem 1. Let 0 < δ ≤ 1 be arbitrary. Then there exists an integer N2 and a
positive real number D3 such that for any n ≥ N2,

−(K − 1)
max(N2, 1 + G(n, δ))

n
≤ Tkn

n
− λk ≤ max(N2, 1 + G(n, δ))

n

holds on Aδ, where

G(n, δ) = D3

√
n log(δ−1

n). (11)

Here D3 ≤ 3
√

2 c/λ
3/2
min,

N2 = max
(
N1,

(
4

λmina′k

) [
log

(
2

λmina′k

)
+

1
2

+
1
2

log
(

4K
δ

)])
,

where N1 is defined in Lemma 5.

The theorem shows that asymptotically the GAFS-MAX algorithm behaves the
same way as an optimal allocation rule that knows the variances. It also shows
that the deviation of the proportion of choices of any option from the optimal
value decays as Õ(1/

√
n).

For the proof we need the counterpart of Lemma 6 for linear functions:

Lemma 7. Let q(t) = at + b, �(t) = log t, where a > 0. Then for any t ≥
(2/a)(log((1/a)) − b), q(t) ≥ �(t).

Active Learning in Multi-armed Bandits 297

Proof (Theorem 1). The proof is almost identical to that of Lemma 5. The
difference is that now we start with a better lower bound on Tkn. In particular,
by Lemma 5 Tkn ≥ nλk/2 holds whenever n ≥ N1. By Lemma 2, for some
N2 ≥ N1, c ≥ 1, ∣∣∣λ̂kn − λk

∣∣∣ ≤ c

λ
1/2
k

√
log(δ−1

n)
n

(12)

holds for all n ≥ N2. In particular, solving (2) for n1 with f(n) = nλk/2 and
Lemma 7 give that

N2 = max
(
N1,

4
λmina′k

[
log

(
2

λmina′k

)
+

1
2

+
1
2

log
(

4K
δ

)])
will suffice. By Lemma 3, for n ≥ max(N2, λ

−1
min) = N2,

Tkn ≤ nλk + max(N2, 1 + G(n, δ)), and
Tkn ≥ nλk − (K − 1)max(N2, 1 + G(n, δ)),

where G(n, δ) is given by (11), and D3 =
√

c
λmin

c
(
1 + 2

λmin

)
. �	

This result yields a bound on the expected value of E [Tkn]:

Theorem 2. Let N ′
2 be such that N2 ≤ N ′

2 log2(4K/δ) holds for any δ > 0,
where N2 is defined in Theorem 1. Then, there exists and index N3 that depends
only on N ′

2, D3 and K, such for any n ≥ N3,

E [Tkn] ≤ nλk + D3

√
n(1 + log(4Kn(n + 1))) + 2. (13)

Proof. First note that N ′
2 exists and N2 ≤ N ′

2 log2(δ−1
n) holds for any n ≥ 2. Fix

0 < δ ≤ 1. If n ≥ N2
2 /(D

2
3 log(δ−1

n)), then 1 + G(n, δ) ≥ N2, thus it follows from
Theorem 1 that for n ≥ max(N2, N

2
2 /(D

2
3 log(δ−1

n))),

P

(
Tkn − nλk − 1

D3n1/2
>

√
log(δ−1

n)
)

≤ δ

where we used P (Aδ) ≥ 1 − δ. Let Z = (Tkn − nλk − 1)/(D3n
1/2) and ε =√

log(δ−1
n). The above inequality is equivalent to

P (Z > ε) ≤ 4Kn(n + 1) e−ε2
.

By the constraints that connect n and δ, this inequality holds for any pair (n, ε)
that satisfy

n ≥ max(N ′
2 log2(δ−1

n), N ′
2
2 log3(δ−1

n)/D2
3) = max(N ′

2ε
4, N ′

2
2
ε6/D2

3),

that is, for any (n, ε) such that

ε ≤ min((n/N ′
2)

1/4, (nD2
3/N

′
2
2)1/6).

Also, since Z ≤ n1/2/D3 is always true, P (Z > ε) = 0 holds for ε ≥ n1/2/D3.
We need the following technical lemma, a variant of which can be found, e.g., as
Exercise 12.1 in [4]:

298 A. Antos, V. Grover, and C. Szepesvári

Lemma 8. If P (Z > ε) ≤ C exp(−cε2) for any ε ≤ a, a > 0, and P (Z > ε) = 0
for any ε ≥ b (≥ a), then

E [Z] ≤
√

(1 + logC)/c + Cb2e−ca2 . (14)
Due to the lack of space the proof is omitted.
Applying Lemma 8 with a = min((n/N ′

2)
1/4, (nD2

3/N
′
2
2)1/6), and b = n1/2/D3,

C = 4Kn(n + 1), c = 1,

E [Z] ≤
√

1 + log(4Kn(n + 1)) + 4Kn2(n + 1)e−min((n/N ′
2)1/2,(nD2

3/N ′
2
2)1/3)/D2

3.

Equation (13) then follows by straightforward algebra.

In order to develop a bound on the loss Ln,k we need Wald’s (second) identity:

Lemma 9 (Wald’s Identity, Theorem 13.2.14 of [1]). Let {Ft}t be a fil-
tration and let Yt be an Ft-adapted sequence of i.i.d. random variables. As-
sume that Ft and σ({ Ys : s ≥ t + 1 }) are independent and T is a stopping time
w.r.t. Ft with a finite expected value: E [T] < +∞. Consider the partial sums
Sn = Y1 + . . . + Yn, n ≥ 1. If E

[
Y 2

1

]
< +∞ then

E
[
(ST − TE [Y1])2

]
= Var [Y1] E [T] . (15)

The following theorem is the main result of the paper:

Theorem 3. Fix k, n ≥ N2, where N2 is as in Theorem 1. Then

Ln ≤ L∗
n + Õ(n−3/2).

Proof. Let Skn =
∑n

t=1 Xkt, L̂kn = (Sk,Tkn
− Tknµk)/Tkn, G′(n, δ) = (K −

1)max(N2, 1 + G(n, δ)) and

G′′(n) = D3

√
n(1 + log(4Kn(n + 1))) + 2.

Note that by Theorem 1,

P (Tkn ≤ nλk −G′(n, δ)) ≤ P (n, δ) � I {n < N2 } + I {n ≥ N2 } δ (16)

holds for any n ≥ 1 and 0 < δ ≤ 1. Then, for any 0 < δ ≤ 1,

Lkn = E

[
L̂2

kn

]
= E

[
L̂2

knI {Tkn > nλk −G′(n, δ) }
]

+ E

[
L̂2

knI {Tkn ≤ nλk −G′(n, δ) }
]

≤
E
[
(Sk,Tkn

− Tknµk)2
]

(nλk −G′(n, δ))2
+ R2 P (Tkn ≤ nλk −G′(n, δ))

=
σ2

kE [Tkn]
(nλk −G′(n, δ))2

+ R2 P (Tkn ≤ nλk −G′(n, δ)) (by Lemma 9)

=
σ2

kE [Tkn]
(nλk −G′(n, δ))2

+ R2 P (n, δ) (by (16))

≤ σ2
k(nλk + G′′(n))

(nλk −G′(n, δ))2
+ R2 P (n, δ) (by 13)

=
σ2

k

nλk

1
(1 −G′(n, δ)/(nλk))2

+
σ2

kG
′′(n)

(nλk −G′(n, δ))2
+ R2 P (n, δ).

Active Learning in Multi-armed Bandits 299

Now choose δ = n−3/2. Then, for n sufficiently large, G′(n, n−3/2)/(nλk) ≤
1/2. Further, since N2 ≤ N ′

2 log(4K/δ), for n sufficiently large I {n < N2 } ≤
I
{
n < N ′

2 log(4Kn3/2)
}

= 0 and thus P (n, δ) = δ.
Therefore, for n sufficiently large, using 1/(1−x) ≤ 1+2x (|x| ≤ 1/2) we get,

Lkn ≤ σ2
k

nλk

(
1 + 2

G′(n, n−3/2)
nλk

)2

+
σ2

kG
′′(n)

(nλk −G′(n, n−3/2))2
+ R2 n−3/2,

which gives

Lkn ≤ σ2
k

nλk
+ Õ(n−3/2) =

Σ2

n
+ Õ(n−3/2) = L∗

n + Õ(n−3/2).

Taking the maximum with respect to k yields the desired result. �	

With a little extra work the case when for some options λk = 0 can also be
handled and we can get identical bounds. Due to the lack of space this is not
considered here.

4 Illustration

In addition to theory, empirical experiments show that our method indeed per-
forms better than the non-adaptive solution. Further, our experiments verified
that the allocation strategy found by our algorithm converges to the optimal
allocation strategy at the rate predicted by the theory.

Here we illustrate the behavior of these algorithms in a simple problem with
K = 2, with the random responses modeled as Bernoulli random variables for
each of the options. In order to estimate the expected squared loss between the
true mean and the estimated mean we repeat the experiment 100,000 times,
then take the average. The error bars shown on the graphs show the standard
deviations of these averages. The algorithms compared are GAFS-MAX (the al-
gorithm studied here), GFSP-MAX (the algorithm described in the introduction
that works in phases) and “UNIF”, the uniform allocation rule. In order for an
adaptive algorithm to have any advantage the two options have to have different
variances. For this purpose we chose p1 = 0.8, p2 = 0.9 so that λ1 = 0.64 and
λ2 = 0.36.

Figure 1 shows the rescaled excess loss, n3/2(Ln−L∗
n), for the three algorithms.

We see that the rescaled excess losses of the adaptive algorithms stay bounded, as
predicted by the theory, while the rescaled loss of the uniform sampling strategy
grows as

√
n. It is remarkable that the limit of the rescaled loss seems to be a

small number, showing the efficiency of the algorithm. Note that this example
shows that the uniform allocation initially performs better than the adaptive
rules. This is because the adaptive algorithms need to get a good estimate of the
statistics before they can start exploiting.

300 A. Antos, V. Grover, and C. Szepesvári

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

R
es

ca
le

d
E

xc
es

s
Lo

ss

Number of Samples (x 1000)

Mean1: 0.8, Mean2: 0.9

GAFS-MAX
GFSP-MAX

UNIF

Fig. 1. The rescaled excess loss against the number of samples

-2

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

R
es

ca
le

d
A

llo
ca

tio
n

de
vi

at
io

n
fo

r
k=

1

Number of Samples (x 1000)

Mean1: 0.8, Mean2: 0.9

GAFS-MAX
GFSP-MAX

UNIF

Fig. 2. The rescaled allocation deviation for k = 1 against the number of samples

Figure 2 shows and the rescaled allocation ratio deviations,
√
n(Tkn/n− λk),

for k = 1. Again, as predicted by the theory, the rescaled deviations stay bounded
for the adaptive algorithms, while, due to mismatch of the allocation ratios,
grows as

√
n for the uniform sampling method. In this case the incremental

method (GFSP-MAX) performs better than the algorithm that works in phases
(GAFS-MAX), although their performance is quite similar.

5 Related Work

This work is closely related to active learning in a regression setting (e.g., [3]).
Interestingly, in the by now rather extensive active learning literature to the best
of our knowledge no one looked into the problem of learning in a situation where
the noise in the dependent variable varies in space, i.e., under heteroscedastic
noise. Although the rate of convergence of a method that pays attention to
heteroscedasticity will not be better than that of the one that does not, the

Active Learning in Multi-armed Bandits 301

finite-time performance can be improved greatly by such adaptive algorithms.
This has been demonstrated convincingly in the related problem of actively
deciding about the proportions of samples to be used in stratified sampling [5].
Interestingly, this application is very closely related to the problem studied here.
The only difference is that the loss is measured by taking the weighted sum of
the losses of the individual prediction errors with some fix set of weights that
sum to one. With obvious changes, the algorithm presented here can be modified
to work in this setting and the analysis carries through with almost no changes.
The algorithm studied in [5] is the phase-based algorithm. The results in this
paper are weak consistency results, i.e., no rate of convergence is derived. In
fact, the only condition the authors pose on the proportion of forced selections
is that this proportion should go to zero such that the total number of forced
selections for any option goes to infinity.

6 Conclusions and Future Work

When finite sample performance is important, one may exploit heteroscedasticity
to allocate more samples to parts of the input space where the variance is larger.
In this paper we designed an algorithm for such a situation and showed that the
excess loss of this algorithm compared with that of an optimal rule, that knows
the variances, decays as Õ(n−3/2). We conjecture that the optimal minimax rate
is in fact O(n−3/2). Our analysis can probably be improved. In particular, the
dependence of our constants on λ−1

min can probably be improved by a great extent.
Although in this paper we have not considered the full non-parametric regres-

sion problem, we plan to extend the algorithm and the analysis to such problems.
We also plan to apply the technique to stratified sampling.

Acknowledgements

This research was funded in part by the National Science and Engineering Re-
search Council (NSERC), iCore and the Alberta Ingenuity Fund and by the
Hungarian Academy of Sciences (Bolyai Fellowship for András Antos).

References

[1] Athreya, K.B., Lahiri, S.N.: Measure Theory and Probability Theory. Springer,
Heidelberg (2006)

[2] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite time analysis of the multiarmed
bandit problem. Machine Learning 47(2-3), 235–256 (2002)

[3] Castro, R., Willett, R., Nowak, R.D.: Faster rates in regression via active learning.
In: Advances in Neural Information Processing Systems 18 (NIPS-2005) (2005)

[4] Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
In: Applications of Mathematics: Stochastic Modelling and Applied Probability.
Springer, New York (1996)

302 A. Antos, V. Grover, and C. Szepesvári

[5] Etore, P., Jourdain, B.: Adaptive optimal allocation in stratified sampling methods
(2007), http://www.citebase.org/abstract?id=oai:arXiv.org:0711.4514

[6] Hoeffding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58, 13–30 (1963)

[7] Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics 6, 4–22 (1985)

http://www.citebase.org/abstract?id=oai:arXiv.org:0711.4514

Query Learning and Certificates in Lattices

M. Arias and J.L. Balcázar

LARCA Research Group, Departament LSI
Universitat Politècnica de Catalunya

{marias,balqui}@lsi.upc.edu

Abstract. We provide an abstract version, in terms of lattices, of the
Horn query learning algorithm of Angluin, Frazier, and Pitt. To validate
it, we develop a proof that is independent of the propositional Horn
logic structure. We also construct a certificate set for the class of lattices
that generalizes and improves an earlier certificate construction and that
relates very clearly with the new proof.

1 Introduction

In the area of Learning via Queries, the most successful protocol so far is via
Membership and Equivalence queries. Three major algorithms for this model
are the L* algorithm for learning regular sets in terms of deterministic finite
automata [1]; the algorithm that learns monotone DNF (closely related to its
corresponding PAC version by Valiant [20]); and a sophisticated evolution of
the latter which allows for learning Horn formulas [3] (the two variants of the
algorithm were named HORN and HORN1 in [3] but most researchers chose to
call it “AFP algorithm” after the initials of the authors’ names).

Each of these has had a number of interesting applications. In particular, the
AFP algorithm turned out to be crucial for developments in other areas such
as Knowledge Compilation [19], Intuitionistic Logic Programming [14] or even
Databases [18], and similar algorithms exist for learning from entailment [11] and
for learning certain description logics [12]. Related research questions, with an-
swers to a couple of them, are proposed in [6] and [17]; one of these contributions
is an alternative way of proving the correctness of the AFP algorithm.

Several studies proceeded to analyze combinatorial dimensions of learnability
problems (see the survey [4]); initially, they were ways of stating lower bounds
aiming at nonlearnability results [2]; it was later found that these dimensions
characterized polynomial query learnability, for specific protocols first ([9], [10],
[15], [16]) and in more generality later on ([4], [7], [8]). Specifically, for Mem-
bership and Equivalence protocols, the certificate size was shown to characterize
query complexity [16]. Certificates are, essentially, sets of labeled examples whose
correct classification requires a certain size of the representation mechanism un-
der study (precise definitions are given below).

The algorithm for learning deterministic finite automata proceeds by gather-
ing strings that lead to each of the states, plus additional strings showing how
each pair of states must be distinguished: in essence, they show how many states

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 303–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 M. Arias and J.L. Balcázar

are required, and can be seen as certificates. The same consideration applies to
monotone DNFs, where the minterms, plus the negative examples just below them
(or, in other formulations, their pairwise intersections), are both the crucial queries
and the certificates lower-bounding the number of necessary terms. Nevertheless,
the study of certificates for Horn formulas [5] was somewhat less tightly connected
with the learning algorithm, and in fact an interesting research problem is to close
the existing gap between the lower bound on the number of queries given by the
certificates and the upper bound attained by the currently known algorithms.

Our contributions here are as follows: first, we abstract both the AFP al-
gorithm and its proof into the more abstract problem of learning sublattices;
translating the algorithm is an easy task but our correctness proof has to be very
different from the original one (and is also much simpler than the proof given
in [6]). Second, we show that our proof makes explicit how the AFP algorithm
is indeed constructing certificates, and we take advantage of this explanation to
prove bounds on certificate size for learning sublattices. Third, we show that
the translation of our bounds back into the Horn clause setting gives a bound
applicable to the more demanding setting of strong proper learning [16], thus
strengthening the result of [5].

2 Preliminaries

We are learning finite lower-sub-semi-lattices. This means that we have a finite
lower-semi-lattice L: a partial order relation on a finite carrier set, where the
meet (or: greatest lower bound) of two elements is always well-defined. The
target to be identified is a subset of L that is closed under meet: therefore, the
subset is itself a lower semi-lattice. However, the connection between lattices and
lower semi-lattices is very strong: every lattice is a lower semi-lattice, of course,
but the converse direction only has to discuss the presence of a top element.
Therefore, for the rest of the paper, we assume, as a minor simplification, that
we are working in a lattice, learning a sublattice that includes the top element.

The particular case that guides us is as follows: the carrier lattice is the
hypercube {0, 1}n with bitwise-comparison as ordering, and bitwise-and as meet.
The target, as a set of bit-vectors, is thus a propositional theory; being closed
under bitwise-and is equivalent to requiring that it can be axiomatized by a
conjunction of Horn clauses. The learning algorithm for this case is given in [3].

For this particular case, the equivalence queries hypothesized by the algorithm
are thus Horn formulas, that we assume written in the form of implications: all
clauses with the same left hand side α are treated together in a single implica-
tion α → β 1. Here α and β are terms, and β stands in fact for α ∪ β; note that
terms are in bijective correspondence with bit-vectors, and an implication thus
1 Notice that this differs from an alternative existing interpretation [21] in which

α → β represents the clause (x1 ∨ . . . ∨ xk ∨ y1 ∨ . . . ∨ yk′), where α = {x1, . . . , xk}
and β = {y1, . . . , yk′}. Though identical in syntax, the semantics are different; in
particular, ours can only represent a conjunction of definite Horn clauses whereas
the other represents a general possibly non-Horn clause.

Query Learning and Certificates in Lattices 305

correspond to a pair of bit-vectors, one above the other. The implication α → β
can be seen as a conjunction of clauses with the same antecedent: we propose
to call these conjunctions para-clauses. A bit-vector x satisfies the implication,
denoted x |= α → β, if it either fails the antecedent or satisfies the consequent,
that is, x �|= α or x |= β respectively. The target can be seen as a conjunction of
implications or, alternatively, as the set of all bit-vectors that satisfy these impli-
cations: a propositional theory. We call cost of the theory the minimum number
of implications needed to axiomatize it. The original Horn learning algorithm
is polynomial in the cost and in the number of propositional variables, which
bounds how many times one can step down along the boolean hypercube.

In the more general case, we learn sublattices. We describe a sublattice via a
sublattice basis (abbreviated from now on as subbasis): a set of pairs of elements
of the lattice, abstracting the notion of implications. Let x, x′ be elements of
the lattice L, with x ≤ x′: we say that x and x′ are a comparable pair, and write
always second the larger element. The elements y that respect the comparable
pair, denoted y |= (x, x′), are those for which the implication “if x ≤ y then
x′ ≤ y” holds, that is, either y is not above x, or is above x′. A subbasis, that
is, a set of pairs, then defines the subset of L consisting of the elements that
respect every pair. It turns out that:

Proposition 1. Given a set of comparable pairs (a subbasis), the set of all el-
ements that respect all of them is closed under meet; and every sublattice has a
subbasis, that is, a set of comparable pairs such that the sublattice is exactly the
set of elements that respect all of them.

Proof. To see that if two elements y, y′ respect a comparable pair (x, x′), then
their meet still respects it, note that if either of y or y′ is not above x the
meet is not above x either, and that if both are above x, both must be above
x′ to respect the pair, and so must be their meet, as greatest lower bound. To
construct a subbasis for an arbitrary sublattice, take every element that is not
in the sublattice and use it to construct a comparable pair, by pairing it to the
meet of all the elements above it in the sublattice. �	

The height of the lattice L is the length of the longest descending chain. The
cost of a sublattice of L is the minimum cardinality of a subbasis.

3 The Algorithm

The lattice L is assumed known, and a target sublattice L� is to be identified
via subbases. We assume throughout that the top of L belongs to the target,
and we denote it &. The learning algorithm is almost exactly the main one in
[3], except that it is formulated in lattice-theoretic terms. The correctness proof
in the next section is, however, purely lattice-theoretic and is very different from
the one in [3] (and is also different from, and much simpler than, the ones in [6],
although along similar lines).

For x ∈ L, we denote x� =
∧
{y ∈ L�

∣∣ x ≤ y}; since the target is a sublattice,
thus closed under meet, always x� ∈ L�, and x ≤ x�, with x = x� if and only

306 M. Arias and J.L. Balcázar

if x ∈ L�. It is easy to see that the ! operator is extensive (that is, x ≤ x�),
monotonic (if x ≤ y then x� ≤ y�) and idempotent (x�� = x�); that is, a closure
operator.

In the case of propositional theories and Horn formulas, x� has true all the
variables that can be inferred to be true from the variables true in x, using the
target Horn clauses as rules.

Examples for the learning algorithm are elements of L; they are positive or
negative according to their membership into the target. Everywhere in this sec-
tion, the inequality is the comparison according to L’s partial order, and the
meet operation is L’s too.

The algorithm maintains a set P of all the positive examples seen so far. The
algorithm maintains also a sequence N = (x1, . . . , xt) of negative examples. The
argument of an equivalence query is prepared from the list N = (x1, . . . , xt)
of negative examples combined with the set P of positive examples. The query
corresponds to the following intuitive bias: everything is assumed positive unless
some xi suggests otherwise, and everything that some xi suggests negative is as-
sumed negative unless some positive example suggests otherwise. This is exactly
the intuition in the hypothesis constructed by the AFP algorithm.

More precisely, the equivalence query is represented as a subbasis. For the set
of positive examples P , denote Px = {y ∈ P

∣∣ x ≤ y}. Observe, for later use,
that since P ⊆ L�, we have:∧

Px =
∧
{y ∈ P

∣∣ x ≤ y} ≥
∧
{y ∈ L�

∣∣ x ≤ y} = x�

The hypothesis to be queried, given the set P and the list N = (x1, . . . , xt),
will be denoted H(N,P). It is specified by the subbasis constructed as follows:
for each xi in N , add to the subbasis the pair (xi,

∧
Pxi). For the initial status

of an empty N , this is an empty basis, which is respected by the whole lattice
L; that will be the first equivalence query issued.

A positive counterexample is treated just by adding it to P . A negative coun-
terexample y is used to either refine some xi into a smaller negative example, or
to add xt+1 to the list. Specifically, let

i := min({j
∣∣ (xj ∧ y) /∈ L�and xj ∧ y < xj} ∪ {t + 1})

and then refine xi into x′
i = xi ∧ y, in case i ≤ t, or else make xt+1 = y,

subsequently increasing t. The value of i is found through membership queries
on all the xj ∧ y.

Putting all together, the algorithm, which is called here AFP-L since it is the
Lattice version of the algorithm by Angluin, Frazier, and Pitt [3], is:

Algorithm AFP-L:
N = empty list
P = {&}
t = 0
while EQ(H(N,P)) = (“no”, y):

if y �|= H(N,P):
add y to P

Query Learning and Certificates in Lattices 307

else: /* N = (x1, . . . , xt) */
use MQ to find the first i such that:

xi ∧ y is negative
xi ∧ y < xi, that is, xi �≤ y

if found, refine: replace xi by xi ∧ y in N
if not found: /* append y to the end of N */

t = t + 1
xt = y

4 The Correctness Proof

Like in usual query learning algorithms, in the presence of equivalence queries,
the algorithm only stops upon receiving a positive answer to an equivalence
query, so that termination implies correctness. We will prove termination of the
algorithm by showing that the number t of negative examples xi in use never
exceeds the cost of the target. First, we discuss separately the following easy
property:

Lemma 1. Let P be a set of positive examples, and let x be a negative example.
Consider the comparable pair (x,

∧
Px), and assume that y |= (x,

∧
Px) and that

x ≤ y. Then x� ≤ y.

Proof. Simply notice that, from the definition of y |= (x,
∧

Px), we get that
y ≥ x implies y ≥

∧
Px ≥ x�. �	

4.1 Invariant

We prove that the list N of negative examples maintains always a specific prop-
erty of existence of certain positive examples. Then we will explain that N ,
jointly with these positive examples, are precisely certificates for the target lat-
tice, with respect to its cost [16]: this will imply that the size t of the list of
negative examples will never exceed the cost (minimal size of a subbasis) of the
target.

The main result for the proof is therefore as follows:

Lemma 2. Along the running of the algorithm in the previous section, at the
point of issuing the equivalence query, for every xi and xj in N with i < j there
exists an element z ∈ L� such that xi ∧ xj ≤ z ≤ xj.

Here is where we depart from the proof of the AFP algorithm given in [6],
which stated a property similar to this lemma but much weaker, that had to be
complemented through complex case analysis and additional facts.

Proof. We need to establish the fact at the time of creating a new element of
N , that is, for each i ≤ t with respect to xt+1, and we need to argue that the
refinements that take place when no such new element is created maintain the

308 M. Arias and J.L. Balcázar

fact stated. Both are argued similarly. If a positive counterexample is received, no
element of N changes; thus we only need to consider a negative counterexample y.

First note the easiest case whereby xi gets refined into x′
i = xi∧y. This leaves

xj untouched, and brings down xi ∧ xj into x′
i ∧ xj ; the same value of z will do:

x′
i ∧ xj ≤ xi ∧ xj ≤ z ≤ xj .
Now consider the case in which xj is refined into x′

j = xj ∧ y. We provide a
positive example z′ for which xi ∧ y ≤ z′ ≤ y. Then, considering its meet with
the already existing z gives

xi ∧ x′
j = xi ∧ xj ∧ y ≤ z ∧ z′ ≤ xj ∧ y = x′

j

Moreover, both z and z′ being positive, and the target being closed under
meet, ensures that z ∧ z′ is positive.

To find z′, observe that xi came before but was not chosen for refinement;
either xi ∧ y is itself positive, and can be chosen for z′, or xi ≤ y, in which
case we use lemma 1: (xi,

∧
Pxi) is part of the query, and y was a negative

counterexample so it must satisfy the query, including that pair: y |= (xi,
∧

Pxi).
Lemma 1 tells us x�

i ≤ y, whence xi ∧ y ≤ xi ≤ x�
i ≤ y; and x�

i is of course
positive.

The case of creation of xt+1 = y is handled in the same way: the z′ obtained
fulfills the condition xi ∧ y ≤ z′ ≤ y which is what we need. �	

4.2 Termination

It remains to show how the lemma just proved guarantees that t is bounded
by the dimension of the target. Essentially, the proof says that the elements of
N , together with their corresponding values of z considered pairwise as per the
lemma, establish a lower bound on the cost of the target sublattice, exactly in
the same way as the combinatorial notion of certificates used for nonlearnability
proofs [16].

Lemma 3. Let B be a subbasis of the target. Consider two different negative
examples xi and xj. Each of them has a comparable pair in B that they do not
respect: but it cannot be the same pair.

Therefore, if the target has cost m, then it has a subbasis with m pairs, and the
number of examples xi will not exceed m.

Proof. Consider a pair (x, y) ∈ B such that xi �|= (x, y) and, likewise, xj �|= (x, y),
for i �= j. That is, x ≤ xi, and x ≤ xj , which implies that x ≤ xi ∧xj ≤ z for the
value z given by lemma 2; however, z is a positive example, and must respect
the pair (x, y). Then, from x ≤ z immediately follows y ≤ z ≤ xj , as given by
the same lemma, and therefore xj |= (x, y) actually. �	

4.3 Final Analysis

It is straightforward to implement in polynomial time the algorithm; the analysis
of the number of queries is also easy now: let h be the height of L, and let m

Query Learning and Certificates in Lattices 309

be the cost of the target. Each negative counterexample either increases N ,
which can happen at most m times, or refines some xi, which can happen at
most h times each, for a total of at most h × m negative counterexamples.
Likewise, each positive counterexample added to P must change at least one of
the comparable pairs in the query, by reducing

∧
Px, which again can happen

at most h times each: we just need to add a constant factor to h × m. Finally,
between counterexamples, at most m membership queries are asked.

Therefore, we can state:

Theorem 1. Let L be a lattice of height h, and let L� be any sublattice of L
including the top of L, and of cost m. Then the algorithm AFP-L learns L� in
polynomial time, with at most O(h×m2) queries.

5 Certificates

The certificate size [16, 5] q(m,n) of a given class of sublattices L≤m
n of cost

at most m and height n with respect to hypothesis expansions2 of cost at most
p(m,n) is the minimum cardinality of a set of elements such that for any given
sublattice f which is not in the class L≤p(m,n)

n , there is a set Qf of cardinality at
most q(m,n) such that no sublattice in the class L≤m

n is consistent with f over
Qf . In other words, f differs with every sublattice in L≤m

n on at least one element
in Qf . In a way, Qf is “rejecting” all the sublattices in L≤m

n and “certifying”
that f is not in L≤m

n .
Our construction is very similar to the one for Horn CNFs in [5], but improves

on it by constructing certificates for p(m,n) = m thus applying to the more
demanding strong proper learning model and generalizing it to the more abstract
setting of lattices used in this paper.

5.1 Useful Facts

Assume throughout this section that (α1, β1), . . . , (αk, βk) is a subbasis of mini-
mum cost of a lattice L� ⊆ L. Now, consider the subbasis (α1, β

�
1), . . . , (αk, β

�
k).

Clearly, this is a subbasis for L� as well: L� |= (αi, β
�
i) for each i = 1, . . . , k

and any example x respecting all of {(αi, βi)}i must respect all {(αi, β
�
i)}i as

well.

Remark 1. Without loss of generality we assume that the subbasis of minimum
cost used throughout the proof {(αi, βi)}i is such that β�

i = βi, that is, βi ∈ L�.
By the observations above, such subbasis always exists, represents L� exactly,
and is of minimum cost as well. It is also immediate to verify that, in this case,
β�

i = βi = α�
i .

2 The fact that hypotheses can have an expansion of cost at most p(m, n) means that
algorithms are allowed to present hypotheses of cost at most p(m, n). It is assumed
that m ≤ p(m, n).

310 M. Arias and J.L. Balcázar

For each i = 1, . . . , k, let L�
i be the sublattice described by the same comparable

pairs with the exception of (αi, βi). Note that L� ⊆ L�
i and, further, that the

inclusion has to be proper since, otherwise, the given subbasis would not be of
minimum cost. For each (αi, βi), define xi ∈ L as follows:

xi =
∧

{y ∈ L�
i

∣∣ αi ≤ y} (1)

The following series of lemmas is going to be useful for our main Theorem 2; in
several cases the essentials of the proofs are already in the literature.

Lemma 4. For all i, xi �|= (αi, βi); but xi |= (αj , βj) for every j �= i.

Proof. The proof generalizes from that of Lemma 10 in [5]. Clearly xi ≥ αi. If
xi |= (αi, βi), then all y ∈ L�

i with y ≥ αi fulfill y ≥ xi ≥ βi so that L�
i satisfies

(αi, βi), contradicting the strict inequality L�
i ⊂ L�. On the other hand, xi is

the meet of a number of elements in L�
i which is a sublattice, thus closed under

meet, and xi ∈ L�
i so that xi |= (αj , βj) for every j �= i. �	

Lemma 5. For all i = 1, . . . , k it holds that x�
i =

∧
{y ∈ L�

∣∣ αi ≤ y} = α�
i and

x�
i ∈ L�.

Proof. We prove αi ≤ xi ≤ α�; then, by monotonicity and idempotency, α� ≤
x�

i ≤ α�� = α�. The first inequality is from the definition of xi, whereas the
second one holds because α� is itself among the y’s whose meet is taken to
define xi. Also, L� being closed under meet implies that x�

i is positive. �	

Lemma 6. If xi ≤ xj , then x�
i ≤ xj.

Proof. Variants of this lemma have been stated in previous work in various
guises, e.g. [22]. Suppose that xi ≤ xj . Since xj ∈ L�

j , it must respect the pair
(αi, βi). Then, since αi ≤ xi ≤ xj then βi ≤ xj . It only remains to notice that
βi = β�

i = α�
i = x�

i by Remark 1 and Lemma 5 so that x�
i ≤ xj . �	

Lemma 7. xi ∧ xj /∈ L� iff xi ≤ xj or xj ≤ xi.

Proof. The direction from right to left is clear: if xi ≤ xj (or xj ≤ xi), then
xi ∧ xj = xi (or xi ∧ xj = xj). In either case, we know from Lemma 4 that
xi /∈ L� and xj /∈ L�.

For the other direction, assume that xi∧xj /∈ L�. The comparable pairs (α, β)
of L� that are neither (αi, βi) nor (αj , βj) are satisfied by xi ∧ xj , since L� is
closed under meet and Lemma 4 guarantees that both xi and xj respect (α, β).
Therefore, it must be that either xi ∧xj �|= (αi, βi) or xi ∧xj �|= (αj , βj). Assume
w.l.o.g. that xi ∧ xj �|= (αi, βi). This implies that αi ≤ xi ∧ xj so that αi ≤ xj .
Since xj respects (αi, βi), it must hold that βi ≤ xj . Moreover, it always holds
that xi ≤ x�

i . Putting these two together and using the fact that x�
i = βi (see

Remark 1 and Lemma 5), we get xi ≤ xj as required. �	

Query Learning and Certificates in Lattices 311

5.2 The Certificate Set

Theorem 2. Sublattices have polynomial size certificates with

q(m,n) =
(
m + 1

2

)
+ m + 1 .

Proof. Fix n,m > 0. Let L� be a lattice of height n that is not representable
by a subbasis of cost m. First, we construct a certificate set Q of cardinality
at most

(
m+1

2

)
+ 2m + 2 for every such L�; we will see later that we can re-

move some elements from Q and apply a finer count to obtain the bound in the
statement.

We are given a minimal subbasis (α1, β1), . . . , (αk, βk) where k ≥ m+1. Let xi

be defined as in Equation (1). Now, define the certificate set Q = Q−∪Q+∪Q∧,
where Q− = {xi}i,Q+ = {x�

i }i, and Q∧ = {xi ∧ xj}i<j , where 1 ≤ i, j ≤ k.We
prove that Q is indeed a certificate set.

Take any sublattice L′ of cost at most m. By way of contradiction, assume that
L′ is consistent with L� over all the elements in Q. Lemmas 4 and 5 guarantee
that xi �|= L′ but x�

i |= L′ for all 1 ≤ i ≤ m + 1. There must be one particular
comparable pair (α, β) in L′ violated by both xi and xj for some i, j s.t. 1 ≤
i < j ≤ m + 1. Clearly xi ∧ xj �|= (α, β); therefore xi ∧ xj �|= L′. Furthermore,
α ≤ xi ≤ x�

i and thus β ≤ x�
i , otherwise we would have that x�

i �|= (α, β).
If xi and xj are incomparable, then Lemma 7 guarantees that xi ∧ xj |= L�,

thus L′ and L� differ on xi ∧ xj ∈ Q∧. If xi ≤ xj , then by Lemma 6 and our
observation above we obtain that β ≤ x�

i ≤ xj and thus xj respects (α, β), which
contradicts xj �|= (α, β). The case where xj ≤ xi is analogous.

We conclude that Q is a certificate set of cardinality at most q(m,n) =
(
m+1

2

)
+

2m+2. Notice however that the proof above only uses x�
i when there is a xj s.t.

xi ≤ xj . Moreover, in this case, it is clear that xi ∧ xj = xi so we do not need
to count it in Q∧. Therefore it is sufficient to include in Q+ only those x�

i such
that xi ≤ xj for some i < j ≤ k. The resulting set Q is also a certificate and has
the desired cardinality, which concludes our proof. �	
To apply this theorem in the Horn formulas, we need to discuss also the case of
a set of propositional models that does not allow for Horn axiomatization: but,
in such a case, it is not closed under meet; then there must exist 3 examples
x, y, x∧ y such that x, y ∈ L� but x∧ y �∈ L�. Therefore the certificate set Q can
be constructed as Q = {x, y, x∧y} and |Q| ≤ 3. Clearly, no lattice, closed under
meet, can be consistent over these three examples.

The certificates of [5] for Horn CNF use p(m,n) = m(n+1). In contrast, here
we only require that p(m,n) = m thus applying to the more stringent model
of strong proper learning [16]. On the other hand, in [5] m counts the number
of clauses whereas here m is the number of comparable pairs, which translates
to using para-clauses or implications in the Horn logic setting. Notice that the
size of a Horn expression in terms of para-clauses is at most its size in clauses.
The authors feel that the right thing to count in the case of Horn expressions
is the number of para-clauses, especially in the context of analyzing the AFP
algorithm that learns using the para-clause representation.

312 M. Arias and J.L. Balcázar

Notice also that this upper bound matches exactly the lower bound from [5]
in the case that m < n. If m > n, there is still a gap between the lower bound
of Ω(mn) in [5] and our upper bound of O(m2).

6 Certificates and the Learning Algorithm

We are going to illustrate the link between our certificate construction and the
learning algorithm with an example where the lattice to be learned is a Horn
formula H�. The example is taken from [13], where a canonical representation
for definite Horn theories is introduced. The propositional variables are going to
be a, b, c, d, e, f (and so the height of the lattice is 6). Suppose that our target
concept is

H� = {e → d, bc → d, bd → c, cd → b, ad → bce, ce → ab}.

First let us compute the examples x1, . . . , x6 from Lemma 4, and their closure
x�

1, . . . , x
�
6.

i αi → βi αi → β�
i xi x�

i

1 e → d e → ed 00001 00011
2 bc → d bc → bcd 01100 01110
3 bd → c bd → bcd 01010 01110
4 cd → b cd → bcd 00110 01110
5 ad → bce ad → abcde 10010 11111
6 ce → ab ce → abcde 01111 11111

We can compute xi and x�
i by setting to one the bits corresponding to the

antecedent of para-clause 1 and then doing forward chaining exhaustively with
all the other clauses to obtain xi, and with all the clauses to obtain x�

i . It is worth
noting that for x1, .., x5 the forward chaining is not needed since no antecedents
of the other clauses are satisfied. However, when computing x6 we start with the
assignment 00101 but need to set to 1 the bits bd since the clauses 1 and 4 are
triggered in the deduction process.

Notice also that the comparable pairs corresponding to a minimal subbasis of
this concept are (xi, x

�
i) for i = 1, . . . , 6.

In our example simulation, we are going to feed

x1, x
�
1, x2, x

�
2, x3, x4, x5, x6

as counterexamples. From the simulation it will become clear why we do not
need to present some of the positive x�

i .
Let t = 11111 be the top assignment. We assume that we are dealing with

definite clauses, so t is always positive. The following table captures the internal
state of the algorithm and the dynamics of the simulation:

Query Learning and Certificates in Lattices 313

N P EQ(H(N,P)) MQs issued

1 () {t} x1 = 00001

2 (x1) {t} x�
1 = 00011

3 (x1) {t, x�
1} x2 = 01100 x1 ∧ x2 = 00000, +

4 (x1, x2) {t, x�
1} x�

2 = 01110

5 (x1, x2) {t, x�
1, x

�
2} x3 = 01010 x1 ∧ x3 = 00000, +

x2 ∧ x3 = 01000, +

6 (x1, x2, x3) {t, x�
1, x

�
2} x4 = 00110 x1 ∧ x4 = 00000, +

x2 ∧ x4 = 00100, +
x3 ∧ x4 = 00010, +

7 (x1, x2, x3, x4) {t, x�
1, x

�
2} x5 = 10010 x1 ∧ x5 = 00000, +

x2 ∧ x5 = 00000, +
x3 ∧ x5 = 00010, +
x4 ∧ x5 = 00010, +

8 (x1, x2, x3, x4, x5) {t, x�
1, x

�
2} x6 = 01111 x5 ∧ x6 = 00010, +

9 (x1, x2, x3, x4, x5, x6) {t, x�
1, x

�
2} Y es

The table is to be read as follows: first P = {11111} and N is empty. The first
counterexample received by the algorithm is x1 = 00001, it is negative and so it
is added to N . Clearly x1 was a negative counterexample since initially the hy-
pothesis corresponds to the concept that classifies every example as positive. The
next counterexample is x�

1 = 00011, which is indeed a positive counterexample
since H((00001), {11111}) classifies this example as positive. After adding this
positive counterexample to P , the algorithm has discovered exactly the first para-
clause and will include in its hypothesis the correct comparable pair (x1, x

�
1). The

next counterexample is x2 which is indeed a counterexample since it satisfies the
comparable pair (Lemma 4) but falsifies the target concept. Since x1 �≤ x2, the
algorithm needs to check that their intersection x1 ∧x2 = 00000 is not negative,
which indeed is not. So x2 is appended to N .

It is worth noticing that all membership queries are responded with an affir-
mative answer because we only ask when xi ∧ xj �≤ xi, for i < j (Lemma 7),
so negative counterexamples are always appended to N . For example, when re-
ceiving x6 as counterexample, we do not need to check the intersections xi ∧ x6

for i = 1, . . . , 4 because we have that xi ≤ x6; only x5 ∧ x6 is checked. Also, we
do not need to present positive examples x�

3, x
�
4, x

�
5, x

�
6 because they are already

included in P .
In general, one can always do such a simulation with any hidden target sub-

lattice L�. Assume that L� is represented by a minimal subbasis of cost k and
x1, . . . , xk are the examples satisfying Lemma 4. Without loss of generality, as-
sume that the examples follow a particular order: xi appears before xj if xi ≤ xj .
Notice that this set of preferences induce a DAG among the xi (no cycles) and
therefore such an ordering is always possible. Notice that {(xi, x

�
i) | 1 ≤ i ≤ l} is

also a minimal basis for L�.
The counterexamples are going to be the a subsequence of:

x1, x
�
1, x2, x

�
2, . . . , xk, x

�
k.

314 M. Arias and J.L. Balcázar

The positives x�
i are presented only if they are not already in P , namely, if x�

i

is not the top element and x�
i′ �= x�

i for all i′ < i.
So, after presenting counterexamples xl and x�

l (if not in P already), we are
guaranteed that N = (x1, . . . , xl) and therefore all comparable pairs (xi, x

�
i) up

to l are exactly discovered. When the last pair of negative and positive coun-
terexamples is issued (if the positive one is needed), the equivalence query will be
done with the exact same hypothesis as the target concept, so that the simulation
will terminate in success.

Clearly, the elements in N and P are exactly those of Q− and Q+ of our
certificate construction, and the membership queries represent the positive ones
in Q∧.

Notice also that the order in which we try to refine the elements of N is
irrelevant, since with this particular sequence of examples we never refine any
existing counterexample in N . In general, this is obviously not the case, and
keeping the elements in N in order is important. More particularly, the order is
important for pairs of elements ni′ , nj′ in N that are violating pairs of L� with
corresponding xi and xj s.t. xi ≤ nj′ .

Certificates and the Invariant of Section 4.1. Lemma 2 states the follow-
ing: for every xi and xj in N with i < j there exists an element z ∈ L� such
that xi ∧ xj ≤ z ≤ xj . Let us analyze what the z witnessing the Lemma are.
For those pairs that satisfy xi ≤ xj , the witnessing z is x�

i . Lemma 6 guarantees
that xi ∧ xj = xi ≤ x�

i ≤ xj . If xi and xj are incomparable, then by Lemma 7
xi ∧ xj is going to be positive and thus z is xi ∧ xj itself, and trivially we get:
xi∧xj ≤ xi∧xj ≤ xj . Notice that, again, the xi, x�

i , and xi∧xj used in Lemma 2
constitute precisely our certificates.

Acknowledgements. For many related discussions, in person or remote, the
authors are particularly indebted to Jaume Baixeries, Montserrat Hermo, and
Josefina Sierra.

References

[1] Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75, 87–106 (1987)

[2] Angluin, D.: Negative Results for Equivalence Queries. Machine Learning 5, 121–
150 (1990)

[3] Angluin, D., Frazier, M., Pitt, L.: Learning Conjunctions of Horn Clauses. Ma-
chine Learning 9, 147–164 (1992)

[4] Angluin, D.: Queries revisited. Theor. Comput. Sci. 313, 175–194 (2004)
[5] Arias, M., Feigelson, A., Khardon, R., Servedio, R.: Polynomial Certificates for

Propositional Classes. Information and Computation 204, 816–834 (2006)
[6] Balcázar, J.L.: Query learning of Horn formulas revisited. In: Computability in

Europe Conference, Amsterdam (2005)
[7] Balcázar, J.L., Castro, J., Guijarro, D.: A New Abstract Combinatorial Dimension

for Exact Learning via Queries. J. Comput. Syst. Sci. 64, 2–21 (2002)

Query Learning and Certificates in Lattices 315

[8] Balcázar, J.L., Castro, J., Guijarro, D., Köbler, J., Lindner, W.: A general dimen-
sion for query learning. J. Comput. Syst. Sci. 73, 924–940 (2007)

[9] Balcázar, J.L., Castro, J., Guijarro, D., Simon, H.-U.: The consistency dimension
and distribution-dependent learning from queries. Theor. Comput. Sci. 288, 197–
215 (2002)

[10] Bshouty, N.H., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Oracles and
Queries That Are Sufficient for Exact Learning. J. Comput. Syst. Sci. 52, 421–433
(1996)

[11] Frazier, M., Pitt, L.: Learning From Entailment: An Application to Propositional
Horn Sentences. In: Int. Conference Machine Learning 1993, pp. 120–127 (1993)

[12] Frazier, M., Pitt, L.: CLASSIC Learning. Machine Learning 25, 151–193 (1996)
[13] Guiges, J.L., Duqenne, V.: Familles minimales d’implications informatives resul-

tants d’un tableau de donnees binaires. Math. Sci. Hum. 95, 5–18 (1986)
[14] Gaintzarain, J., Hermo, M., Navarro, M.: On Learning Conjunctions of Horn⊃

clauses. In: Computability in Europe Conference, Amsterdam (2005)
[15] Hegedűs, T.: On generalized teaching dimensions and the query complexity of

learning. In: Proceedings of the Conference on Computational Learning Theory,
pp. 108–117. ACM Press, New York (1995)

[16] Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., Wilkins, D.: How Many
Queries Are Needed to Learn? Journal of the ACM 43, 840–862 (1996)

[17] Hermo, M., Lav́ın, V.: Negative Results on Learning Dependencies with Queries.
In: Proceedings on Seventh International Symposium on Artificial Intelligence and
Mathematics (2002)

[18] Kivinen, J., Mannila, H.: Approximate Inference of Functional Dependencies from
Relations. Theoretical Computer Science 149, 129–149 (1995)

[19] Selman, B., Kautz, H.: Knowledge Compilation and Theory Approximation. Jour-
nal of the ACM 43, 193–224 (1996)

[20] Valiant, L.: A Theory of the Learnable. Communications of the ACM 27, 1134–
1142 (1984)

[21] Wang, H.: Toward mechanical mathematics. IBM Journal for Research and De-
velopment 4, 2–22 (1960); In: Wang, H.: A survey of mathematical logic, Peking
and Amsterdam. Science Press and North Holland, pp. 224-268 (1963)

[22] Wild, M.: A theory of finite closure spaces based on implications. Advances in
Mathematics 108, 118–139 (1994)

Clustering with Interactive Feedback

Maria-Florina Balcan and Avrim Blum

Carnegie Mellon University
Pittsburgh, PA 15213-3891

{ninamf,avrim}@cs.cmu.edu

Abstract. In this paper, we initiate a theoretical study of the problem
of clustering data under interactive feedback. We introduce a query-based
model in which users can provide feedback to a clustering algorithm in
a natural way via split and merge requests. We then analyze the “clus-
terability” of different concept classes in this framework — the ability
to cluster correctly with a bounded number of requests under only the
assumption that each cluster can be described by a concept in the class
— and provide efficient algorithms as well as information-theoretic upper
and lower bounds.

1 Introduction

Clustering is often a highly under-specified problem: given a set of data items,
there may be many different possible clusterings a user might be interested in.
For instance, given a set of documents or news articles, should all those about
sports go into a single cluster or should there be different clusters for football,
baseball, hockey and so on? Should articles on salaries paid to sports figures be
classified under sports or under business? Or perhaps, completely orthogonally,
the user wants articles clustered by length or by writing style and not by topic.
Most theoretical work “wishes away” this under-specification by making strong
distributional assumptions, such as the data distribution being a mixture of
Gaussians with each Gaussian as one of the clusters (e.g., [9, 3]). In this work,
we instead embrace the idea that a given set of data might have multiple plausible
clusterings, and consider the problem of clustering under feedback. That is, we
imagine users are willing to help a clustering algorithm arrive at their own desired
answer with a small amount of additional prodding, and ask what kinds of
algorithms can take advantage of such feedback and under what conditions can
they succeed. In this paper, we consider the problem of clustering under a quite
natural type of feedback in the form of split and merge requests. Specifically,
given a proposed clustering of the dataset, the user responds with either:

Split: The user identifies a cluster c in the algorithm’s clustering that contains
points from multiple target clusters (and therefore should be split), or

Merge: The user identifies two clusters c, c′ in the algorithm’s clustering that
are both subsets of the same target cluster and therefore should be merged.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 316–328, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Clustering with Interactive Feedback 317

Or, if neither of these applies, the user responds that the algorithm’s cluster-
ing is correct. Thus, this model is similar to the standard model of learning
with equivalence queries [10], except that rather than return a misclassified data
point, the user instead responds with the more vague request that, say, some
cluster should be split (but without saying how that split should be done, or
where in that cluster a mistake was made). We then show, perhaps surprisingly,
that a number of interesting positive results can be had in this model under
only the assumption that each cluster in the target is a member of some given
concept class C, without any distributional assumptions on the data. In con-
trast, as mentioned above, most work on clustering has focused on generative
models, such as mixtures of Gaussian or logconcave distributions, in which the
underlying data distribution is effectively committing to only a single answer [1,
8, 7, 9, 14, 12].

Our model can be illustrated by the following simple example. Suppose our
given dataset S consists of m points on the real line. We are told that each
cluster is an interval, and let us say for simplicity of discussion we also are told
there are only k ≤ 2 clusters. In this case we could begin by proposing a single
cluster with all the points and proposing it to the user. If we are incorrect, the
user will respond with a split request, in which case we split the cluster into
two intervals of m/2 points each and present the result to the user again. In
general, if the user asks us to split a cluster, we partition it exactly in half (by
cardinality), and if the user asks us to merge two clusters, we merge them. Since
at most one of the algorithm’s intervals can contain points from both of the
user’s intervals, and since each split request causes the number of points in the
offending interval to drop by a factor of 2, the total number of split requests is
at most lgm. Therefore, the total number of merge requests is at most lgm as
well, and so the overall number of requests at at most 2 lgm.

Note that clustering in this model with m requests is trivial for any concept
class C: just begin with each point in its own cluster and merge as requested. So,
our goal will be to develop algorithms whose query complexity is logarithmic in
m and polynomial in parameters such as log |C| and (ideally) k. Note also that
if we strengthened the model to allow the algorithm to specify which cluster
the user should focus on, then we could simulate membership queries [2, 11];1

indeed, one of the key difficulties in our model will be designing algorithms that
can make progress no matter which clusters are asked to be split or merged.

The main results we show in this model are as follows (here, m is the total
number of data points and k is the number of clusters in the target):

1. For the case of points on the line and the class of intervals, we give a simple
algorithm that requires only O(k logm) requests to cluster correctly.

1 Suppose inductively we have determined points x1, . . . , xk′ that are all known to be
in different clusters. Then, in this strengthened model, given a new point x we could
query the sequence of clusters {x, x1}, {x, x2}.... The first one of these that does not
produce a split request is the label of x (or if all produce a split request, we assign x
to label k′ + 1).

318 M.-F. Balcan and A. Blum

2. For the case of points in {0, 1}n and the class of conjunctions (each cluster
in the target is specified by a conjunction, and each data point satisfies
exactly one of these conjunctions) we give an efficient algorithm with query
complexity O(nk). Thus, this is polynomial when k is constant. For the
case of disjunctions, we give an efficient algorithm with query complexity
O(n), independent of k. We do not know if there is an efficient algorithm for
conjunctions with query complexity poly(n, k).

3. For a general class C, (each cluster is a member of C, so there are at most |C|k
possible clusterings overall), we give a generic but computationally inefficient
algorithm with query complexity O(k3 log |C|).

4. The generic algorithm mentioned above requires the algorithm, as it is
learning, to produce clusterings in which there are many more than k clus-
ters. If instead we restrict the algorithm to producing clusterings with only
poly(k, logm, log |C|) clusters (e.g., we allow the user a third option of re-
fusing to split or merge and instead just saying “way too many clusters”)
then even for simple classes no algorithm can succeed.

1.1 Related Work and Motivation

There has, of course, been substantial theoretical work on clustering, e.g., [3,
1, 5, 8, 7, 9, 14, 12]. Much of this work assumes a generative model in which
the distribution of data contains enough information at least in principle to
reconstruct the single correct answer. Our model is motivated by recent work [4]
that considers a relaxation of this setting in which the assumption is only that
the target clustering satisfies certain natural relations with respect to the data.
For instance, the target clustering might have the property that data points are
closer to points in their own cluster than to points in any other cluster. This
condition and others considered in [4] are not sufficient to uniquely identify the
target clustering directly, but they are sufficient as shown in [4] to produce a
tree (a hierarchical clustering) such that the desired clustering is some pruning
of this tree. The idea is then that a user, given such a tree, could begin at the
root and “click” on any node that is too broad to navigate down. This model
is similar to clustering with split requests only, since the tree can be viewed as
a pre-specification of what the algorithm would do on any given such request.
Unfortunately, this approach is not sufficient to handle even the case of intervals
described above, since for intervals we have multiple different possible clusterings
even for k = 2, and none of these are refinements of the others (so no single
such tree is possible). By considering an interactive model with both split and
merge requests, we are able to avoid this difficulty and analyze a broader class
of settings.

2 Notation and Definitions

We are given a set S of m points from some instance space X , and we assume
that a user has in mind some partition of S into k disjoint clusters c1, . . . , ck.

Clustering with Interactive Feedback 319

We call {c1, . . . , ck} the target clustering. Our goal will be to identify this target
clustering from a limited number of split and merge requests (so, in learning-
theoretic terms, we are considering a transductive problem). In particular, given
a proposed clustering {h1, h2, . . . , hk′} of S produced by the algorithm, if this
clustering is not correct then the user will respond with either split(hi) for some
hi that contains points from multiple target clusters, or merge(hi, hj) for two
clusters hi, hj that are both subsets of the same target cluster. Note that if none
of these conditions hold for any of hi then the proposed clustering must be correct
(to be clear, we say that {h1, . . . , hk} is correct if there is some permutation σ
on {1, . . . , k} such that hi = cσ(i) for all i). We think of the act of proposing a
clustering as making a “query” (much like the notion of an equivalence query in
learning, except the response is split or merge rather than a labeled example),
and our goal is to identify the target from a small number of queries. As in the
standard equivalence query model, we view the user as adversarial in the sense
that we want to identify the target with a small number amount of feedback no
matter how the user chooses which request to make if multiple split or merge
requests apply.

If C is a concept class, we say that the clustering {c1, . . . , ck} is in class C if
each ci ∈ C. We say that an algorithm clusters class C with Q queries if it is able
to identify the target with at most Q queries for any clustering in C. Our goal
will be to do this for a number of queries that is polynomial in k, log |C|, and
logm. As noted above, clustering with m queries is trivial: simply begin with m
clusters each containing a single point in S and then merge as requested.

Note that because we assume each point x ∈ S belongs to exactly one cluster
ci of the target, not every clustering in a given class C may be consistent with
a given dataset S and vice-versa. E.g., if C is the class of disjunctions and S
contains the point 10010, then the target could not, for instance, have x1 ∨ x2

as one cluster and x4 ∨ x5 as another. In fact, because of this issue, we will also
consider what we call the extended model, where we allow the final cluster ck to
equal S − (c1 ∪ . . .∪ ck−1), even if this cannot be written as a concept in C. So,
for k = 2, the set of possible clusterings of the given dataset S in the extended
model is exactly {(c ∩ S, c ∩ S) : c ∈ C}. All of our results can be made to hold
for the extended model as well.

We have not yet specified whether or not algorithms are allowed to produce
clusterings {h1, . . . , hk′} in which the clusters hi overlap. We find that in some
cases (e.g., Section 4) it is easier to design algorithms if we allow overlap, but
we are also able to remove this at the expense of somewhat worse bounds. In all
cases, however, we require the hypothesis clustering to cover all the points of S.

One final point: we have not yet placed any conditions on the number of
clusters k′ that the algorithm may use in its clusterings. Ideally, an algorithm
should use k′ = O(k) or perhaps k′ = poly(k, logm) clusters, since this quantity
in some sense determines the “cognitive load” on the user. In fact, for most of
our algorithms this is indeed the case. However, our generic algorithm (Section
5) may need substantially more clusters, and in Section 6 we show that in fact
this is necessary in our framework to achieve a good bound in general.

320 M.-F. Balcan and A. Blum

3 Intervals

To illustrate the general setting, in this section we present a simple algorithm
for the class C of intervals on the line, that requires at most k logm requests to
cluster correctly. Specifically, the algorithm is as follows.

Algorithm Cluster-Intervals:
– Begin with a single cluster containing all m points of S.
– On a split request to a cluster c, partition c into two clusters of equal

cardinality.
– On a merge request, merge the two clusters indicated.

Theorem 1. Algorithm Cluster-Intervals requires only O(k logm) requests to
cluster the class of intervals on the line.

Proof: Since the target consists of k intervals, we can identify k − 1 decision
boundaries a1, . . . , ak−1, where ai is an arbitrary position between the largest
point in S in target interval i and the smallest point in S in target interval i+1.
If ai lies inside some cluster c of the algorithm’s clustering, define size(ai) to
be the number of points of S in c; else define size(ai) = 0. (For concreteness,
if a hypothesis cluster c contains points p1 < p2 < . . . < pt ∈ S, we define
c = [p1, pt].) So, initially, we have size(ai) = m for all i.

Now, a split request can only be made to a cluster c that contains at least one
of the ai (otherwise c would contain points from only one target interval). Since
the result of a split is to replace c with two clusters of half as many points, this
means that each split request reduces size(ai) by a factor of 2 for at least one of
the decision boundaries ai. Furthermore, a merge request can only be made on
two clusters c, c′ such that c ∪ c′ does not contain any of the ai. Therefore, the
total number of split requests can be at most k logm total, which implies a total
of at most k logm merge requests as well. �	

Note that for intervals, the extended model with k clusters (where the last cluster
can be a “default bucket”) can be expressed using the standard model with 2k−1
clusters, so Theorem 1 applies to the extended model as well.

4 Conjunctions and Disjunctions

We now present an algorithm for clustering the class C of disjunctions over
{0, 1}n. That is, each target cluster can be described by some disjunction of
literals, and each point x ∈ S satisfies exactly one of the target disjunctions.
We show we can do this making only O(n) queries if we allow the clusters in
the hypothesis clusterings to overlap. We then show how this algorithm can
be adapted to remove this overlap (so that each proposed clustering is indeed a
partition of S), but at the expense of now making O(n2) queries. We finally show
how these can be used to yield algorithms for the class C of conjunctions that are
polynomial for constant k. Specifically, these algorithms make O(nk−1) queries

Clustering with Interactive Feedback 321

and O(n2(k−1)) queries respectively depending on whether or not disjointness is
required.

We begin with a simple O(n)-query algorithm for disjunctions, if we allow
hypothesis clusters to overlap. Without loss of generality we may assume the
target disjunctions are monotone (by the standard trick of introducing variables
yi = 1 − xi for every variable xi).

Algorithm Cluster-Disjunction:
– Begin with one cluster for each variable xi, containing all points x ∈ S

such that xi = 1. (Note that these may overlap).
– On a split request to a cluster xi, simply delete that cluster.
– On a merge request, merge the two clusters indicated.

Theorem 2. Algorithm Cluster-Disjunction requires at most n− k requests
to cluster the class of disjunctions over {0, 1}n.

Proof: First, notice that whenever two clusters are merged, they can never be
split, since by definition, the result of a merge operation is pure (contains points
from only one target cluster). Therefore, all split requests are made to clusters
corresponding to single variables. Second, note that if xi is a relevant variable
(belongs to one of the target disjunctions), then its associated cluster is pure
and so will not be split. Since each point x ∈ S must satisfy one of the target
disjunctions, this means we maintain the (crucial) invariant that our clustering
is legal: every point x ∈ S belongs to at least one cluster in the hypothesis.
Thus, we ensure that if our current hypothesis is incorrect, there must be a split
or merge request the user can make. Since each request results in reducing the
number of clusters by 1, this means that the total number of requests is at most
n− k. �	
Notice that the above algorithm produces hypothesis clusterings in which the
clusters are non-disjoint (because a given point x ∈ S may have several variables
set to 1). If we want the hypothesis clusters to be disjoint, a natural approach
to doing so is to just arbitrarily remove each example x from all but one of the
clusters i such that xi = 1. However, this may cause the result of a split request
to no longer be a legal clustering since some points x may no longer belong to
any clusters, and arbitrarily re-assigning them may break the invariant that the
clusters resulting from merge requests can never be split later. We can fix this
problem, but at a loss of using O(n2) requests, as follows.

Algorithm Disjoint-Disjunction:
– Begin with one cluster for each variable xi, containing all points x ∈ S

such that xi = 1 and xj = 0 for all j < i.
– On a split request to a cluster xi, delete that variable from every point in

S and restart the entire algorithm from the beginning (with n ← n− 1).
– On a merge request, merge the two clusters indicated.

Theorem 3. Algorithm Disjoint-Disjunction maintains a disjoint clustering
and requires at most O(n2) requests to cluster the class of disjunctions over
{0, 1}n.

322 M.-F. Balcan and A. Blum

Proof: The initialization step of the algorithm insures that clusters are disjoint
and furthermore include all points x ∈ S. As before, since the result of a merge
operation must contain points in only one target cluster, any split request must
be to a cluster corresponding to a single variable xi. By assumption that the
target clusters are disjunctions, any hypothesis clusters corresponding to rele-
vant variables are pure, and therefore any split request must be to an irrelevant
variable. So, deleting such variables maintains the invariant that each target
cluster can be expressed as a disjunction. Since each split request reduces the
total number of variables by 1, and there can be at most n − k merge requests
in a row, the total number of requests is O(n2). �	
We now show how the above algorithms can be used to cluster the class of
conjunctions, making O(nk−1) queries and O(n2(k−1)) queries respectively de-
pending on whether or not disjointness is required. In particular, let c1, c2, . . . , ck

denote the target clusters and assume without loss of generality that each con-
junction is monotone. Because each point x ∈ S lies in exactly one target
cluster, this means we can equivalently write cluster ci as c1 ∧ . . . ∧ ci−1 ∧
ci+1 ∧ . . . ∧ ck. Since each cj is a conjunction, this means we can write ci as
a (k − 1)-DNF, or equivalently as a disjunction over a space of nk−1 variables
yi1···ik−1 = xi1xi2 · · ·xik−1 . Thus, we can cluster by expanding to this space of
nk−1 variables and running the disjunction algorithms given above. The bounds
then follow immediately.

4.1 Conjunctions and Disjunctions in the Extended Model

In the extended model (where we allow ck to be a default cluster not necessarily
in C), Algorithm Cluster-Disjunction “almost” works. The only problem is
that deleting a cluster xi may cause some points to become completely uncov-
ered, because points in ck do not have any relevant variables set to 1. However,
since all points with no relevant variables must be in the same cluster ck, we
can fix this problem with a small modification to the algorithm. Specifically,
we just create an extra “default bucket” containing all the points not covered
by any of the other hypothesis clusters. This bucket will never be split (since
all such points must be in ck) so the analysis proceeds exactly as before. The
same modification and analysis applies to Algorithm Disjoint-Disjunction: in
particular, the default bucket will just contain all points that have no variables
set to 1. Thus we have the following theorem.

Theorem 4. The above modification to Algorithm Cluster-Disjunction re-
quires at most n− k + 1 requests to cluster the class of disjunctions over {0, 1}n

in the extended model. The modification to Algorithm Disjoint-Disjunction
maintains disjoint clusters and requires at most O(n2) requests to cluster dis-
junctions in the extended model.

For conjunctions, the difficulty with the reduction given in the non-extended
model is that the expression c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ ck for cluster ci is no
longer a (k− 1)-DNF, except for the case i = k. However, we can deal with this
problem with the following procedure.

Clustering with Interactive Feedback 323

Algorithm Extended-Cluster-Conjunctions:
– Begin with one cluster for each term yi1···ik−1 = xi1xi2 · · ·xik−1 , contain-

ing all points in S satisfying this term. Instantiate a default bucket with
all points not covered by any other cluster.

– On a split request to one of the y clusters, or a merge request to a y cluster
and a cluster in the default bucket, delete the y cluster. If any points
become uncovered, insert them into the default bucket and instantiate
(or restart from scratch) a (k − 1)-cluster conjunction algorithm for the
non-extended model on the points in that bucket.

– On a merge request to two y clusters, merge the two clusters indicated.
– On a split or merge request to two clusters within the default bucket, send

them to the conjunction-learning algorithm being run on the datapoints
in that bucket.

Theorem 5. Algorithm Extended-Cluster-Conjunctions requires at most
O(n2k−3) requests to cluster the class of conjunctions over {0, 1}n in the extended
model.

Proof: Because cluster ck can be written as a disjunction over the y variables,
the relevant y variables for ck will never receive split requests or be asked to be
merged with clusters within the default bucket. Therefore, the above algorithm
maintains the invariant that only points within c1∪· · ·∪ck−1 are ever placed into
the default bucket. This implies that at most O(nk−2) requests will be made to
clusters inside that bucket between any two consecutive restarts to the (k − 1)-
cluster conjunction-learning algorithm in that bucket. There can be at most nk−1

restarts, so overall the number of requests will be at most O(n2k−3). �	
One can also consider a disjoint-cluster version of Algorithm Extended-
Cluster-Conjunctions, by deleting y variables and restarting on split requests
as in Algorithm Disjoint-Disjunction, and by using a disjoint clustering algo-
rithm for the default bucket. In this case, we have at most O(n2(k−2)) requests
to the default bucket between restarts, and at most nk−1 restarts, resulting in
at most O(n3k−5) requests total.

5 A General Upper Bound

We now describe a generic but computationally inefficient algorithm that will
cluster any concept class C using O(k3 log |C|) queries. The high-level idea is
that ideally we would like to use some form of halving algorithm, except that
because feedback is in the form of split and merge requests rather than labeled
examples, it is not so clear how to do this directly. What we will do instead is
carefully construct a clustering such that any split or merge request removes at
least a 1/k2 fraction of the version space, leading to the bound given above. We
point out that the clustering constructed in each step may have many more than
k clusters in it. However, this is unavoidable: as we show in Section 6, it is not
possible to achieve a query complexity polynomial in k, log |C| and logm if we
require the algorithm to use only poly(k, log |C|, logm) clusters.

324 M.-F. Balcan and A. Blum

The generic algorithm is as follows. We begin with the simple “wrapper” and
then present the main “engine” of the algorithm.

Algorithm Generic-Clustering:
1. Let CV S denote the current version space: the set of clusterings consis-

tent with the results of all queries so far. So, initially we have |CV S | ≤
|C|k−1.

2. Run Algorithm Generate-Interesting-Clustering(CV S , S) described
below to produce a clustering that is guaranteed to have the property
that any split or merge request removes a substantial fraction of the
version space, and propose it to the user.

3. When a split or merge request is received, remove from CV S all cluster-
ings inconsistent with the request and go to (2).

We now give the main “engine” of the algorithm. Here we say that a cluster
b is consistent with a clustering {c1, . . . , ck} if b ⊆ ci for some i.

Algorithm Generate-Interesting-Clustering(CV S , S):
1. Initialize k buckets B1, . . . , Bk (initially all empty) and let α = 1/k2.

We will maintain the invariant that each Bi is consistent with at least a
1 − α fraction of the clusterings in CV S .
For each point x ∈ S (in an arbitrary order) do:
(a) Insert x into the bucket Bi of least index such that Bi ∪ {x} is

consistent with at least an α fraction of the clusterings in CV S . If
no such Bi exists, then halt with failure.

(b) If Bi is now consistent with less than a 1−α fraction of clusterings in
CV S , then output Bi as one of the hypothesis clusters, and replace
it with a new empty bucket, putting the new bucket at the end of
the list. That is, let Bi ← Bi+1, Bi+1 ← Bi+2, . . . , Bk−1 ← Bk and
call the new empty bucket Bk.

2. If we reach this point (no more points x ∈ S and all buckets Bi are
consistent with at least a 1 − α fraction of CV S), output the clusters
B1, B2, . . . , Bk, ignoring empty buckets.

Theorem 6. Algorithm Generic-Clustering succeeds in clustering any class
C using at most O(k3 log |C|) requests, and furthermore this holds in the extended
model as well.

Proof: We show that Algorithm Generate-Interesting-Clustering outputs a
clustering such that any split or merge request is guaranteed to remove at least a
1/k2 fraction of clusterings from the version space CV S . This will immediately
imply that the total number of queries of Algorithm Generic-Clustering is at
most O(k2 log |CV S |) = O(k3 log |C|) (in both standard and extended models)
as desired.

First, we argue that the algorithm will never halt with failure in Step 1(a). By
construction, we maintain the invariant that each bucket Bi is consistent with at
least a 1−α fraction of clusterings in CV S , since otherwise we would have already

Clustering with Interactive Feedback 325

outputted it in Step 1(b) (and by definition, an empty bucket is consistent with
the entire CV S). Therefore, at least a 1 − kα fraction of CV S is consistent with
all Bi simultaneously. In addition, for each pair i < j for which Bj is non-empty,
at most an α fraction of CV S can be consistent with Bi∪Bj (because each point
x ∈ Bj has the property that at most an α fraction of CV S is consistent with
Bi ∪ {x}, else it would have been inserted into Bi instead). Moreover, we only
care about the case that no buckets are empty since otherwise we could always
put x into the first empty bucket. Therefore at least a 1− kα−

(
k
2

)
α fraction of

CV S is consistent with each Bi and has all k buckets Bi as subsets of distinct
clusters. By definition of α, this is at least a kα fraction of CV S . Now, each of
these clusterings has x in one of its k clusters, and that cluster is associated with
a single bucket Bi. So, there must exist an index i such that at least a kα/k = α
fraction of CV S has x in a cluster consistent with Bi, and therefore Step 1(a)
succeeds.

We now argue that the clustering produced has the desired property that any
split or merge request removes at least an α fraction of the version space. First,
if the algorithm outputs a cluster in Step 1(b), then the fraction of clusterings
in CV S consistent with the cluster Bi produced is in the range [α, 1 − α], and
therefore any split or merge request involving it removes at least an α fraction of
the version space. So, all clusters produced in Step 1(b) have the desired property.
Next, we need to consider the clusters output in Step 2. For those, the situation
is even better: any split or merge request involving only these clusters removes
at least a 1−α fraction of the version space. In particular, for split requests this
is because each Bi is consistent with at least a 1 − α fraction of CV S , and for
merge requests this is because at most an α fraction of CV S is consistent with
Bi ∪ {x} for all x ∈ Bj, j > i. Thus, overall the clustering produced has the
property that any request removes at least an α = 1/k2 fraction of the version
space as desired. �	

6 Lower Bounds

We now show that if we restrict the algorithm to only producing clusterings
with poly(k, logm) clusters, then there exist classes for which no algorithm can
succeed. Thus, the use of what might potentially be a large number of small
clusters in the generic algorithm of Section 5 is in fact necessary.

We begin first with a much easier statement to prove.

Theorem 7. There exist classes C of size m such that, even for k = 2, any
algorithm that is restricted to producing k-clusterings will require Ω(m) queries.

Proof: Let S consist of m points on the circle, and let C be the class of intervals.
Assume the target clustering is a random partition of S into two contiguous
intervals of m/2 points. If the algorithm proposes a 2-clustering in which the
two clusters have different sizes, then the larger cluster must contain points
from both target clusters. So the user can issue a split request on that cluster
providing the algorithm with no information (the algorithm could simulate the

326 M.-F. Balcan and A. Blum

user itself). Alternatively, if the algorithm proposes two equal-size clusters, the
user can issue a split request on either cluster unless the algorithm is exactly
correct. Since the target was chosen to be a random partition, this implies any
algorithm must make Ω(m) queries in expectation. �	

We now present our main result of this section.

Theorem 8. There exist classes C of size O(m) such that, even for k = 2,
no algorithm that is restricted to producing clusterings with only poly(k, log m)
clusters can have even a 1/poly(k, logm) chance of success after poly(k, log m)
queries.

Proof: Consider the set S = {0, 1}n, so m = 2n, and let C be the class of parity
functions and their negations. (So, for some parity function c, one cluster will
consist of all points x ∈ {0, 1}n such that c(x) = 1 and the other will consist
of all points x ∈ {0, 1}n such that c(x) = −1.) We claim that for any query
made by the algorithm, if the target is determined by a random parity c, the
user will be able to issue a split request on the largest cluster with probability
exponentially close to 1. Thus, the algorithm receives no information (since it
could simulate such a user itself) and therefore exponentially many queries will
be needed to cluster correctly (exponential in k and logm).

Specifically, suppose the largest cluster c′ in the algorithm’s proposed cluster-
ing has size αm. Define the boolean function h(x) = 1 if x ∈ c′ and h(x) = −1
if x �∈ c′. The user will be able to issue a split request on c′ unless c′ ⊆ c or
c′ ⊆ ¬c; in the former case we have Pr[h(x) = c(x)] = 1/2 + α and in the latter
case we have Pr[h(x) = ¬c(x)] = 1/2 + α. Either of these cases imply that the
magnitude of correlation between h and c satisfies:

|Ex[h(x)c(x)]| = |Pr[h(x) = c(x)] − Pr[h(x) �= c(x)]|
= |1/2 + α− (1/2 − α)| = 2α,

or in Fourier notation, we have |〈h, c〉| = 2α. However, by Parseval’s identity [13],
we know that h can have correlation of magnitude 2α with at most 1/(2α)2

different parity functions. Thus, if c was chosen at random from among all 2n

parity functions, the probability that the algorithm’s largest cluster c′ truly is a
subset of one of the target clusters is at most 1/(4α22n). Since we assumed the
algorithm produced clusterings with only poly(k, logm) clusters, it must be the
case that α ≥ 1/poly(k, logm), and so the probability the user is not able to
issue a split request on the largest cluster is exponentially small in k and logm,
as desired. �	

7 Relation to Equivalence Query Model

In the standard model of learning with equivalence queries, any class C can be
learned using at most log |C| queries via the halving algorithm. However, some
classes can be learned with many fewer queries, such as the class of concepts

Clustering with Interactive Feedback 327

having at most one positive example which requires only one query to learn.
In contrast, we show here that in our framework, for any class C, for the case
k = 2 there is a lower bound of Ω(log |CV S |) on the number of queries needed
to cluster, where CV S is the initial version space. Thus, for the extended model,
this gives a lower bound of Ω(log |C|) on the number of queries needed to cluster.

Theorem 9. For any class C, for k = 2, any clustering algorithm must make
Ω(log |CV S |) queries in the worst case, where CV S is the initial version space.

Proof: Let {h1, h2, . . . , ht} be a clustering produced by the clustering algorithm.
We show there must exist a split or merge request that removes at most a 5/6
fraction of the version space.

First, suppose the algorithm’s clustering has only two clusters (t = 2). In that
case, every clustering in CV S except for (a) the trivial clustering that puts all
points into a single cluster or (b) a clustering identical to {h1, h2} must split
either h1 or h2 or both. Without loss of generality, say that a majority of those
|CV S | − 2 clusterings split h1. Thus, a split request on h1 must be consistent
with at least (|CV S | − 2)/2 clusterings in the version space.

Now, for the case t > 2, consider the first three clusters h1, h2, h3 in the
algorithm’s clustering. Since all clusterings in CV S have only two clusters, each
must either split one of the hi or else have two of the hi inside the same cluster.
Thus, for each clustering in CV S , at least one of the 6 possible split or merge
requests on {h1, h2, h3} must apply. Therefore there must exist some request
that is consistent with at least a 1/6 fraction of CV S as desired. �	

8 Conclusions

In this paper we have analyzed the problem of determining the correct clustering
of data from a bounded number of split and merge requests. We have provided ef-
ficient algorithms for several natural classes including disjunctions, conjunctions
(for bounded k), and intervals, as well as a generic O(k3 log |C|) upper bound
for clustering any given class C. We also provide lower bounds for algorithms
that use a bounded number of clusters and a separation result with respect to
the standard model of learning with equivalence queries.

This model brings up several interesting open questions. First, can one im-
prove the generic upper bound from O(k3 log |C|) to O(k log |C|), i.e., gain a
constant amount of information per query. Second, can one devise an efficient
algorithm for conjunctions whose query complexity is polynomial in both k and
n. Our generic algorithm implies this is possible information-theoretically but
we do not know any efficient procedure. Finally, a natural domain for cluster-
ing with split and merge requests is image segmentation. From this perspective,
it would be interesting to generalize the 1-dimensional results to 2 dimensions,
ideally to the case where each cluster is a region defined by a limited number s
of axis-parallel line segments as in the results on learning discretized geometric
concepts using equivalence queries of Bshouty et al. [6].

328 M.-F. Balcan and A. Blum

More broadly, it would be interesting to further explore clustering with other
natural forms of interactive feedback.

Acknowledgments. This work was supported in part by the National Science
Foundation under grant CCF-0514922, by an IBM Graduate Fellowship, and by
a Google Research Grant.

References

[1] Achlioptas, D., McSherry, F.: On spectral learning of mixtures of distributions.
In: Proceedings of the 18th Annual Conference on Learning Theory (2005)

[2] Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1998)
[3] Arora, S., Kannan, R.: Learning mixtures of arbitrary gaussians. In: Proceedings

of the 33rd ACM Symposium on Theory of Computing (2001)
[4] Balcan, M.-F., Blum, A., Vempala, S.: A Discriminative Framework for Clustering

via Similarity Functions. In: Proceedings of the 40th ACM Symposium on Theory
of Computing (2008)

[5] Brubaker, S.C., Vempala, S.: Isotropic PCA and affine-invariant clustering. In:
Proceedings of the 49th ACM Symposium on Foundations of Computer Science
(2008)

[6] Bshouty, N.H., Goldberg, P.W., Goldman, S.A., Mathias, H.D.: Exact learning of
discretized geometric concepts. SIAM J. Computing 28(2), 674–699 (1998)

[7] Dasgupta, A., Hopcroft, J., Kleinberg, J., Sandler, M.: On learning mixtures of
heavy-tailed distributions. In: 46th IEEE Symposium on Foundations of Com-
puter Science (2005)

[8] Dasgupta, A., Hopcroft, J.E., Kannan, R., Mitra, P.P.: Spectral clustering by
recursive partitioning. In: Proceedings of the 14th European Symposium on Al-
gorithms, pp. 256–267 (2006)

[9] Dasgupta, S.: Learning mixtures of gaussians. In: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science (1999)

[10] Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V.V., Wilkins, D.: How many
queries are needed to learn? In: Proceedings of the 27th ACM Symposium on
Theory of Computing (1995)

[11] Jackson, J.: An efficient membership-query algorithm for learning dnf with respect
to the uniform distribution. Journal of Computer and System Sciences 57(3), 414–
440 (1995)

[12] Kannan, R., Salmasian, H., Vempala, S.: The spectral method for general mixture
models. In: Proceedings of the 18th Annual Conference on Learning Theory (2005)

[13] Mansour, Y.: Learning boolean functions via the fourier transform. Theoretical
Advances in Neural Computation and Learning, 391–424 (1994)

[14] Vempala, S., Wang, G.: A spectral algorithm for learning mixture models. Journal
of Computer and System Sciences 68(2), 841–860 (2004)

Active Learning of Group-Structured

Environments

Gábor Bartók, Csaba Szepesvári�, and Sandra Zilles

University of Alberta, Department of Computing Science,
Edmonton, Alberta, Canada

{bartok,szepesva,zilles}@cs.ualberta.ca

Abstract. The question investigated in this paper is to what extent
an input representation influences the success of learning, in particu-
lar from the point of view of analyzing agents that can interact with
their environment. We investigate learning environments that have a
group structure. We introduce a learning model in different variants and
study under which circumstances group structures can be learned ef-
ficiently from experimenting with group generators (actions). Negative
results are presented, even without efficiency constraints, for rather gen-
eral classes of groups showing that even with group structure, learning
an environment from partial information is far from trivial. However,
positive results for special subclasses of Abelian groups turn out to be a
good starting point for the design of efficient learning algorithms based
on structured representations.

1 Introduction

The question investigated in this paper is to what extent an input representation
influences the success of learning, in particular from the point of view of analyzing
agents that can interact with their environment. For simplicity, we assume that
the agent has a finite number of actions, the execution of which results in a
change in the state of the environment. The goal of the agent is to learn to predict
the outcomes of its actions in terms of the changes of the environment’s state. Of
course, the agent has to have some inputs or sensations that reveal information
about the state of the environment. In the simplest case the sensations reveal
all the details of the state. Then the question is if the representation of the
sensations influences the speed of learning. Is it necessary to assume a good
representation, or can we design learning methods capable of efficiently learning
in a broad class of environments irrespective of the input representation? This is
a fundamental question in learning (and more broadly, in artificial intelligence).

In search problems for example, if the state is given with a factored (vecto-
rial) representation then memory-based heuristics can be used to create good
heuristics that lead to efficient planning methods (e.g., [4, 9, 10]). Further, with
a factored input representation predictive models can be learned efficiently in

� Csaba Szepesvári is on leave from MTA SZTAKI, Budapest, Hungary.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 329–343, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

330 G. Bartók, C. Szepesvári, and S. Zilles

some non-trivial classes of environments, such as when the environment can be
represented as a Bayes net described with bounded depth decision trees [16].

At first sight efficient learning given an arbitrary input representation seems
impossible. By efficient learning we mean learning well ahead of the time before
the agent has seen all the states. The conventional way to evaluate if an agent
has learnt its environment is to look at if the agent is able to predict its future
sensations given any (hypothetical) action sequence [13, 11]. This model leads to
an easy negative result: If the sensations of the agent are some arbitrary codes
(names) for the states then it is clearly impossible for the agent to disambiguate
between state names not encountered before.

Luckily, predicting the names of states is not necessary for an agent to be
successful. Take, e.g., a reinforcement learning agent whose primary interest is
to predict rewards and eventually gather them. By building an internal model of
the environment, such agents might be able to create plans for gathering rewards
in a successful way. One (admittedly contrived) example that shows why predict-
ing names is not necessary is as follows: Assume the agent has two actions and
a reward is achieved iff the two actions are taken in a certain combination. The
agent that discovers this action sequence can succeed without ever memorizing
any of the state names. (However, the observations now have an internal struc-
ture, i.e., the reward is separated from the state names.) A different example
is a nicely structured environment, e.g., when the agent has d actions and the
state can be represented with a vector over a finite set and the actions influence
mutually disjoint sets of the components of this vector. In this case the agent
that assumes “independence” of the actions unless some experience contradicts
this, can learn a representation that can be used to predict outcomes after O(d)
interactions, while the size of the state space is exponential in d.

1.1 The Approach of Learning Group-Structured Environments

Since learning without seeing all the states is impossible when the environment
lacks structure, a natural goal is to require the time needed for learning to scale
with how well-structured the environment is. We investigate this under the sim-
plifying assumption that the environments can be represented as (mathematical)
groups. This implies that these environments are deterministic and that for any
sequence of actions the length of the orbit generated with the resulting com-
posite action is independent of the starting state. Due to their strong structure,
these environments look ideal for initiating the study. Moreover, there are many
interesting environments which belong to this class, consider, e.g., permutation
games, such as Rubik’s cube [9], the Topspin Puzzle or the Pancake Puzzle [7].

We introduce a model for efficient learning of group-structured environments
by exploration, imposing a bound on the number of actions the agent can take
before converging to a correct conjecture about the target group environment.

Learnability results turn out to strongly depend on the underlying presenta-
tion and thus the set of generators given as input to the learner, both if efficiency
constraints are maintained and if they are dropped. However, the strength of the
negative results actually will show exactly what motivates our research, namely

Active Learning of Group-Structured Environments 331

that the success of efficient learning algorithms is affected by the choice of the
representation. Our results indicate that even group structure is not enough to
guarantee success—the choice of generators presented to the learner is also es-
sential. We study this for finitely generated and for finite groups, for Abelian
groups, and for the special case of dihedral groups. In particular the Abelian
groups have a structure that is more promising for efficient learning and we
show possible steps towards exploiting their structure.

1.2 Related Work
The closest to the present work is the work of Rivest and Schapire [13] who inves-
tigate the problem of inferring a finite automaton by interaction. (For extensions
to stochastic environments see [8, 11].) They assume that the agent’s sensations
come from a finite set, which might be different from the set of states. (In [13] the
observations are binary vectors, but this assumption can be lifted.) According to
the definition in [13] an environment is learned when the agent can predict future
sensations for an arbitrary sequence of actions given its current state. They give
a randomized algorithm that is capable of learning permutation automata (with
high probability) in time that is polynomial in the “diversity” associated with
the environment. The diversity is the number of equivalence classes of tests in
the environment. A test is a sequence of actions and sensations. The outcome of
a test in a given state is true or false depending on whether the test’s observa-
tions are sensed in the order specified in the test provided that the test’s actions
are executed, again, in the order specified in the test. Two tests are equivalent
if they give the same outcomes independently of the start state.

The diversity d of an environment is (tightly) bounded by log2(n) ≤ d ≤ 2n,
where n the number of states of the environment [13]. The diversity depends to
a large extent on how the sensations (i.e., the inputs) are chosen, underlining
again the importance of working with the right inputs.

Our framework corresponds to the case when the sensations have a one-to-one
correspondence with the states. Thus the diversity of the resulting environment
is n. As we are interested in learning with o (n) interactions, the present work
can be viewed as an attempt to improve upon the results of [13].

We are not aware of any research on our setting of group learning. Related
work concerning groups and learning has a focus completely different from that
of the framework we introduce, see, e.g., models of learning algebraic structures
from positive data [15]. Studies on black-box groups [17], [2] analyze objects dif-
ferent from those in our group environment setting. Related, but not focusing on
learning is, e.g., [5] that introduced a probabilistic algorithm to decide whether
an algebraic structure is an Abelian group and [?] that investigated how to derive
the irreducible decomposition of a given linear representation of a group.

2 Preliminaries

In this section we introduce the basic notions used throughout the paper. We
assume the reader to be familiar with a few basic group theoretic notions; those
used without any further explanation are taken from [14].

332 G. Bartók, C. Szepesvári, and S. Zilles

N denotes the set of all natural numbers, Z the set of all integers. Let G =
(SG , ◦G) be a group, where SG is the domain of G and ◦G the group operation.
We always use λG to denote the neutral element in G, but drop the subscript G in
λG , in SG , and in ◦G if the underlying group is clear from the context. If A ⊆ SG
is any subset of SG then by A∗ we denote the set {(a1, . . . , am) | m ∈ N} of
all finite sequences of elements in A, including the empty sequence. With every
sequence α = (a1, . . . , am) we associate a group element G(α) ∈ SG , namely

G(α) =

{
λG , if m = 0 ,

a1 ◦G (a2 ◦G (. . . ◦G (am−1 ◦G am) . . .)) , if m > 0 .

From now on we will omit the symbol for group operations, wherever it is clear
from the context, e.g., for two elements a, b ∈ S we write ab rather than a ◦G b.

The elements of a set A ⊆ SG are called generators of G if every element in S
can be written as a product of elements in A, i.e., if SG = {G(α) | α ∈ A∗}. A
relation in G is a sequence α ∈ S∗

G such that G(α1) = λG . A pair 〈A | R〉 is called
a presentation of G iff A is a set of generators for G and R is a set of relations
in G such that G = FA/(R), i.e., G is the factor group of the free group on
A and its smallest normal subgroup that contains R. For ease of presentation,
we usually omit set brackets when writing 〈A | R〉 explicitly. For instance, a
presentation for the (so-called) Klein group is 〈a, b | a2, b2, (ab)2〉 (rather than
〈{a, b} | {a2, b2, (ab)2}〉). A presentation 〈A | R〉 is finite if both A and R are
finite.

G is called (i) finitely generated if G has a finite set of generators; (ii) finitely
presented if G has a finite presentation; (iii) finite if SG is finite.

A representation of G over a vector space V is a homomorphism Φ : SG �→
GL (V), where GL (V) is the general linear group of V .

For any a ∈ SG , 〈a〉 denotes the cyclic subgroup generated by a. Ck denotes
the cyclic group of order k. A p-group is a finite group of order pk, where p is a
prime and k is a positive integer.

The order of an element g ∈ SG is the lowest positive integer k such that
gk = λG . We denote the order of g by σ(g).

For any subset H we write H ≤ G if H is a subgroup of G, and H � G if
H is a normal subgroup of G. If H1 = (SH1 , ◦G) and H2 = (SH2 , ◦G) are two
subgroups of G then we define SH1SH2 = {h1 ◦G h2 | h1 ∈ SH1 and h2 ∈ SH2}.
The automorphism group of G is referred to by Aut(G).

If G1 and G2 are two groups, then G1 × G2 denotes their direct product. Here
note again that for ease of presentation we identify groups with their domains.

Definition 1 (Semi-direct product: inner definition). Let G = (SG , ◦G)
be a group and N � G,H ≤ G such that SNSH = SG , SN ∩ SH = {λG}. Let
φ : SH �→ Aut (N) be the group homomorphism such that

∀n ∈ SN ∀h ∈ SH [φ(h)(n) = hnh−1] .

Then G is the semi-direct product of N and H with respect to φ, written G =
N �φ H.

Active Learning of Group-Structured Environments 333

3 A Model for Learning Group-Structured Environments

In this section we introduce our basic model of learning group-structured envi-
ronments, the underlying scenario of which is as follows:

An agent is exploring a (finite or infinite) state environment. There is a finite
set of actions that the agent can take in every state of the environment; taking
an action usually causes the state of the environment to change. Now assume
the agent can always observe the name of the state the environment is currently
in and thus can always recognize when it gets back to some previously visited
state. This allows the agent to find out relations between actions.

We assume the environment to be static and deterministic, i.e., there is one
function that determines for every state s and every action a the successor state
after taking action a in state s. Formally this can be defined as follows:

Definition 2 (Environment). An environment is a triple E = (S,A, T), where
S is a countable set, A is a finite set, and T : S ×A �→ S is a mapping.

The elements of S are called states; the elements of A are called actions. For
every s ∈ S and every a ∈ A we denote by a(s) the state T (s, a).

Fix an environment (S,A, T). We now extend T to action sequences. For this we
identify the set of action sequences with the free monoid (A∗, ◦) (where ◦ is the
concatenation over A∗). The empty action sequence, denoted by λ, is the iden-
tity element of this monoid. We extend the definition of T by T (s, a1 . . . am) =
am(. . . (a2(a1(s)) . . .) for all (a1 . . . am) ∈ A∗. We use (a1 . . . am)(s) as a short-
hand for T (s, a1 . . . am).

Definition 3 (Equivalence of action sequences). Let E = (S,A, T) be an
environment and α1, α2 ∈ A∗ be action sequences. Then α1 and α2 are equivalent
in E (denoted by α1 ≡E α2) iff α1 (s) = α2 (s) for all s ∈ S. Let SE denote the
corresponding set of equivalence classes over A∗.

The concatenation on A∗ induces an operator ◦ on SE , which we will call con-
catenation, too. The subscript E in ≡E and/or SE may be omitted when unam-
biguous.

We focus on scenarios in which the environment obeys a group structure.

Definition 4 (Group environment). Let E = (S,A, T) be an environment.
E is called a group environment if (SE , ◦) is a group. With a slight abuse of
notation we refer to (SE , ◦) also by E.

If E = (S,A, T) is a group environment then A is a set of generators for the
corresponding group E , i.e., we are always considering finitely generated groups.

We will analyze the learning problem of determining the structure of an un-
known group environment E = (S,A, T) by exploration. In particular, we assume
that the agent can take any action a ∈ A in any state s ∈ S. After taking action
a, the agent will observe the name of the state a(s). In every step the agent
outputs a hypothesis about the environment. The basic question we pose is: for
certain classes of group environments, can the agent—in a “reasonable” number
of steps—learn to solve the word problem for E = (SE , ◦)?

334 G. Bartók, C. Szepesvári, and S. Zilles

Definition 5 (Word problem). Let G be a group and A a set of generators
for G. The word problem for G over A is solvable if there is a recursive decision
procedure d : A∗ → {0, 1} such that for all w ∈ A∗

d(w) =

{
1 , if w ≡ λG ,

0 , if w �≡ λG .

Clearly, if the agent possesses d as defined above then he knows what action
sequences are equivalent. This is enough for the agent to construct a consistent
representation of the environment.

Consequently, we model the agent as a learning algorithm as follows:

Definition 6 (Learning algorithm). A learning algorithm is an algorithm L
that fulfills the following properties.

1. L takes as its initial input a finite set A of actions and the name of a state
s0 ∈ S, where E = (S,A, T) is an unknown group environment.

2. L operates in steps, starting in Step 0, where in Step n for n ∈ N either (i)
or (ii) holds.
(i) L sends some a ∈ A to an oracle and receives a(sn) as a reply. Then L

returns a recursive decision procedure Dn
1 and goes to Step n + 1 with

sn+1 = a(sn).
(ii) L stops and never goes to Step n + 1.

Note that the group corresponding to a group environment could be any finitely
generated group; so when defining learning models and making formal state-
ments about learning group environments, we assume a one-one correspondence
between finitely generated groups and group environments. Thus our learning
criterion is defined as follows, based on Gold’s [6] model of learning languages.

Definition 7 (Learning group environments). Let C be a class of groups
and P a set of presentations such that C = {G | G = 〈A | R〉 for some 〈A | R〉 ∈
P}. For every G ∈ C, let PG = {〈A | R〉 ∈ P | G = 〈A | R〉}.

We say that C is learnable (*) in the limit, (**) finitely, (***) efficiently with
respect to P if there is a polynomial q and a learning algorithm L that, for every
group G ∈ C, every presentation 〈A | R〉 ∈ PG , and every state s in the group
environment corresponding to G, the followings hold: If L is given (A, s) as an
input then there is a decision procedure D that solves the word problem for G
over A and there is an n0 ∈ N such that the output of L in Step n equals D and

(*) for all n ≥ n0 the output of L in Step n equals D.
(**) L stops in Step n + 1.

(***) for all n ≥ n0 the output of L in Step n equals D and n0 ≤ q(log |SG | +∑
a∈A σ(a)).

1 More precisely, L will return a program (on some suitable language) that represents
the recursive decision procedure.

Active Learning of Group-Structured Environments 335

In the third point,
∑

a∈A σ(a) appears in the upper bound because the learning
algorithms should be allowed to determine the orders of the actions. One could
think intuitively that

∑
a∈A σ(a) and log(|SG |) correlate polynomially, but in

the case of non-Abelian groups, |SG | can be arbitrarily large, while
∑

a∈A σ(a) is
fixed. That instead of |SG | the bound includes log |SG | is motivated by the desire
to learn well before seeing all the states.

If C is a class of groups and P a set of presentations such that C = {G | G =
〈A | R〉 for some 〈A | R〉 ∈ P} then we call (C, P) a group learning problem.

It does not make sense to consider efficient learning of infinite groups, because
then the bound on the number of steps is infinite. The models of finite learning
and learning in the limit of course can be studied also for infinite groups.

We close this section with a first result, namely that in certain cases learning
algorithms can be normalized to operate with a restricted form of queries. For
this purpose we introduce the notion of 0/1-learning algorithms.

A 0/1-learning algorithm is defined very similarly to a learning algorithm in
Definition 6, the only difference is that upon a query a sent to the oracle in Step n
and state sn, instead of a(sn) it receives the reply 1 if a(sn) = s0 and 0 if a(sn) �=
s0. The notion of 0/1-learnability (in the limit, finite, or efficient) can then
immediately be derived from Definition 7 by replacing “learning algorithm” by
“0/1-learning algorithm”. We call this concept learning with binary observation.

Lemma 1. Let (C, P) be a group learning problem such that σ(a) is finite for
all 〈A | R〉 ∈ P and all a ∈ A. C is learnable in the limit (finitely learnable,
efficiently learnable) with respect to P iff C is 0/1-learnable in the limit (finitely
0/1-learnable, efficiently 0/1-learnable) with respect to P .

Proof. We only show that a 0/1-learning algorithm can be constructed from a
learning algorithm according to Definition 6; the other direction is trivial.

The idea is that all the information gathered by the original learner up to
some stage is wether a subsequence of the action sequence posed leaves a state
unchanged. This information can be recovered with the binary observations by
testing all subsequences from the initial state. This way the number of queries
is blown up only polynomially.

Formally, the 0/1-learner works as follows: Initially, starting from s0, the
learner experiments with all the actions:

– For each a ∈ A repeatedly query a until the answer 1 is received and then
set σ(a) equal to the number of times a was queried.

Now, assume a learning algorithm L as in the original definition poses the
query an in Step n. As a response the 0/1-learner does the following:

– Let α = (x0, . . . , xt) be the action sequence

◦n
i=0[(ai, ai+1, . . . , an, a

−1
n , . . . , a−1

i+1, a
−1
i)] .

Query the actions in this sequence one by one.

336 G. Bartók, C. Szepesvári, and S. Zilles

– Let M be the set of all subsequences xj , . . . , xj+z of α such that
• j = 0 or the reply after querying xj−1 was 1; and
• the reply after querying xj+z was 1.

– If there exists an i ≤ n such that (ai, . . . , an) ∈ M then return the state
name returned in Step i− 1 for the minimal such i (or return s0 if i = 0). If
there is no such i then return a new state name.

– Return the hypothesis that L returns.

Obviously this 0/1-learner solves all the learning problems that L solves at the
price of a polynomial increase of execution time. �

4 An Analysis of the Group Learning Model

In this section we analyze our learning models first for the classes of all finitely
generated and all finite groups. The results and proofs will motivate the analysis
of some special subgroups like the dihedral groups and Abelian groups.

4.1 General Results on Learning Group Environments

Starting with a quite general case, the class of all finitely generated groups, one
easily obtains a negative result, independent of the set of presentations chosen.

Theorem 1
1. The class of finitely generated groups is not learnable in the limit with respect

to any set of presentations.
2. The class of finitely presented groups is not learnable in the limit with respect

to any set of presentations.

Proof. Both assertions follow immediately from the fact that there is a finitely
presented (and thus a finitely generated group) G such that, for every presenta-
tion 〈A | R〉 of G, the word problem over A∗ is unsolvable [3, 12]. �

Restricting our focus to classes of finite groups (for which the word problem is
always solvable) we at least get learnability in the limit, yet efficient learnability
is not achievable.

Theorem 2. Let C be the class of all finite groups and P the set of all presen-
tations of finite groups.

1. C is not learnable efficiently with respect to P .
2. C is learnable finitely with respect to P .
3. C is learnable in the limit with respect to P .

Proof. The third assertion is easy to prove; a learning algorithm can exhaustively
explore the effects of the actions.

The proof of the second assertion requires a dove-tailing argument by inter-
leaving two procedures: one exploring action sequences in order to determine

Active Learning of Group-Structured Environments 337

group relations, the other trying to find a k ∈ N such that all action sequences
of length k are equivalent to a shorter action sequence. Such a k must exist
and can be found in a finite number of steps after enough relations are known.
Knowing such a k, exploration using all sequences of length up to k will yield
all further relations necessary to uniquely identify the target group.

A detailed proof we only give for the first assertion.
Assume C is learnable efficiently with respect to P . Then there is a learning

algorithm L and a polynomial q such that L learns every finite group G with
domain SG efficiently from any of its sets A of generators, using no more than
q(log(|SG |) +

∑
a∈A σ(a)) many steps. By Lemma 1 we can assume without loss

of generality that L is a 0/1-learning algorithm.
Note that there is an m∗ ∈ N such that 2q(m) > q(log(2q(m) + 2) + 4) for all

m ≥ m∗.
We define two groups and show that they cannot be distinguished by L:

– G1 = 〈a, b | a2, b2, (ab)q(m∗)〉
– G2 = 〈a, b | a2, b2, (ab)q(m∗)+1〉

We will show below that (i) the size of the domain of G1 is 2q(m∗), (ii) the
size of the domain of G2 is 2q(m∗)+2, (iii) for all α ∈ {a, b}∗ with |α| < 2q(m∗):

α ≡G1 λG1 ⇐⇒ α ≡G2 λG2

This implies that G1 and G2 are distinct finite groups but L cannot distinguish
G1 from G2 by asking q(log(|SG2 |) + σ(a) + σ(b)) = q(log(2q(m∗) + 2) + 4) (<
2q(m∗)) many queries.2 This is a contradiction, so the class of all finite groups
is not learnable efficiently with respect to all presentations of finite groups.

Claim 1. Let α ∈ {a, b}∗ with |α| < 2q(m∗). Then α ≡G1 λG1 ⇐⇒ α ≡G2 λG2 .
Proof of Claim 1. We show one direction only, the other one is similar.

Let α be as given and assume that α ≡G2 λG2 . We know that α can be
reduced to a G1-equivalent sequence α′ with 0 ≤ |α′| ≤ |α|, such that α′ does
not contain the substrings aa or bb. If |α′| = 0 then α ≡G1 λG1 . We show that if
0 < |α′| < 2q(m∗) then α �≡G2 λG2 . This is a contradiction and we are done.

So assume 0 < |α′| < 2q(m∗). α′ results from α by iteratively applying the
following rules.

(I) insert or delete aa (II) insert or delete bb (III) insert or delete (ab)2q(m∗)

We introduce a function µ : {a, b}∗ �→ Z. For any α = (a1, . . . , an) ∈ {a, b}∗
let αodd = (a1, a3, . . . , an1) and αeven = (a2, a4, . . . , an2), where n1 = n2 +1 = n
for odd n and n1 + 1 = n2 = n for even n. Let µ (w) = (# of ‘a’s in αodd) −
(# of ‘a’s in αeven) + (# of ‘b’s in αeven) − (# of ‘b’s in αodd). For example, if
α = aaababbabab, then αodd = aaabbb and αeven = abbaa, so µ (α) = −1.

When modifying α to α′, the parities of the old/remaining letter positions do
not change. Therefore, only the new/disappearing letters will affect the value of
2 Note here that σ(a) = σ(b) = 2 holds in both groups; technically we should in fact

have subscripts with σ in order to relate it to a specific group.

338 G. Bartók, C. Szepesvári, and S. Zilles

µ. Using rules (I) or (II), the value of µ will not change at all. The use of rule
(III), depending on its type (insert or remove) and the position (odd or even)
chosen, will either increase or decrease the value of µ by 2q(m∗).

This implies that if α1 ≡G1 α2 then µ (α1) ≡ µ (α2) mod (2q (m∗)).
Since α′ does not contain the substrings aa or bb, we have µ(α′) = ±|α′|.

Obviously, µ (λ) = 0. Since 0 < |α′| < 2q (m∗), µ (α′) �≡ µ (λ) mod (2q (m∗)).
Therefore α′ �≡G2 λG2 . � Claim 1.

Claim 2. The size of the domain of G1 is 2q(m∗); the size of the domain of G2

is 2q(m∗) + 2.
Proof of Claim 2. We prove the statement only for G1; for G2 the proof is similar.
Note that two action sequences α and β are equivalent in G1, if β results from α
by iteratively eliminating all substrings aa, bb, (ab)q(m∗). Hence every element in
the domain of G1 can be written as a product in which none of these subsequences
occur. These are

a(ba)k, b(ab)k, (ab)k, (ba)k

for 0 ≤ k < q(m∗) (note that (ab)0 = (ba)0 = λ).
Now note that (ba)k ≡G1 (ab)2q(m∗)−k for 0 ≤ k ≤ 2q(m∗) (both forms

obviously have the inverse (ab)k). Hence also a(ba)k ≡G1 a(ab)2q(m∗)−k ≡G1

(ba)2q(m∗)−k−1b ≡G1 b(ab)2q(m∗)−k−1 for 0 ≤ k < q(m∗).
Hence the domain of G1 has exactly 2q(m∗) elements. � Claim 2.
This completes the proof. �

G1 and G2 belong to the well-known class of finite dihedral groups. So not even
those are learnable efficiently if all possible presentations are taken into account
in the group learning problem. Since the dihedral groups illustrate a few princi-
pled properties of our learning model, we study them in more detail.

4.2 Learning Dihedral Groups

We will use the dihedral groups to illustrate two general phenomena in learning
theory, namely the impact of the representation scheme for the information given
to the learning algorithm and the impact that slight changes to the class of target
concepts can have on learnability.

For every k ≥ 1, let Dk denote the finite dihedral group with 2k elements.
Note that there is only one infinite dihedral group, namely D∞ = 〈a, b | a2, b2〉.

Theorem 2 and its proof immediately yield the following corollary.

Corollary 1. Let C be the class of finite dihedral groups and P = {〈A | R〉 |
〈A | R〉 ∈ C and |A| = 2}.

1. C is not learnable efficiently with respect to P .
2. C is learnable finitely with respect to P .
3. C is learnable in the limit with respect to P .

In fact it is not very surprising that the finite dihedral groups cannot be learned
efficiently with respect to presentations with 2 generators. The reason is simply

Active Learning of Group-Structured Environments 339

that any learning algorithm would have to make a number of experiments that
is linear in the size of the group (rather than logarithmic). This leads us to a
nice observation showing how much the choice of generator systems, i.e., the
representation of the input to the learning algorithm, influences learnability. In
fact the finite dihedral groups can be learned efficiently if we choose a set of
presentations in which the size of the group is linear in the order of one of the
generators, thus allowing for enough experiments to identify the target group.

Fact 1. Let C be the class of finite dihedral groups and P = {〈{c, d} | c2, dk, cdcd〉 |
k ≥ 1}. Then C is learnable efficiently with respect to P .

The proof is omitted; note that with a = c, b = cd, and ab = d we have the
equivalence of the group presentations 〈a, b | a2, b2, (ab)k〉 and 〈c, d | c2, dk, cdcd〉.

The second phenomenon that can be easily illustrated using dihedral groups
is how unstable learnability results can be with respect to slight changes to the
target class. The class of all finite dihedral groups can be learned finitely from
all binary generator systems, but this is no longer true if we add just a single
group to this class, namely the infinite dihedral group.3

Theorem 3. Let C+ be the class of all dihedral groups and P+ = {〈A | R〉 |
〈A | R〉 ∈ C+ and |A| = 2}.
1. C+ is not learnable finitely with respect to P+.
2. C+ is learnable in the limit with respect to P+.

Proof. ad 1. Assume C+ is learnable finitely with respect to P+. Then there is
a 0/1-learner L that learns every dihedral group finitely from any set of two
generators. Simulate L on input {a, b} as follows (simulate an oracle in parallel).

Always reply 0 for the first action L takes. If the first two actions by L are
equal, i.e., they are aa or bb, then reply 1 after the second action. In any other
case, for growing action sequences, reply 0.

This scenario is valid if D∞ is the target group. Thus eventually L will return
a decision procedure for D∞ and stop the process. At this point of the learn-
ing process there are infinitely many finite dihedral groups consistent with the
scenario. These are not identified by L although they are in C+—a contradiction.

ad 2. A learning algorithm on input {a, b} initially tries to determine the order
of both of the generators. In case one of these orders is k �= 2, the algorithm will
return a decision procedure for Dk forever. As long as one of the orders is not
yet determined, the algorithm returns a decision procedure for D∞.

In case both generators turn out to be of order 2, the algorithm tries to
determine the minimal k such that λ ≡ (ab)k, if such a k exists. As long as no
such k is found, the algorithm returns a decision procedure for D∞. As soon as
such a k is found, the algorithm will start returning a decision procedure for Dk

forever.
It is not hard to see that this algorithm witnesses Assertion 2. �

3 This very much resembles results in Inductive Inference, where Gold [6] showed
that no class of languages that contains all finite languages and at least one infinite
language, can be learned in the limit.

340 G. Bartók, C. Szepesvári, and S. Zilles

4.3 Learning Abelian Groups

For finitely generated Abelian groups, a reasoning similar to the proof of Theo-
rem 3 shows similar differences between learning in the limit and finite learning.

Theorem 4. Let C be the class of all finitely generated Abelian groups. Let P =
{〈a1, . . . , ak | R〉 | 〈a1〉 × . . .× 〈ak〉 ∈ C}.

1. C is learnable in the limit with respect to P .
2. C is not learnable finitely with respect to P .

Proof. ad 1. According to the fundamental theory of finitely generated Abelian
groups every group in C has the form Zk×Ck1

n1
×· · ·×Ckz

nz
for some k, z, ki, ni ∈ N.

The number of generators here is k + k1 + · · · + kz.
A learning algorithm L witnessing Theorem 4 works as follows: Given a set

A = {a1, . . . , ak} of generators, L initially always outputs a decision procedure
for Z|A|. Given a canonical enumeration of all pairs (al, t) for t ≥ 1 and l ∈
{1, . . . , k}, L then queries the state names while taking action sequences (al)t

for all (l, t) in canonical order. Whenever a sequence (al)t takes L back to the
state it was in before this sequence, L changes its output from Zk′×C

k′
1

n1×· · ·×C
k′

z
nz

to Zk′−1 ×C
k′
1

n1 × · · · ×C
k′

j+1
nj × · · · ×C

k′
z

nz , where nj = t. Moreover, from then on
all pairs (al, t

′) in the enumeration will be skipped.
It is easy to prove that L learns all groups in C in the limit.
ad 2. Assume to the contrary that C is finitely learnable with respect to P ,

witnessed by a learning algorithm L.
Consider the behaviour of L for the target group Z, generated by a single

element. After finitely many experiments using this generator element, each of
which leads L to a new state, L returns a decision procedure for Z and terminates.

At this point there are still infinitely many finite cyclic groups Cn ∈ C consis-
tent with the scenario experienced by L; L fails to identify them. �

Concerning efficient learning, some properties of finite Abelian groups motivate
the study of different kinds of learners, as introduced in the next section.

5 Learning Injective Representations

Every finite Abelian group can be written as a direct product of p-groups (for
different primes p). This kind of group presentation turns out to be well suited
for efficient learning, even for a specific kind of learning algorithms, namely some
that return representations instead of decision procedures. Note that a decision
procedure for a group can easily be obtained from a representation of the group.

A representation-learning algorithm is defined similarly to a learning algo-
rithm (see Definition 6), except for that the outputs of the algorithm are always
injective representations over C (of course with a correct representation in the
end). Definitions of representation-learning are derived as usual.

Active Learning of Group-Structured Environments 341

Theorem 5. Let C be the class of all finite Abelian groups. Let P = {〈a1, . . . , ak |
R〉 | G = 〈a1〉 × . . .× 〈ak〉 and σ(ai) < ∞ for all i ∈ {1, . . . , k}}. C is efficiently
representation-learnable from P .

Proof. (Sketch.) We define a learning algorithm L on input A as follows:
For all a ∈ A, L determines σ(a) by taking the action a until s0 is reached.
Then L outputs a representation Φ, where Φ(ai) is defined as a diagonal matrix

where the ith element of the diagonal is a primitive σ (bi)
th complex unit root;

the other diagonal entries are 1. �

Here again we assume a specific underlying presentation. In the case of learning
with respect to all possible presentations this result can still be used to show a
reducibility between our learning problem and the problem of cutting down a
set of generators for a p-group G to an independent set of generators for G.

Formally we define the problem of finding independent generators as follows:

Given a prime p, given a generator system A for an unknown p-group
G, find a subset of A that is an independent generator system for G.

Theorem 6. Let C be the class of all finite Abelian groups. Let P be the set of
all presentations of finite Abelian groups. The problem of learning C efficiently
with respect to P by representation is polynomially reducible to the problem of
efficiently finding independent generators.

Proof. (Sketch.) The idea is—given a generator system A—to construct gener-
ators for p-groups (with different primes p) such that the target group can be
written as a direct product of these p-groups. In order to apply Theorem 5 we
need to make sure that the generators for the p-groups are independent from
each other, using an efficient algorithm for finding independent generators. �

To close the section on representation-learning we discuss a result not related
to Abelian groups but especially motivated by our original scenario of an agent
exploring an unknown environment. Assume the agent has successfully learned a
group environment but after that a new action is introduced to the environment.
We model this as a problem of finding a representation of a single extension of
a group G (for instance in the form of a semi-direct product) if a representation
of G is known.

Suppose we have a group G with a generator system A and a d-dimensional
linear representation Φ. Our aim is to extend G by a new generator element a,
i.e., we want to construct a representation for a single extension G′ = G �φ 〈a〉.
Let us assume in addition that σ(a) = σ(φ(a)) = σ. The new representation Φ′

can then be defined as follows, where we abbreviate φ(a) by φ:

Φ′ (g) =

⎛⎜⎜⎜⎜⎝
Φ (g) 0 · · · 0

0 Φ (φ (g))
...

...
. . . 0

0 · · · 0 Φ
(
φσ−1 (g)

)

⎞⎟⎟⎟⎟⎠ if g ∈ SG , Φ′ (a) =

⎛⎜⎜⎜⎝
0 Id 0 0
...

...
. . . 0

0 0 · · · Id

Id 0 · · · 0

⎞⎟⎟⎟⎠

342 G. Bartók, C. Szepesvári, and S. Zilles

That this indeed yields the desired representation is implied by the following
easy to verify properties.

1. σ (Φ′ (a)) = σ.
2. The group resulting from restricting Φ′ to G is isomorphic to G.
3. Φ′−1 (a)Φ′ (g)Φ′ (a) = Φ′ (φ (g)) for all g ∈ SG .
4. Φ′ (a) is not contained in the image of G under Φ′.

The dimension of the constructed representation is dσ. This construction is in
general not trivial because of the problem of calculating Φ(φ(g)). However, a
special case of this construction can be used for proving the following result.

Theorem 7. Let P = {〈a1, a2 | R〉 | 〈a1, a2 | R〉 = 〈a1〉 �φ 〈a2〉, σ(φ(a2)) =
σ(a2), σ(a1) < ∞, σ(a2) < ∞}. Let C = {G | G = 〈A | R〉 for some 〈A | R〉 ∈
P}. C is efficiently representation-learnable with respect to P .

Proof. (Sketch.) A learning algorithm L on input {a1, a2} works as follows:
First, L determines σ(a1) and σ(a2) in the usual way. Second, L experiments

with
a1a2a

−1
1 a2a2 . . . a2︸ ︷︷ ︸

σ(a2)

a1a
−1
2 a−1

1 ;

similarly with a1 and a2 swapped. (For example, if a1a2a
−1
1 a6

2 ≡ λ, then G =
〈a2〉 �φ 〈a1〉 with φ (a2) = a−6

2 .) Third, L constructs the linear representation
as described above Theorem 7, knowing that Φ (a2) =

(
σ(a2)

√
1
)
∈ C1×1 is a

primitive complex unit root. �

6 Conclusions

We introduced and analyzed a model for (efficient) learning of group-structured
environments by exploration. In order to capture the idea that an agent should
learn its environment without visiting all the states, we imposed a bound on the
number of actions the agent can take up to convergence to a correct conjecture
about the target group environment.

Learnability results strongly depend on the underlying presentation and thus
the set of generators given as input to the learner, both if efficiency constraints
are maintained and if they are dropped. Our negative results suggest that it is
in general too strong a requirement to learn with respect to all possible presen-
tations of a group—which is in fact not surprising and gives answers to some of
the questions we posed in the introduction.

A direction for future work clearly is to characterize cases in which the size of a
minimal representation of a group (in a general coding scheme for finite or finitely
generated groups) is logarithmic instead of linear in the size of the group. This
is for instance the essence of some of the contrasting results concerning dihedral
groups. Relaxations of the learning model would be a further natural and quite
promising extension of our approach.

Active Learning of Group-Structured Environments 343

Acknowledgements

We thank Barnabás Póczos, András Antos and Marcus Hutter for helpful dis-
cussions. Thanks are also due to the anonymous referees for their insightful
comments.

This research was funded in part by the National Science and Engineering
Research Council (NSERC), iCore and the Alberta Ingenuity Fund.

References

[1] Babai, L., Fried, K.: Approximate representation theory of finite groups. In: Proc.
32nd Annual Symposium on Foundations of Computer Science, pp. 733–742 (1991)

[2] Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: IEEE
Symposium on Foundations of Computer Science (1984)

[3] Boone, W.W.: The Word Problem. The Annals of Mathematics 70, 207–265 (1959)
[4] Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14,

318–334 (1998)
[5] Friedl, K., Ivanyos, G., Santha, M.: Efficient testing of groups. In: Proc. 37th

Annual ACM Symposium on Theory of Computing, pp. 157–166 (2005)
[6] Gold, E.M.: Language identification in the limit. Inform. Control 10, 447–474

(1967)
[7] Holte, R., Grajkowski, J., Tanner, B.: Hierarchical heuristic search revisited. In:

Symposium on Abstraction, Reformulation and Approximation (2005)
[8] Jaeger, H.: Observable operator models for discrete stochastic time series. Neural

Computation 12, 1371–1398 (2000)
[9] Korf, R.E.: Finding optimal solutions to Rubik’s cube using pattern databases.

In: AAAI/IAAI, pp. 700–705 (1997)
[10] Korf, R.E.: Analyzing the performance of pattern database heuristics. In: Proc.

22nd AAAI Conference on Artificial Intelligence, pp. 1164–1170 (2007)
[11] Littman, M.L., Sutton, R., Singh, S.: Predictive representations of state. In: Ad-

vances in Neural Information Processing Systems 14, pp. 1555–1561 (2002)
[12] Novikov, P.S.: On the algorithmic undecidability of the word problem in group

theory. In: Proc. Steklov Institute of Mathematics, vol. 44, pp. 1–143 (1955) (in
Russian)

[13] Rivest, R.L., Schapire, R.E.: Diversity-based inference of finite automata. J. ACM,
555–589 (1994)

[14] Rothman, J.J.: An Introduction to the Theory of Groups. Springer, Heidelberg
(1995)

[15] Stephan, F., Ventsov, Y.: Learning algebraic structures from text. Theoret. Com-
put. Sci. 268(2), 221–273 (2001)

[16] Strehl, A.L., Diuk, C., Littman, M.L.: Efficient structure learning in factored-state
MDPs. In: Proc. 22nd AAAI Conference on Artificial Intelligence, pp. 645–650
(2007)

[17] Vinodchandran, N.V.: Counting Complexity and Computational Group Theory.
PhD thesis, Institute of Mathematical Sciences, Chennai, India (1999)

Finding the Rare Cube

Shlomo Hoory and Oded Margalit

IBM Haifa Research Labs
{shlomoh,odedm}@il.ibm.com

Abstract. In this paper we investigate the problem of active learning the partition
of the n-dimensional hypercube into m cubes, where the i-th cube has color i.
The model we are using is exact learning via color evaluation queries, without
equivalence queries, as proposed by the work of Fine and Mansour.1 We give a
randomized algorithm solving this problem in O(m log n) expected number of
queries, which is tight, while its expected running time is O(m2n log n).

Furthermore, we generalize the problem to allow partitions of the cube into m
monochromatic parts, where each part is the union of p cubes. We give two ran-
domized algorithms for the generalized problem. The first uses O(mp22p log n)
expected number of queries, which is almost tight with the lower bound. How-
ever, its naı̈ve implementation requires an exponential running time in n. The
second, more practical, algorithm achieves a better running time complexity of
Õ(m2n222p

). However, it may fail to learn the correct partition with an arbitrar-
ily small probability and it requires slightly more expected number of queries:
Õ(mn4p), where the Õ represents a poly logarithmic factor in m,n, 2p.

1 Introduction

Scientific research is the investigation of phenomena to acquire knowledge. In the
process we gather information on the world and try to fit it into our understanding
of it. We are looking for examples of different (interesting) phenomena. Usually such
examples are rare, otherwise they would have been discovered sooner. In this paper we
consider a simple mathematical model of the world in which we can formally quantify
the cost of finding such examples. The motivating problem that led to this work, comes
from the domain of hardware verification.

Hardware verification is the process of verifying that the actual hardware built com-
plies with its intended design. One of the standard methods of achieving this goal, is to
generate stimuli for the design under test (DUT), and compare the actual behavior of the
DUT to a reference model. Since it is not feasible to cover the exponentially large set of
possible stimuli, usually one samples that set using a distribution that favours ”interest-
ing” stimuli, see [WGR05] for more information. In this work, we consider a simplied
version of the problem where the DUT is modeled by an unknown deterministic func-
tion F (blackbox) mapping length n binary string (the stimulus) into one of m possible
colors (behaviour). Our goal is to obtain at least one representative input for each of
the m possible output values of F , while using a reasonably small number of queries to
the function F . When each possible color is quite frequent, the problem can be easily

1 Evaluation queries are membership queries for the binary, m = 2, case.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 344–358, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Finding the Rare Cube 345

solved by uniform random sampling. The more interesting cases are when some of the
colors are rare. An extreme example for that case is the function F where a single point
is colored red, and the rest are colored blue. In this case, any algorithm that finds the
red point must use Ω(2n) color queries. Therefore, if one desires to learn F using a
significantly smaller number of queries, one must impose restrictions on the concept
class from which F is drawn. In this paper we propose a parametrized restriction which
we hope to be rich enough to contain some real hardware verification problems.

In the spirit of parametrized complexity study of various intractable computational
problems, such as coloring, vertex cover, and satisfiability (see [DF99]) – we propose
a parametrized family of concept classes. Depending on the parameter p, the problem
transitions from efficiently learnable concepts (p = O(1)), to hopeless cases (p =
Ω(n), which require Ω(2n) queries).

The problem of obtaining one example from each color, representative discovery,
is closely related to the more difficult problem of obtaining a full description of the
partition, partition discovery. In some cases, there is a substantial difference between
the two problems. For example, if F is the partition of the hypercube into two cubes,
then the representative discovery problem can be solved without performing any query,
as any two antipodes must have different colors. On the other hand, since any partition
discovery algorithm has n possible outputs and gains at most one bit of information
from each query, it cannot discover the partition using less than log2 n queries.

In this work, we consider specific concept classes (families of partitions), and show
that the two problems are virtually equivalent for these concept classes. Namely, the
algorithms we describe solve the more difficult partition discovery problem, while being
almost optimal with respect to the easier representative discovery problem.

We first consider the concept class, denoted by P , consisting of the partitions in
which each color class is a sub-cube. This concept class was previously considered by
Fine and Mansour [FM06]. We give a partition discovery algorithm that uses at most
m(2 + logn) expected number of queries. This result significantly improves upon the
mn upper bound of [FM06] and we prove its optimality up to a constant factor, even as
a representative discovery algorithm.

Next, we consider a generalization, Pp, of the concept class P that allows each color
class to be the (not necessarily disjoint) union of at most p sub-cubes. We give a partition
discovery algorithm for Pp using at most O(mp22p logn) expected number of queries,
and we show an almost matching lower bound of Ω(m2p logn), again for the easier
problem of representative discovery.

The running time of each algorithm comprises of two parts — the time needed for
the oracle to answer the queries, and the time required for choosing the queries. For
our algorithms to be practical, we cannot ignore the second part. We show a bound of
O(m2n logn) on the running time for the concept class P. Unfortunately, we do not
know how to provide an efficient implementation for the above algorithm for Pp. We
give a different, more practical, algorithm for the concept class Pp at the expense of al-
lowing an arbitrarily small probability of error ε2, and using more queries. The expected
running time of this algorithm is bounded by Õ(m2n222p

log(1/ε)), while its expected

2 Note that with probability 1 − ε the algorithm must produce the exact partition, which is very
different from models such as PAC that allow the output to be an approximation.

346 S. Hoory and O. Margalit

number of queries is Õ(mn4p log(1/ε)) where the tilde denotes the suppression of a
polylogarithmic factor in m,n, 2p.

These results prove that the problem is fixed parameter tractable, i.e. polynomial
in all input parameters for a fixed value of p, where the degree of the polynomial is a
constant independent of p. This shows that for any constant p, the problem is polynomial
in both expected running time and the expected number of queries3.

The problems of learning a partition of the n-cube into m p-cubes, is closely related
to the problem of learning decision trees and to the problem of learning a DNF. Both
are well known problems for their theoretical and practical value. For work on deci-
sion tree learning, see [SL91], [KM91], [Mur98], [Kal07], and for work on DNF learn-
ing see [BR92], [KV94], [Bsh95], [BGHM96], [Kus97], [Jac94], [Bsh97], [BBB+00],
[HR05], [Fel07]. We differentiate the algorithmic setups of the above algorithms as
follows:

1. Exact learning vs. Approximate (PAC) learning, see [Val84].
2. Passive learning, where the labeled samples are drawn from a fixed distribution, or

active learning, where the algorithm can choose its color queries.
3. Equivalence and membership queries vs. color evaluation queries only.

The algorithmic setup required by the hardware verification domain is that of exact
learning via active color queries only. The exact learning requirement follows from
the fact that we must hit all colors including the rare ones. The active learning via
color queries only, follows from the black-box nature of our hardware model for the
function F . Note that while the active part makes the problem easier (so ignoring it
make the problem hopeless), the exclusion of equivalence queries makes it much harder.

Another difference between DNF learning and hypercube partition is the fact that
even though each p-cube is a p-term DNF formula, our problem is not the same as
learning m independent p-term DNF formulas since we demand that all colors partition
the n-cube. Therefore, our problem is that of trying to simultaneously learn m disjoint
DNF formulas.

All of the above mentioned algorithms fail to meet the real life requirements of our
setup. For example Jackson’s algorithm for learning DNF [Jac94] is a PAC learning
algorithm; Bshouty’s algorithm [Bsh95] uses equivalence queries.

2 Learning Partitions to Cubes

Suppose the n dimensional cube is partitioned into m sub-cubes C1 through Cm. For
any point x ∈ {0, 1}n let c(x) denotes its color, which is the unique i satisfying x ∈ Ci.
We seek a (possibly randomized) algorithm that uses a small (expected) number of color
queries to determine the m sub-cubes.

Before stating the algorithm we introduce some notation. The projection along the
j-th coordinate is denoted πj , and in general πJ for projection on a set of coordinates J .

3 As mentioned above, we expect both the running time, and the required number of samples
to deteriorate quite rapidly with p (certainly faster than polynomial). Therefore although not
optimal, one should not be daunted by 22p

since the practical cases may have a very small p
and large m, n.

Finding the Rare Cube 347

A sub-cube is a non-empty set T ⊆ {0, 1}n that can be written as the Cartesian product
π1(T) × · · · × πn(T). The support of T , denoted supp(T), is the set of coordinates j
with |πj(T)| = 2, so dim(T) = | supp(T)|. It is sometimes convenient to represent the
cube T by a string αT ∈ {0, 1, ∗}n, where αj = ∗ if j ∈ supp(T). Otherwise, αj is the
single element in πj(T). Another way to look at a sub-cube is as a monomial Παj=1xi ·
Παj=0x̄i. The convex hull of a non-empty set S ⊂ {0, 1}n, is the intersection of all
the sub-cubes containing S. Equivalently, conv(S) = π1(S) × · · · × πn(S).

Consider the randomized algorithm in Figure 1.4 We claim that Algorithm A is both
efficient in terms of the expected number of color queries and in terms of running time.
Moreover, if m is not too large compared with n, the expected number of queries is best
possible up to a constant factor.

Input: Integers n, m;
a coloring oracle c

Output: S1, . . . , Sm ⊂ {0, 1}n

such that conv(Si) = Ci for all i

1. S1, . . . , Sm ← ∅
2. X ← {0, 1}n

3. While X �= ∅
4. Choose random x ∈ X
5. i ← c(x)
6. Si ← Si ∪ {x}
7. X ← X \ conv(Si)

Fig. 1. Algorithm A

Theorem 1. Algorithm A is a partition discovery algorithm for the concept class P ,
using at most m(2 + logn) expected number of queries.

Theorem 2. Algorithm A can be efficiently implemented, so that its expected running
time is O(m2n logn).

Theorem 3. Any partition discovery algorithm for the concept class P, requires at
least Ω(m logn), as long as 2 ≤ m ≤ 2n/2. The same bound holds also for represen-
tative discovery, as long as 3 ≤ m ≤ 2n/2.

Note that, as mentioned before, ifm = 2, we cannot hope to get a non-trivial lower bound
for the representative discovery problem, since any two antipodes have different colors.

Proof (Proof of Theorem 1). First observe that after any iteration of the algorithm, we
have X = {0, 1}n \ ∪m

i=1 conv(Si). Since all points in Si are colored i, all points in
conv(Si) must be colored i. Upon termination, X = ∅, so the union of conv(Si) is the
entire cube. Therefore, the color of all points is known, proving the correctness of the
algorithm. We now turn to bound the expected number of queries.

4 The input m is not really needed and is given for clarity of exposition.

348 S. Hoory and O. Margalit

Consider some color i. We measure the progress made by the algorithm in color i
by dim(conv(Si)) from the first time color i was hit, where dim(conv(Si)) = 0, to its
final value dim(Ci). Suppose that at some step, the algorithm sampled the point x of
color i. Let S, Sx denote the value of conv(Si) before and after updating for x, and let
C denote Ci. Note that we have S ⊂ Sx ⊆ C. We claim that the following inequality
holds:

Ex[dim(C) − dim(Sx)] ≤ (dim(C) − dim(S))/2,

where the distribution of x is uniform on the set C \ S. Consider some coordinate j in
supp(C) \ supp(S). Then j is in supp(Sx) iff xj �= sj , where xj is the j-th coordinate
of x, and sj is the unique value in πj(S). By linearity of expectation it suffices to prove
that Pr[xj �= sj] ≥ 1/2 for all such j. Indeed,

Pr[xj �= sj] =
|C|/2
|C \ S| ≥

|C|/2
|C| =

1
2
,

as claimed.
We conclude the proof by observing that the above inequality implies that after k+1

hits to color i,

E[dim(Ci) − dim(Si)] ≤ dim(Ci)/2k ≤ n

2k
.

The dimension difference is an integer and therefore

P (dim(Ci) − dim(Si) = 0) ≤ n

2k
.

Therefore the expected time to get Ci = Si is

E(min
dim(Ci)=dim(Si)

{i}) =
∞∑

i=1

P (dim(Ci) = dim(Si))

≤)log2 n* · 1 +
n

2�log2 n� ·
∞∑

i=1

2−i ≤)log2 n* + 2.

So the expected number of hits required to exhaust color i is at most 2 + log n. The
required result follows by linearity of expectation.

Proof (Proof of Theorem 2). It suffices to prove that checking if X is empty and
random sampling from X can be efficiently implemented. To solve both problems
we observe that for any cube C we can efficiently compute the cardinality of X ∩
C = C \ ∪m

i=1 conv(Si). Indeed, the disjointness of conv(Si) implies that |X ∩ C| =
2|dim(C)| −

∑
i 2dim(C∩conv(Si)), where the sum ranges over i such that C ∩ Si is non-

empty. For such i, the dimension of C ∩ conv(Si) is just the number of coordinates in
supp(C) ∩ supp(Si).

For C = {0, 1}n the above observation solves the problem of checking whether X
is empty. As for random sampling from X , we use the basic paradigm that counting
and random sampling is equivalent. Specifically, we perform the procedure Sample
described in Figure 2. One should note that for j > 1 line 3 can be performed in

Finding the Rare Cube 349

Procedure Sample(X)
1. C ← {0, 1}n

2. For j = 1 to n
3. p = |X ∩ C ∩ π−1

j (0)|/|X ∩ C|
4. Choose b ∈ {0, 1} randomly

with Pr[b = 0] = p
5. C ← C ∩ π−1

j (b)
6. Return the unique point x in C

Fig. 2. Algorithm A, Procedure Sample

O(1) time, by keeping the sets supp(C) ∩ supp(Si) from the previous iteration, and
performing the update only for coordinate j. It follows that the time needed to produce
a uniformly random point from X (or prove no such point exists) is O(mn), which
yields the required bound.

Proof (Proof of Theorem 3). If m = 2, any partition discovery algorithm requires at
least logn queries since there are n possible partitions in P, and each query gives the
algorithm at most one bit of information. Therefore, from now on we can restrict our
attention to the representative discovery problem for 3 ≤ m ≤ 2n/2. Without loss of
generality, m = 3 · 2l for some non-negative integer l.

Let A’ be some representative discovery algorithm. Acting as a deterministic adver-
sary, we want to answer the color queries of the algorithm consistently, while ensuring
the algorithm requires many color queries. 5

When queried on the point x ∈ {0, 1}n, we determine its color c(x) as follows. The
trailing l bits of c(x) are just the trailing l bits of x, which we denote by y. The value of
the remaining two bits, which has three possible values, is determined by performing
a table lookup. The table {00, 00, 01, 10} is fed with the two input bits xj and xk for
distinct indices j, k ∈ {1, . . . , n− l + 1} that are determined based on the past queries
of A′. Let x(1), x(2), . . . , x(t) = x be the sequence of past queries made by A’ to points
whose trailing bits are y. Then j, k are determined by the procedure in Figure 3.

We claim that this procedure produces a valid coloring for which the algorithm must
make many color queries to find a representative for each color.

To prove the validity of the coloring, we exhibit a partition matching all answers made
to the algorithm. The partition is defined by first partitioning the n-cube into 2l = m/3
subcubes {Cy} according to the trailing l bits, y. The partition is further refined by
partitioning each subcube into three subcubes according to the output of the lookup
table for the two coordinates jy, ky . It remains to show that, for each y, one can exhibit
values for jy , ky that are consistent with all answers made by the adversary. This follows
from the fact that the sets calculated by above procedure satisfy Si ⊇ Si+1, and that as
long as |St| > 2, all indices in St are equivalent for the first t queries to points in Cy .

To see that many queries are needed, observe that as long as |St| > 2, the answer to
the query c(x) is 00y or 10y. Therefore, since A′ must hit also 01y in order determine

5 Proving the lower bound for any possible algorithm A′ proves that it also holds for any ran-
domized algorithm as well.

350 S. Hoory and O. Margalit

1. S0 ← {1, . . . , n − l + 1}.
2. For i = 1, 2, . . . , t

3. Si,z ← {j ∈ Si−1 : x
(i)
j = z} for z ∈ {0, 1}

4. zi ← argmaxz{|Si,z |}
5. If |Si,zi | ≥ 2 then
6. Si ← Si,zi

7. Else
8. Return {j,k} = Si−1

9. Return {j,k} as any two elements of St.

Fig. 3. The adversary’s procedure

the partition of Cy , it must ask sufficiently many queries in Cy to ensure that |St| = 2.
Since |Si+1| ≥ |Si|/2 for all i, this requires at least log(n − l) queries to points in
Cy . Therefore, discovering the partition requires at least (m/3) · log(n − l), which is
Ω(m logn) as claimed.

3 Learning Partitions to p-Cubes

A subset of the cube is a p-cube if it can be expressed as the union of at most p cubes,
not necessarily disjoint. We generalize the discussion of the preceding section on the
p = 1 case to arbitrary integers p ≥ 1. We denote the concept class of partitions into
p-cubes by Pp, and ask the following question:

Give an efficient partition/representative discovery algorithm with respect to
Pp.

We start by generalizing the definition of conv: 6

Definition 1

convp(S) =
⋂

S1, . . . , Sp

partition of S

p⋃
i=1

conv(Si).

Consider Algorithm Ap, obtained from Algorithm A by replacing conv with convp.
Then:

Theorem 4. Algorithm Ap discovers any partition from the concept class Pp within at
most O(mp22p logn) expected number of queries.

As for the case p = 1, discussed in the previous section, algorithm Ap is almost tight
with respect to the number of color queries.

6 In the definition of convp we consider only proper partitions of S where no Si is empty. It is
easy to verify that allowing partitions with empty Si results in the same definition, where by
definition or notation, conv(∅) = ∅.

Finding the Rare Cube 351

Theorem 5. Any representative discovery algorithm for Pp, where 2 ≤ m ≤ 2n/2 and
p > 1, requires at least Ω(m2p logn) color queries.

Before proving the theorems, we give three lemmas that shed some light on the behavior
of convp. Note that while the computation of conv can be done efficiently, we are not
aware of a method for the efficient computation of convp, even for the case p = 2. This
problem shall be dealt with in Section 4.

Lemma 1. If the union of p cubes C1, . . . , Cp ⊂ {0, 1}n is not the entire n-cube, then
there is set J of at most p coordinates such that |πJ (∪p

i=1Ci)| < 2|J|.

Corollary 1. For any cubes C,C1, . . . , Cp ⊂ {0, 1}n, one of the following two state-
ments hold: (1) C =

⋃p
i=1 Ci, (2) |

⋃p
i=1 Ci|/|C| ≤ 1 − 2−p.

Proof (Proof of Lemma 1). We assume that p ≤ n since otherwise the statement is
trivial. The existence of the required J is proved by induction on p. The claim holds
for p = 1 since a cube C1 that is not the entire n-cube must have a coordinate j with
|πj(C1)| < 2.

Suppose that for some p > 1, the union of cubes X = ∪p
i=1Ci is not the entire n-

cube. Then there must be a coordinate j with |πj(C1)| < 2. Without loss of generality
j = 1 and π1(C1) = {0}. Let H denote the half cube π−1

1 (1), then C1 ∩H = ∅. Let I
be the set of i such that Ci ∩H is non empty. We distinguish two cases:

If I = ∅, then the set J = {1} satisfies the requirements of the lemma.
Otherwise, I �= ∅. By induction on the cubes Ci ∩H for i ∈ I , there is a coordinate

set J ′ ⊂ {2, . . . , n} of size at most |I| ≤ p − 1 such that |πJ′(X ∩ H)| < 2|J
′|. The

set J = {1} ∪ J ′ satisfies the requirements of lemma since J has the right cardinality
and since the projection πJ (X ∩H) does not cover all of πJ (H).

Lemma 2

a. For any two subsets S, T of the n-dimensional cube,
convp(S ∪ T) ⊇ convp(S) ∪ convp(T).

b. For any subset S and point x ∈ convp(S), we have
convp(S ∪ {x}) = convp(S)

Proof. Easy inspection.

Proof (Proof of Theorem 4). As in the analysis of Algorithm A, by linearity of expecta-
tion it suffices to prove an upper bound on the expected number of points sampled from
color i by O(p22p logn). Let the p-cube Ci be the union of the cubes ∪li

j=1Cij , where
lj ≤ p. By Lemma 2a it suffices to bound the expected number of points in Si ∩ Cij

needed to achieve convp(Si ∩ Cij) = Cij for all j. The claimed bound would follow
by proving that the expected size of Si ∩ Cij is at most O(p2p logn).

From now on, we would like to consider the situation from the view point of an
arbitrary subcube Cij . However, the subtle issue of sampling must be addressed first.
Suppose that at some time in the run of algorithm Ap, the current value of Si is S′

i. Then
given that the sampled point x is in Cij , its distribution is uniform on Cij \ convp(S′

i).
However, since by Lemma 2b, adding a point x ∈ convp(S′

i) to S′
i does not increase

convp(S′
i), we conclude that:

352 S. Hoory and O. Margalit

The expected size of Si ∩ Cij at the end of the algorithm is upper bounded by
the expected number of uniform independent points one needs to sample from
Cij so that their convp is equal to Cij .

By Lemma 1, the probability that a set S of k uniform independent random points
from some d dimensional cube C doesn’t satisfy convp(S) = C can be upper bounded
by: ∑

|J|≤p

∑
y∈{0,1}|J|

Pr [y �∈ πJ(S)] ≤ dp2p(1 − 2−p)k

≤ dp2pe−k/2p

.

Therefore, the expected number of random points one needs to sample from C until
their convp equals C is bounded by O(p2p(1 + log d)). Therefore, since d ≤ n, the
expected number of points one needs for each of the p cubes of a color, and for each of
the m colors is at most O(p2p logn). This yields the required bound of the theorem.

Proof (Proof of Theorem 5). The proof has a similar flavor to the proof of Theorem 3.
Let A′

p be some representative discovery algorithm for Pp. Let n,m, p be three integers
satisfying the requirements of the Theorem. Then, acting as an adversary we want to
answer the color queries of the algorithm consistently, while ensuring the algorithm
requires many color queries. Without loss of generality, it suffices to prove when m = 2l

for some l ≥ 1.
We build the partition in two stages. First, we partition the n-cube into 2l−1 subcubes

according to the trailing l − 1 bits, {Cy : y ∈ {0, 1}l−1}. Then, for each y, we choose
a set Jy of p coordinates from {1, . . . , n− l}, and a length p bit string αy . We color the
cube Cy by two colors so that x ∈ Cy is colored y0 if πJy(x) = αy , and is colored y1
otherwise. We claim that the we can adjust the parameters Jy and αy according to the
answers of the algorithm, so that A′

p will require many queries.
Our response to a color query c(x) is computed as follows: Let Q be the set of past

queries made by A′
p to points in Cy , including the last query to x. Then, as long as we

have some J ⊂ {1, . . . , n − l} of size p and α ∈ {0, 1}p satisfying α �∈ πJ (Q), we
answer y0. This is obviously in agreement with the above partition for any such (J, α).
The first time when all (J, α) pairs have been eliminated, we set (Jy, αy) to be one of
the last (J, α) pair to survive. All subsequent queries to the Cy cube are answered by
the above partition. By definition, this algorithm yields a valid coloring.

It remains to see that A′
p needs many queries to the Cy cube until it hits the color y1.

Indeed, this follows from a theorem by Kleitman and Spencer [KS73], stating that the
minimal number of points in Cy covering all such (J, α) pairs is Ω(2p log(n− l + 1)).
Therefore, since there are 2l−1 = m/2 possible values for y, we obtain that the total
number of queries A′

p needs is Ω(2pm logn), as claimed.

4 Efficient Learning Partitions into p-Cubes

Although Algorithm Ap uses an almost optimal number of queries, its running time may
be exponential in n as it disregards the computational complexity of computing convp,

Finding the Rare Cube 353

which we do not know how to do faster than Ω(2n). This not only makes Algorithm Ap

inefficient, but also render its output less useful. In this section we propose Algorithm B,
which is a computational efficient partition discovery algorithm for the concept class
Pp. However, the computational efficiency of Algorithm B is bought at the expense of
a somewhat degraded query complexity, and at the expense of allowing the algorithm
to err with an arbitrarily small probability.

Theorem 6. Given some ε > 0, Algorithm B described in Figure 4, is a partition dis-
covery algorithm for Pp, with error probability at most ε. Let k = #2p log(m2pn/ε)$.
Then its expected running time is O

(
mn22p[m22p

+ k]
)
, while its expected number of

queries is O (kmn2p).

Algorithm B is described in detail by the pseudo code of Figure 4 and subsequent
figures. The algorithm uses several basic ideas to cover the n-cube by monochromatic
cubes.

– The main loop, lines 2–8 in Figure 4 Finds a maximal monochromatic subcube C
containing x, as long as there exists an uncovered point x, and add C to the cover.

– Lines 3–7 in Figure 4 find a maximal monochromatic subcube C containing x. This
is done by starting with C = {x}, and scanning the coordinates from 1 to n. For
each coordinate i, if the cube D obtained by turning the i-th coordinate of C into a
star (’*’) is still monochromatic, replace C by D. The maximal cube, is the cube C
after the completion of the loop.

– Line 6 in Figure 4 checks if a cube D is monochromatic. This task is performed
(Figure 6) by sampling sufficiently many random points in D and verifying that all
have the same color.

– Line 2 in Figure 4 finds a point x that is uncovered by the cubes found so far. The
implementation (Figure 5) uses a similar paradigm to the one used in procedure
Sample in Figure 2. Namely, that it suffices to know how to calculate the size of the
covered part within a cube D. However, calculating this size is more complicated
here since cubes covering the same color may intersect. This problem is resolved
by applying the inclusion-exclusion formula.

Some implementation and notational notes:

– Throughout, it is convenient to represent a subcube by a string in {0, 1, ∗}n, in the
obvious manner.

– In line 5 of Figure 4, C ⊕ ei denotes the exclusive or of C with the i-th unit vector.
The resulting D is calculated from C by changing coordinate i into a star.

– Line 9 of FindUncovered does not require any actual computation, since the
set C can be represented as m sets C1, . . . , Cm in the first place.

– Line 11 of FindUncovered can be implemented to run in time O(1). This fol-
lows by observing that for i > 1, the intersection D ∩

⋂
C∈C′

j
C is already known

from the previous iteration, and that the required update consists of a local update
for coordinate i.

354 S. Hoory and O. Margalit

Input: Integers n,m,p
Real ε > 0
A coloring oracle c

Output:A cover C of {0, 1}n

by monochromatic cubes
1. C ← ∅
2. While FindUncovered(C, 0, {0, 1}n)

finds a point x
3. C ← {x}
4. For i = 1 to n
5. D ← C ∪ (C ⊕ ei)
6. If Mono(D,2p log(m2pn/ε)),x) then
7. C ← D
8. Add C to C
9. Return C

Fig. 4. Algorithm B

The proof of Theorem 6 is immediate corollary of the following sequence of claims:

Lemma 3. The main while loop will discover at most 2p cubes of each color. Conse-
quently, it will perform at most m2p iterations.

Lemma 4. It suffices to scan the coordinates once in order to find a maximal mono-
chromatic cube containing x in lines 4-7 of algorithm B.

Lemma 5. Procedure Mono errs with probability at most (1−2−p)k in one invocation.

Lemma 6. The probability that procedure Mono makes an error throughout the execu-
tion of algorithm B is at most ε.

Lemma 7. Assuming that Mono did not err through the run of the algorithm, Proce-
dure FindUncovered finds an uncovered point x iff there is such a point. Its total
run time is O(nm22p

).

We prove above claims in order.

Proof (Proof of Lemma 3). The lemma immediately follows from Theorem 1.3 of
Chandra and Markowsky [CM78]: Every k-term DNF has at most 2k prime implicants.
7 (Prime implicant is the same as maximal monochromatic cube in our terminology).

Proof (Proof of Lemma 4). Once we discover that coordinate i cannot be added to C
since C ∪ (C ⊕ ei) is not monochromatic, then coordinate i cannot be added to any
C′ containing C. Therefore, it suffices to check each coordinate i once in any order. In
particular in ascending order 1 through n.

7 The Theorem also states that there are examples where 3k/3 prime implicants are required for
covering the DNF. Therefore, one cannot hope for a sub-exponential bound in the Lemma.

Finding the Rare Cube 355

Procedure FindUncovered(C, i, D)
1. If i = n + 1 then
2. Let x be the single point in D
3. Return ‘‘Found x’’
4. Else
5. For b = 0 to 1
6. D′ ← D ∩ π−1

i (b)
7. sum ← 0
8. For j = 1 to m
9. Cj ← the color j cubes of C
10. For C′

j ⊆ Cj

11. sum ← sum− (−1)| C
′
j |
�
�
�D′ ∩

�
C∈C′

j
C
�
�
�

12. If sum< |D′| then
13. Return FindUncovered(C, i + 1, D′)
14.Return ‘‘Not found’’

Fig. 5. Algorithm B, Procedure FindUncovered

Procedure Mono(D,k, x)
1. For i = 1 to k
2. y ← a random point in D
3. If c(y) �= c(x) then
4. Return false
5. Return true

Fig. 6. Algorithm B, Procedure Mono

Proof (Proof of Lemma 5). By definition, Procedure Mono does not err if its input cube
D is monochromatic. So assume that D is not monochromatic. Since the points of D
that are colored c(x) can be represented as the union of at most p cubes, by Corollary 1,
the probability that a random point y in D has the same color as x is bounded by 1−2−p.
Therefore, the probability that all the k queries yield the same color c(x) is bounded by
(1 − 2−p)k.

Proof (Proof of Lemma 6). For our choice of k in line 6 of algorithm B, the probability
that a single call to Mono errs is at most ε/(mn2p). Since by Lemma 3 the number of
calls to the procedure Mono is at most mn2p, the overall probability or error for Mono
is at most ε, as claimed.

Proof (Proof of Lemma 7). Consider some call to Procedure FindUncovered during
the run of Algorithm B. Let us denote Xj = ∪C∈Cj

C, and X = ∪C∈CC. By assump-
tion, Procedure Mono did not err before calling FindUncovered, so that Xj contains
only points of color j, implying that the sets Xj are disjoint. Next, we claim that in line
12, sum = |D′ ∩ X |. Since by disjointness, |D′ ∩ X | =

∑m
j=1 |D′ ∩ Xj|, it suffices

to prove that each iteration on j increments sum by |D′ ∩Xj |, which follows from the

356 S. Hoory and O. Margalit

fact that lines 10–11 are a straight forward implementation of the inclusion exclusion
formula.

It follows that the effect of lines 5-14 is to perform a recursive call with D ∩ π−1
i (b)

for the smallest value of b such that D ∩ π−1
i (b) \ X is not empty, or return “Not

Found” if not such value exist, which means that D \X is empty.
Therefore, if for the call to FindUncovered on line 2 of Algorithm B, no uncov-

ered point x exists, “Not Found” is returned without performing any recursive call.
Otherwise, D \ X is not empty. By induction on i, all the calls to FindUncovered
satisfy dim(D) = n + 1 − i, and that D \X is not empty. In particular, for i = n + 1
the cube D consists of a single point x not covered by X .

5 Some Questions and Notes

– Our problem originally arose from the hardware verification domain. Can the algo-
rithms proposed in this work be used for practical applications?

– A learner that can uniformly sample points from a cubeC ⊆ {0, 1}n, can efficiently
learn C by checking its marginal distributions on the n coordinates. Namely, by
checking which of the coordinates are constant (0 or 1), and which are not (equal
probability for 0 and 1). Learning a p-cube D from its marginal distributions is a
more complex task. In fact, there are examples, such as the 2-cube {00∗∗}∪{11∗∗},
where D cannot be determined by its marginals. Can one exploit information on the
marginal distributions to produce a better algorithm, if not in general, then at least
in practice.

– In the inclusion-exclusion in FindUncovered procedure of Algorithm B (line 10 in
Figure 5) takes 22p

time. Can one improve this bound or suggest a different more
efficient procedure?

– It is natural to consider using decision trees learning algorithms to solve our cube
partition problem and vice versa. However, one should be aware that there are ex-
amples where one representation is clearly better that the other:
1. Using our algorithm for learning general decision trees whose leaves are col-

ored by m colors, is not very attractive unless one can given a good bound on p.
The obvious bound is the maximal number of leaves colored by the same color.

2. When using a decision tree algorithm for learning an m-partition of the {0, 1}n

into p-cubes, one should take into account the fact that the number of leaves in
the resulting tree may be huge. An example for such a function F can be easily
obtained from the iterated nand function considered in [JRSW97]. While F is
representable by a partition with m = 2O(

√
n), p = 1, the smallest decision

tree describing F has an exponential size, 2Ω(n).
– Algorithm A is randomized. Can one devise an efficient deterministic algorithm for

the same problem?
– Our lower bound (Theorem 5) direcly applies only for error-free algorithms. We

believe that it should be easy to generalise it but as it is, it does not immediately
applies to algorithms that are allowed to err like Algorithm B.

Finding the Rare Cube 357

Acknowledgments

We would like to thank Shai Fine for introducing the problem; to Ariel Birnbaum
for numerous illuminating discussions; and to the anonymous referees who pointed
us to [CM78], [JRSW97] and other useful remarks.

References

[BBB+00] Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learn-
ing functions represented as multiplicity automata. J. ACM 47(3), 506–530
(2000)

[BGHM96] Bshouty, N.H., Goldman, S.A., Hancock, T.R., Matar, S.: Asking questions to
minimize errors. J. Comput. Syst. Sci. 52(2), 268–286 (1996)

[BR92] Blum, A., Rudich, S.: Fast learning of k-term dnf formulas with queries. In: STOC
1992: Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing, pp. 382–389. ACM, New York (1992)

[Bsh95] Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Inf.
Comput. 123(1), 146–153 (1995)

[Bsh97] Bshouty, N.H.: Simple learning algorithms using divide and conquer. Comput.
Complex 6(2), 174–194 (1997)

[CM78] Chandra, A.K., Markowsky, G.: On the number of prime implicants. Discrete
Mathematics 24(1), 7–11 (1978)

[DF99] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

[Fel07] Feldman, V.: Attribute-efficient and non-adaptive learning of parities and dnf ex-
pressions. J. Mach. Learn. Res. 8, 1431–1460 (2007)

[FM06] Fine, S., Mansour, Y.: Active sampling for multiple output identification. In: Lu-
gosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 620–634.
Springer, Heidelberg (2006)

[HR05] Hellerstein, L., Raghavan, V.: Exact learning of dnf formulas using dnf hypothe-
ses. J. Comput. Syst. Sci. 70(4), 435–470 (2005)

[Jac94] Jackson, J.C.: An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. In: IEEE Symposium on Foundations of Com-
puter Science, pp. 42–53 (1994)

[JRSW97] Jukna, S., Razborov, A., Savicky, P., Wegener, I.: On p versus NP ∩ co-NP for de-
cision trees and read-once branching programs. Electronic Colloquium on Com-
putational Complexity (ECCC) 4(023) (1997)

[Kal07] Kalai, A.T.: Learning nested halfspaces and uphill decision trees. In: Bshouty,
N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 378–392. Springer,
Heidelberg (2007)

[KM91] Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum.
In: STOC 1991: Proceedings of the twenty-third annual ACM symposium on The-
ory of computing, pp. 455–464. ACM, New York (1991)

[KS73] Kleitman, D., Spencer, J.: Families of k-independent sets. Discrete Math. 6, 255–
262 (1973)

[Kus97] Kushilevitz, E.: A simple algorithm for learning o (log n)-term dnf. Inf. Process.
Lett. 61(6), 289–292 (1997)

[KV94] Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

358 S. Hoory and O. Margalit

[Mur98] Murthy, S.K.: Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery 2(4), 345–389 (1998)

[SL91] Safavin, S.R., Langrebe, D.: A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man and Cybernetics 21, 660–674 (1991)

[Val84] Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142
(1984)

[WGR05] Wile, B., Goss, J., Roesner, W.: Comprehensive Functional Verification: The
Complete Industry Cycle (Systems on Silicon). Morgan Kaufmann Publishers
Inc., San Francisco (2005)

Iterative Learning of Simple External

Contextual Languages

Leonor Becerra-Bonache1,�, John Case2, Sanjay Jain3,��,
and Frank Stephan4,∗∗

1 Department of Computer Science, Yale University, New Haven,
CT 06520-8285, USA

leonor.becerra-bonache@yale.edu
2 Department of Computer and Information Sciences, University of Delaware,

Newark, DE 19716-2586, USA
case@cis.udel.edu

3 Department of Computer Science, National University of Singapore,
Singapore 117590, Republic of Singapore

sanjay@comp.nus.edu.sg
4 Department of Computer Science and Department of Mathematics, National

University of Singapore, Singapore 117543, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. It is investigated for which choice of a parameter q, denoting
the number of contexts, the class of simple external contextual languages
is iteratively learnable. On one hand, the class admits, for all values
of q, polynomial time learnability provided an adequate choice of the
hypothesis space is given. On the other hand, additional constraints like
consistency and conservativeness or the use of a one-one hypothesis space
changes the picture — iterative learning limits the long term memory of
the learner to the current hypothesis and these constraints further hinder
storage of information via padding of this hypothesis. It is shown that
if q > 3, then simple external contextual languages are not iteratively
learnable using a class preserving one-one hypothesis space, while for q =
1 it is iteratively learnable, even in polynomial time. For the intermediate
levels, there is some indication that iterative learnability using a class
preserving one-one hypothesis space might depend on the size of the
alphabet. It is also investigated for which choice of the parameters, the
simple external contextual languages can be learnt by a consistent and
conservative iterative learner.

1 Introduction

Consider the following model of learning a class of languages: a learner M is
shown any listing of the strings of a language L in the class and M outputs

� Supported by a Marie Curie International Fellowship within the 6th European Com-
munity Framework Programme.

�� Supported in part by NUS grant number R252-000-212-112 and R252-000-308-112.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 359–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

360 L. Becerra-Bonache et al.

a sequence of hypotheses as it sees successively more and more strings of L.
M , eventually, stops changing its mind and the final output is a grammar that
correctly generates L. This model of learning is called “explanatory learning” as
the final grammar can be seen as an “explanation for the language to be learnt”.
Explanatory learning from positive data and its variants are frequently used to
model important scenarios such as language acquisition of children [25].

Within the scenario of natural language acquisition, the formal study of this
phenomenon requires answering the following question: Which kind of formal lan-
guages is adequate to model natural languages? This question has been a subject
of debate for a long time. This debate started soon after the publication of [8] and
it was focused on determining whether natural languages are context-free (CF) or
not. Nevertheless, in the late 80’s, linguists seemed to finally agree that natural
languages are not CF; there were discovered in many natural languages convinc-
ing examples of non-CFconstructions [5, 28], such as so-calledmultiple agreements,
crossed agreements and duplication structures. Besides, these works suggested that
more generative capacity than CF is necessary to describe natural languages.

The difficulty of working more generally with context-sensitive languages has
forced researchers to find other ways to generate CF and non-CF constructions,
but keeping under control the generative power. This idea has led to the notion
of mildly context-sensitive (MCS) family of languages, introduced by Joshi [12].

In the literature, different definitions of MCS have been presented. In this
paper, by a mildly context-sensitive family of languages we mean a family L of
languages that satisfies the following conditions:

(1) each language in L is semilinear [21];
(2) for each language in L the membership problem is solvable in deterministic

polynomial time;
(3) L contains the following non-context-free languages:

- multiple agreements: L1 = {anbncn | n ≥ 0};
- crossed agreements: L2 = {anbmcndm | n,m ≥ 0};
- duplication: L3 = {ww | w ∈ {a, b}∗}.

Some authors [13, 26, 30] consider that such a family contains all CF languages
and present mechanisms that fabricate mildly context-sensitive families which
fully cover the CF but not the CS level of the Chomsky Hierarchy. However,
taking into account the linguistic motivation of the concept of MCS, the following
question arises: is it necessary that such a formalism generates all CF languages?
As some authors [2, 3, 14, 18] pointed out, natural languages could occupy
an orthogonal position in the Chomsky Hierarchy. In fact, we can find some
examples of natural language constructions that are neither REG nor CF and
also some REG or CF constructions that do not appear naturally in sentences.
Therefore, it is justified to give up the requirement of generating all CF languages
and we strive for formalisms which generate MCS languages in the above sense
and occupy an orthogonal position in the Chomsky Hierarchy (furthermore,
Gold [11] showed that any language class containing an infinite language and all
its finite sublanguages (such as CF) is not explanatory learnable from positive
data).

Iterative Learning of Simple External Contextual Languages 361

One example of a mechanism with these desirable linguistic properties is the
Simple External Contextual grammars (SECp,q grammars, where p, q are para-
meters discussed below). Note that, on the one hand, the corresponding class
SECp,q is, for p, q > 1, a mildly context-sensitive class, so the context-sensitive
structures that led to the non-context-freeness of natural languages (multiple
agreement, crossed agreement and duplication) can be covered by such gram-
mars [2]. On the other hand, such classes SECp,q are incomparable with the
families REG and CF, but included in CS [2] (that is, they occupy an orthogo-
nal position in the Chomsky Hierarchy). So, due to their properties, the SECp,q’s
may be appropriate candidates to model natural language syntax.1 Moreover, the
SECp,q grammar mechanism is (technically) quite simple and intuitively could
be explained as follows: In the sentence “Anton learns English” one could add
more objects and obtain “Anton learns English, French, German and Spanish”.
Similarly the sentence “Gerd goes to France, Spain and Holland on Thursday,
Saturday and Sunday, respectively” can be extended by expanding the list of
countries and corresponding days, but for each new country also a new day has
to be added. So, the idea is to start with an easy base sentence and then adding
new parts at several places in a consistent manner. One can think of the para-
meter p as the number of positions in a base where additions can be inserted
and the parameter q as the number of various contexts which can be inserted.

Becerra-Bonache and Yokomori [3] made the first attempt to learn these
SECp,q grammars from only positive data; they show that for each choice of
parameters p, q ≥ 1, SECp,q is explanatorily learnable from positive data. They
employ Shinohara’s results [29]. However, the learning algorithm derived from
their main result was not time-efficient. In [23], efficient learning of SECp,q for
some small values of the parameters p, q is considered.

The SECp,q classes have their roots in contextual grammars [19], which were
introduced with linguistic motivations (to model some natural aspects, like for
example the acceptance of a word only in certain contexts). For an overview
on contextual grammars the reader is referred to [22]. Fernau and Holzer [9]
investigated learnability of classes of external contextual languages different from
those of the present paper.

Human memory for past data seen seems to have limitations [17, 25, 31]. The
present paper is about a nicely memory-limited form of explanatory learning
from positive data called iterative learning. Each output grammar/hypothesis of
an iterative learner depends only on the just prior, if any, hypothesis it output
and on the string currently seen from an input listing of a language.

Our main positive results (Theorems 6 and 16 below in Sections 3 and 6,
respectively) actually feature polynomial time learnability. This roughly means
that the update time of the associated learner M is polynomial in the size of

1 We do not claim that an SEC grammar is the best model for the syntax of natural
languages or that we can describe all the constructions in natural languages by means
of these grammars. But we believe that SECp,q grammars have relevant properties
from a linguistic point of view and are an attractive approximate model for natural
language syntax that deserves further investigation.

362 L. Becerra-Bonache et al.

its previous hypothesis and the latest datum. Here the size of the hypotheses
themselves is bounded by a polynomial in the size of all the input data seen so far
(thus the learner is fair and runs in time polynomial in all the data seen so far). In
the prior literature on polynomial time explanatory learning (e.g., [16, 24, 33]),
there are a number of suggestions on how to rule out unfair delaying tricks such
as waiting for a long datum to have enough time to output a hypothesis actually
based on a much shorter earlier datum. Fortunately, iterative learning (as in the
present paper) is one of the best ways to rule out such delaying tricks. Intuitively,
this is because the learner M does not have available for employment its whole
history of past data. Theorem 6 says that, for each p, q ≥ 1, the class SECp,q

is iteratively learnable in polynomial time using a class-preserving hypothesis
space.

Of course, an iterative M can pad up its conjectured hypotheses to store a
limited amount of past data seen. For example, some dummy information not
affecting the semantics of a hypothesis can be added to it to, in effect, code in
some bounded information about past data. In fact the proof of the positive
result Theorem 6, depends on such a padding trick. It is thus interesting to see
if such a result can still hold if we outlaw padding tricks in some natural ways.

One way to outlaw padding is to require the hypothesis space to be one-one,
that is, to require that there is exactly one hypothesis available per relevant
language. Another main result (Theorem 11 below in Section 4) says that for
class-preserving one-one hypothesis spaces, for p ≥ 1, q ≥ 4, SECp,q is not it-
eratively learnable. By contrast, Theorem 16 provides, for each p, for a class
preserving one-one hypothesis space, polynomial time iterative learnability of
SECp,1.

For a consistent learner, every hypothesis conjectured by the learner must
generate all the data seen to that point. A conservative learner revises its hy-
pothesis only if a current datum is inconsistent with it. Iterative learners which
are both consistent and conservative are restricted in how much padding they
can use. Another main result is that, for p ≥ 1, q ≥ 2, SECp,q is not learnable by
consistent and conservative iterative learners using a class-preserving hypothesis
space.

In the remainder of the present paper, for the values of q not covered in each
of the just above two paragraphs, we provide some partial results.

2 Notation and Preliminaries

For any unexplained recursion theoretic notation, the reader is referred to the
textbook of Rogers [27]. The symbol N denotes the set of natural numbers, {0, 1,
2, 3, . . .}. For S a finite, non-empty subset of N, gcd(S) denotes the greatest
common divisor of the elements in S. Σ denotes a finite alphabet set. Subsets of
Σ∗ are referred to as languages. The symbols ∅, ⊆, ⊂, ⊇ and ⊃ denote empty set,
subset, proper subset, superset and proper superset, respectively. The cardinality
of a set S is denoted by |S|. Let |x| denote the length of the string x, where we
take, then, x = x(0)x(1) . . . x(|x| − 1). For n < |x| let x[n] denote the string

Iterative Learning of Simple External Contextual Languages 363

formed from the first n characters of x. For i, j with i ≤ j < |x| let x[i, j] denote
the substring x(i)x(i + 1) . . . x(j); if j < i or i ≥ |x| or j ≥ |x| then x[i, j] = ε,
the empty string. Furthermore x · y or just xy denotes the concatenation of the
strings x and y.

We often use regular expressions to define languages: For example, A + B
denotes the union A∪B, x denotes {x}, A− x denotes the set A−{x}, A ·B =
{x · y : x ∈ A, y ∈ B}. For example, aa(bb + cc)∗ = {a · a · x : x ∈ {b · b, c · c}∗}
and a3 · a∗ = {an : n ≥ 3}.

We now present concepts from language learning theory. Sets of the form
{x : x < n}, for some n, are called initial segments of N. A (finite) sequence σ is
a mapping from an initial segment of N into (Σ∗ ∪ {#}). The empty sequence
is denoted by λ. The content of a sequence σ, denoted ctnt(σ), is the set of
elements occurring in σ that are different from #. The length of σ, denoted by
|σ|, is the number of elements in σ. So, |λ| = 0. For n ≤ |σ|, the initial sequence
of σ of length n is denoted by σ[n]. So, σ[0] is λ. Intuitively, #’s represent pauses
in the presentation of data. We let σ, τ and γ range over finite sequences.

There are two types of concatenation: - is the symbol for concatenation of
sequences (including those consisting of one string only) while · denotes the
concatenation of strings or sets of strings. So a3-a5-a8 is the sequence a3, a5, a8;
while a3 · a5 · a8 is the string a16.

A text [11] for a language L is a mapping T from N into (Σ∗ ∪ {#}) such
that L is the set of all strings occurring in the range of T . T (i) represents the
(i+1)-th element in the text. The content of a text T , denoted by ctnt(T), is the
set of elements occurring in T that are different from #; that is, the language
which T is a text for. T [n] denotes the finite initial sequence of T with length n.

Definition 1 (Case, Gold, Lange, Lynes, Wiehagen and Zeugmann [6,
11, 17, 32]). Let H0, H1, H2, . . . be the underlying hypothesis space.

(a) An iterative learner or, in this paper, just learner, is a total recursive
mapping M from (N ∪ {?}) × (Σ∗ ∪ {#}) to N ∪ {?}. The definition of M is
extended to finite sequences by

∀n ∀x0, x1, x2, . . . , xn ∈ Σ∗ ∪ {?} [M(x0 - x1 - x2 - . . . - xn) =
M(M(. . .M(M(M(?, x0), x1), x2), . . .), xn)]

and every expression M(σ) for σ a finite sequence, refers to this extension.
(b) M learns a language L from text T iff there is an index e with He = L

and M(T [n]) = e for almost all n.
(c) A class L of languages is iteratively learnable iff there is an iterative learner

M such that M learns every language L ∈ L from every text T for L.2

2 In (a) above in this definition, we required M to be total recursive instead of just
partial recursive, where, for successful iterative learning of a language L, M would
have to be defined on the initial segments on any text for L. It is a folk result that
this makes a difference as to what can be iteratively learned (see [7] for a proof).
Our positive results happen to hold for total iterative learners M and our negative
results would also hold if we removed the totality restriction. It is for expository
convenience that we consider herein, for our negative results, total iterative learners.

364 L. Becerra-Bonache et al.

Intuitively, an iterative learner [17, 32] is a learner whose hypothesis depends only
on its last conjecture and current input. That is, for n ≥ 0, M(T [n + 1]) can be
computed algorithmically from M(T [n]) and T (n). Here, note that M(T [0]) = ?.

Definition 2 (L. and M. Blum and Fulk [4, 10]). σ is said to be a stabilizing
sequence for M on L iff (a) ctnt(σ) ⊆ L and (b) M(σ - τ) = M(σ) for all τ with
ctnt(τ) ⊆ L. Furthermore, σ is said to be a locking sequence for M on L iff both
σ is a stabilizing sequence for M on L and M(σ) is an index of L.

If M learns L, then every stabilizing sequence for M on L is a locking sequence
for M on L. Furthermore, one can show that if M learns L, then for every σ
such that ctnt(σ) ⊆ L, there exists a locking sequence for M on L which extends
σ, see [4, 10].

Definition 3 (Angluin and L. and M. Blum [1, 4]). Let H0, H1, H2, . . .
be the hypothesis space used by M .

(a) M is said to be consistent iff, for all texts T and all n ∈ N, ctnt(T [n]) ⊆
HM(T [n]). (b) M is said to be conservative iff, for all texts T and all n ∈ N,
ctnt(T [n + 1]) ⊆ HM(T [n]) implies M(T [n + 1]) = M(T [n]).

Kudlek, Mart́ın-Vide, Mateescu and Mitrana [14] introduced and studied a mech-
anism to fabricate MCS families of languages called p-dimensional external con-
textual grammars.

Let p ≥ 1 be a fixed integer. A p-word is a p-tuple (w1, w2, . . . , wp) of strings.
A p-context is a 2p-word. An SECp,q language can be represented by an SECp,q

grammar defined as follows.

Definition 4 (Becerra-Bonache and Yokomori [3]). Fix Σ. A simple ex-
ternal contextual grammar with parameters p and q (an SECp,q grammar) is a
pair G = (base, C), where base is a p-word over Σ, and C is a set of p-contexts
of cardinality at most q.

Given a p-word w = (w1, w2, . . . , wp) and a p-context u = (u1, u2, . . . , u2p−1, u2p),
gen(w, u) is the p-word (u1w1u2, u3w2u4, u5w3u6, . . . , u2p−1wpu2p). We general-
ize the definition of gen to multiple contexts by saying gen(w,C) = {gen(w, u) :
u ∈ C}.

Suppose that a p-word base and a set C of p-contexts are given. Then
Lang(base, C) is obtained by considering the smallest set S satisfying the fol-
lowing two conditions:

– base ∈ S;
– If p-word w ∈ S and p-context u ∈ C, then gen(w, u) ∈ S.

By Kleene’s Minimal Fixed-Point Theorem [27], such a set S uniquely exists and
is recursively enumerable. Now

Lang(base, C) = {w1w2 . . . wp : (w1, w2, . . . , wp) ∈ S}.

We refer to (base, C) as grammar for Lang(base, C) and let Gp,q = {(base, C) :
base is a p-word and C is a set of at most q p-contexts }. Let SECp,q =

Iterative Learning of Simple External Contextual Languages 365

{Lang(base, C) : base is a p-word and C is a set of at most q p-contexts }.
Furthermore, let SECp,∗ =

⋃
j∈{1,2,...} SECp,j and SEC∗,q =

⋃
j∈{1,2,...} SECj,q.

For example, {anbncn | n > 0} is generated by the following SEC2,1 grammar:
G2,1 = (base = (λ, λ), context1 = (a, b, c, λ)).

We define the size of various objects of importance. The size of a string w is
the length of the string w. The size of a p-word is the sum of p and the sizes of
the strings in it. The size of a context set C is the sum of the cardinality of C and
the sizes of the contexts in it. The size of a grammar G is the size of its base plus
the size of its context set. The size of a finite sequence x0 -x1 -x2 - . . .-xn is the
sum of n + 1 and the size of all strings x0, x1, x2, . . . , xn in this finite sequence.

For us, an iterative learner M runs in polynomial time iff both its update-
function M(e, x) runs in time polynomial in the size of e and x and the size of
M(σ) is polynomially bounded in the size of σ for every finite sequence σ.

We say a learner which learns a class L is class-preserving iff its underlying
hypothesis space does not generate any languages outside L [15].

3 SECp,q Is Consistently Iteratively Learnable

Kudlek, Mart́ın-Vide, Mateescu and Mitrana [14] noted that the membership
question for languages in SECp,q is decidable in polynomial time.

Lemma 5. Fix p, q and let (base, C) be a member of Gp,q. Given a string x, it is
decidable in polynomial time (in size of x, base, C) whether x ∈ Lang(base, C).
The degree of the polynomial is linear in p and independent of q.

Theorem 6. For each p, q ∈ {1, 2, 3, . . .}, SECp,q has a polynomial time iter-
ative consistent learner M which uses a class-preserving hypothesis space. The
runtime of M (measured in terms of the size of the previous hypothesis and cur-
rent input-datum) and the size of M ’s conjecture (measured in terms of the size
of all input data seen so far) are bounded by a polynomial of degree linear in pq.

Proof. A pair of base/context set (base, C) is said to minimally generate a set
Z iff both Z ⊆ Lang(base, C) and for no C′ ⊂ C, Z ⊆ Lang(base, C′).

For a fixed p, q, let XZ denote the set of elements of Gp,q which minimally
generate Z. For any string x, one can determine X{x}, by considering all possible
(base, C), such that

– base = (w1, w2, . . . , wp) where each wi is a substring of x,
– for each member (u1, u2, . . . , u2p−1, u2p) of C, each ui is a substring of x,
– C contains at most q contexts,
– (base, C) minimally generates {x}.

Note that this can be done in polynomial time in length of x, as the number of
possible substrings of x is at most (|x| + 1)2, and thus the number of possible
grammars (base, C) is at most ((|x| + 1)2)p+2pq (note that if the number of
contexts is less than q, one could consider the rest of the contexts as “empty”).

Furthermore, for a nonempty set Z, given XZ and X{x}, note that XZ∪{x}
consists of grammars (base, C) ∈ Gp,q such that

366 L. Becerra-Bonache et al.

– for some C′, C′′ satisfying C = C′ ∪ C′′ it holds that (base, C′) ∈ XZ and
(base, C′′) ∈ X{x},

– no C′′′ ⊂ C satisfies the property above (for the given base with C′′′ in place
of C).

Thus, one can determine XZ∪{x} from XZ and x in time polynomial in |x| and
size of XZ . Furthermore, size of XZ is polynomial in size of Z (as each string
in the base/contexts is a substring of one of the strings in Z and there are at
most q contexts in each (base, C) ∈ XZ). Thus, one can compute XZ∪{x} in time
polynomial in size of Z ∪ {x}, given XZ and x.

Now consider an arbitrary text T . Then we claim that limn→∞ Xctnt(T [n]) con-
verges. This can be seen as follows. One may assume without loss of generality
that T does not contain any # (as input # does not lead to modification of
Xctnt(T [n])). Now consider a forest formed as follows. F1 consists of |Xctnt(T [1])|
roots corresponding to each member of Xctnt(T [1]) (labeled using the correspond-
ing member). By induction we will have that Xctnt(T [n]) would be a subset of
leaves of the forest Fn. Fn+1 is constructed by possibly adding some children
to leaves of Fn as follows. If (base, C) ∈ Xctnt(T [n+1]) − Xctnt(T [n]), then pick
a (base, C′) ∈ Xctnt(T [n]) such that C′ ⊂ C (there exists such a (base, C′) by
construction). Add (base, C) as a child of (base, C′). As the depth of the forest
is at most q and the number of roots and the branching factor at any node is
finite, the sequence F1, F2, . . . converges.

Now one considers iterative learning of SECp,q. Let g(·) be a 1–1 polyno-
mial time computable and polynomial time invertible coding of all finite sets
of grammars over Gp,q. The learner uses a class-preserving hypothesis space
H such that Hg(X) is for a minimal language in {Lang(G) : G ∈ X} (for
X = ∅, we let g(X) to be grammar for {ε}). Note that such a class-preserving
hypothesis space H can be constructed by letting, for X �= ∅, x ∈ Hg(X) iff
x ∈ Lang(base, C) for all (base, C) ∈ X such that (∀y length lexicographi-
cally smaller than x)[y ∈ Lang(base, C) ⇔ y ∈ Hg(X)]. In the construction of
Hg(X), minimal language instead of intersection of languages is used to have
a class-preserving hypothesis space rather than class-comprising one (a class-
comprising hypothesis space can also have hypotheses for languages not in the
class of languages under consideration [15]).

The learner, on input T [n], outputs the hypothesis g(Xctnt(T [n])), if ctnt(T [n])
�= ∅. Otherwise, the learner outputs ?. Note that Xctnt(T [n+1]) can be iteratively
computed using T (n) and Xctnt(T [n]) (which can be obtained from g(Xctnt(T [n]))).
Here note that, if the input language belongs to SECp,q, then (a) every grammar
in limn→∞ Xctnt(T [n]) contains the input language, (b) there is a grammar for
the input language in limn→∞ Xctnt(T [n]). Thus, for large enough n, Hg(XT [n]) is
the input language. �

Corollary 7. Suppose G is a recursive subset of Gp,q such that

– for all C′ ⊆ C, (base, C) ∈ G ⇒ (base, C′) ∈ G,
– for all p-words base, (base, ∅) ∈ G,
– for all G,G′ ∈ G, one can effectively check whether Lang(G) ⊆ Lang(G′).

Iterative Learning of Simple External Contextual Languages 367

Then,
(a) L = {Lang(G) : G ∈ G} is conservatively iteratively learnable using a

class-preserving hypothesis space (this learner however may not be consistent);
(b) for each G ∈ G, one can effectively find a D(G) such that, for all G′ ∈ G,

if D(G) ⊆ Lang(G′), then Lang(G) ⊆ Lang(G′).

Proof. This follows using slight modification of the proof of Theorem 6 above.
To define XZ , as in Theorem 6 proof, we only use grammars from G. Also, g is a
coding for all finite sets of grammars from G. The hypothesis space H ′ used by
the learner is defined by using H ′

2g(Xctnt(T [n]))
to be Hg(Xctnt(T [n])), where H is as

defined in proof of Theorem 6 (for the modified g). We let H ′
1+2g(Xctnt(T [n]))

to
contain just the shortest element generated by all the grammars in Xctnt(T [n]). On
input T [n], the learner outputs 2g(Xctnt(T [n])) if Xctnt(T [n]) contains a grammar
G such that, for all G′ ∈ Xctnt(T [n]), Lang(G) ⊆ Lang(G′). Otherwise, the
learner outputs 1 + 2g(Xctnt(T [n])).

The above learner is conservative: if the previous hypothesis output was
2g(Xctnt(T [n])) or 1 + 2g(Xctnt(T [n])), and the new input T (n) belongs to the
corresponding language, then T (n) belongs to all Lang(G), G ∈ Xctnt(T [n]), and
thus Xctnt(T [n+1]) = Xctnt(T [n]).

Define D(G) as follows. Consider a text T for Lang(G). Then, one could iter-
atively construct Xctnt(T [n]) until an n is found such that, for all G′ ∈ Xctnt(T [n]),
Lang(G) ⊆ Lang(G′). Then D(G) = ctnt(T [n]) satisfies (b). �
A tell-tale set [1] of a language L ∈ L, is a finite set S ⊆ L such that, for all
L′ ∈ L, if S ⊆ L′, then L′ �⊂ L. Note that D(G) as defined in Corollary 7 is a
tell-tale set.

Suppose G ⊆ Gp,q satisfies the preconditions as in Corollary 7. Suppose further
that, for all G,G′ ∈ G, Lang(G) �⊆ Lang(G′) implies there exists an x of length
at most polynomial in the size of G,G′ such that x ∈ Lang(G)−Lang(G′). Then
the proof of Corollary 7 can be used to give a tell-tale set of polynomial size, as
the branching factor of the forest formed in the proof of Theorem 6 would then
be polynomially bounded in the size of G, when one considers an increasing text
T for the input language.

For |Σ| = 1, SECp,q = SEC1,q, as the order of words in the base/contexts
does not matter. Furthermore, Lang(G) is regular for each G ∈ G1,q (where the
automata for accepting Lang(G) can be effectively obtained from G). Thus, for
|Σ| = 1, p, q ∈ N, SECp,q is conservatively iteratively learnable. The following
proposition generalizes this to SECp,∗.

Proposition 8. Fix Σ = {a}. Then, SEC1,∗ is iteratively learnable using a class
preserving hypothesis space. The learner can be made consistent or conservative
(but not both simultaneously).

Proof. We first define D(G), effectively obtainable from G, such that, for all
G′ ∈ G1,∗, if D(G) ⊆ Lang(G′) then Lang(G) ⊆ Lang(G′). For ease of notation,
we consider G ∈ G1,∗ to be of the form (an, S), with Lang(G) = anS∗, where S
is a finite set of strings.

368 L. Becerra-Bonache et al.

Consider G = (an, S). If S = ∅, then D(G) = {an}. If S = {ai1 , ai2 , . . . , air}
is not empty, then let m = gcd({i1, i2, . . . , ir}). Thus, Lang(G) is a finite variant
of an(am)∗. Let i be minimal such that anai∗m and anaim+m ∈ Lang(G). Now,
for any set S′,

– If an ∈ as(S′)∗, then s ≤ n;
– if {an+im, an+im+m} ⊆ as(S′)∗, then as{an+im−s, an+im+m−s}∗ ⊆ as(S′)∗;
– for s ≤ n, Lang(G) − as{an+im−s, an+im+m−s}∗ is finite and one can effec-

tively (from s) find this set.

Let D(G)={an, an+im, an+im+m}∪
⋃

s≤n[Lang(G)−as{an+im−s, an+im+m−s}∗].
It follows that any language in SEC1,q containing D(G) also contains Lang(G).

Now we can use the methods of Theorem 6 and Corollary 7 to obtain iterative
consistent or iterative conservative learner. Note that existence of D(G) as above
is enough to guarantee the convergence of Xctnt(T [n]) for texts T for Lang(G),
as needed for learnability. �

Theorem 9. Suppose that {a, b} ⊆ Σ. Then SEC1,∗ is not explanatorily learn-
able.

Proof. Let Li = {abj : j ≤ i}∗. Let H = {ax : x ∈ {a, b}∗}. Note that L0 ⊂
L1 ⊂ L2 ⊂ . . . ⊂ H and H =

⋃
i∈N

Li. Furthermore, L0, L1, L2, . . . , H ∈ SEC1,∗.
Thus, SEC1,∗ is not explanatorily learnable, by a result of Gold [11]. �

4 Padding Is Necessary

Padding naturally needs that there are several hypotheses for at least some of
the languages involved. Therefore it is natural to ask how learnability is affected
in the case that there is only one grammar for each language in the class to be
learnt. In such a situation, it is of course also needed to consider class-preserv-
ing hypothesis spaces as otherwise hypotheses for languages outside the class
could be used to store information intermediately. For the following, since we
are considering one-one hypothesis spaces, we often identify the language with
its grammar.

Remark 10. Let a class-preserving one-one hypothesis space H0, H1, H2, . . .
of some class and an iterative learner M for this class be given. Then M is
conservative. One can even show the following more strict variant:

(∀σ)(∀x ∈ HM(σ))[M(σ - x) = M(σ)].

If this condition would fail for some σ and x ∈ HM(σ), the learner M would
not learn HM(σ) from any text T containing infinitely many x. This holds as
for every n with T (n) = x, either M(T [n]) �= M(σ) or M(T [n + 1]) �= M(σ),
although M(σ) is the only index of that language.

Theorem 11. Suppose that q ∈ {4, 5, 6, . . . , ∗} and p ∈ {1, 2, 3, . . . , ∗}. Then
SECp,q is not iteratively learnable using a class preserving one-one hypothesis
space.

Iterative Learning of Simple External Contextual Languages 369

Proof. Suppose by way of contradiction that some iterative learner M learns
SEC1,q using a class preserving one-one hypothesis space. Let H be the set
described by the hypothesis M(σ1) where σ1 = a4 - a5 (if M(σ1) = ?, then
clearly M cannot distinguish between texts for a4a∗ and a6a∗). The set H is not
empty and has thus a shortest element, let n be its length. Now consider the
following cases where Case i is only taken if no Case j with j < i applies.

Case 1: H �⊆ a∗. Let x ∈ H − a∗ and let T be a text for a∗x∗ − {x}. This
language is in SEC1,4 as one can generate it with base ε and the four contexts
(a, ε), (a, x), (ε, x2) and (ε, x3). As M is conservative, M(σ1 -x) = M(σ1); so M
converges on the text σ1-x-T and the text σ1-T to the same hypotheses although
these are texts for the different languages a∗x∗ and a∗x∗ − {x}, respectively.

Case 2: n < 4. Let T be a text for an+1 ·a∗. As M is conservative, it converges
to the same hypothesis on the texts σ1 - T and σ1 - an - T , which are texts for
different languages in SEC1,4.

Case 3: n > 4. In this case let σ2 be a stabilizing sequence for M on H . Let
T be a text for a5a∗. Then, M on σ2 -T converges to the same hypothesis as on
σ1 - T , though they are texts for different languages in SEC1,3.

Case 4: n = 4 and a5 /∈ H . In this case, let T be a text for a4(a2 + a3)∗ and
let σ3 be locking sequence for M on H . Now the learner converges to the same
grammar on σ3 -T as on σ1 -T , though these are texts for a4(a2 +a3)∗ and a4a∗

respectively.
Case 5: H = a4 a∗. As M is conservative, M(σ1 - a6) = M(σ1). Now let T be

a text for a(a3 + a4)∗. The learner M converges on σ1 - a6 - T and on σ1 - T
to the same grammar, though these are respectively the texts for the languages
a(a3 + a4 + a5)∗ and a(a3 + a4)∗.

Hence, in all five cases, the learner M fails to infer some language it should
infer. It is easy to see that the case-distinction is exhaustive. So, the theorem
follows. �
Another method to hinder padding is to require that a learner is consistent
and conservative. Consistency enforces that the learner has to incorporate new
data in a reasonable way so that no padding can be done by choosing a bogus
hypothesis, conservativeness rules out updating done for data-storage purposes
only.

Proposition 12. Suppose that q ∈ {2, 3, 4, . . . , ∗}. Then SECp,q has no consis-
tent and conservative iterative learner using a class-preserving hypothesis space.

5 Learnability and the Unary Alphabet

The previous section leaves open whether SECp,1, SECp,2 and SECp,3 can be
iteratively learnt using a class-preserving one-one hypothesis space. While this
question will be answered positively for SECp,1 by Theorem 16 below, it remains
open for SECp,2 and SECp,3. The main purpose of this section is to close this
gap for the case that the alphabet has size 1 and hence the situation is easier
to clarify. Note that the proof of Theorem 11 needs q ≥ 4 only in Case 1.

370 L. Becerra-Bonache et al.

In the other cases, the languages considered (an a∗, a4(a2 + a3)∗, a(a3 + a4)∗,
a(a3 + a4 + a5)∗) are all in SEC1,3. Hence, one has for Σ = {a} that SECp,3 is
also not iteratively learnable using a class-preserving one-one hypothesis space.

Corollary 13. Suppose that |Σ| = 1. Then SECp,3 is not iteratively learnable
using a class preserving one-one hypothesis space.

Theorem 14. Suppose Σ = {a}. Then SEC1,2 is not iteratively learnable using
a class preserving one-one hypothesis space.

Remark 15. Note that for |Σ| = 1, SECp,1 = SEC1,1 and SECp,1 has a con-
sistent and conservative iterative learner which uses a class preserving one-one
hypothesis space. If the input language is a singleton ar, then the learner conjec-
tures {ar}. Otherwise, the learner conjectures ar(as)∗, where ar is the shortest
string seen so far and s = gcd({i : i �= 0, ar+i is seen in the input so far}).
Note that, for nonempty S with 0 �∈ S, gcd({j} ∪ S) = gcd({j, gcd(S)}). Also,
gcd({j} ∪ {i + j : i ∈ S}) = gcd({j, gcd(S)}). Thus, s = gcd({i : i �= 0, ar+i is
seen in the input so far}), can always be computed using the new datum and
the previous hypothesis.

6 Classes with One Context Only

For arbitrary alphabet size, we do not yet know if SECp,1 can be consistently
iteratively learnt using a class preserving one-one hypothesis space. However, we
show in this section that one can do so if the consistency requirement is dropped.

In the theorem below, the degree of the polynomial bounding the runtime of
M depends linearly on p. The size of the hypothesis (measured in terms of the
size of all input data seen so far) is linear.

Theorem 16. Suppose p ∈ {1, 2, 3, . . . , ∗}. Then SECp,1 is iteratively learnable
in polynomial time using the hypothesis space Gp,1. Moreover, one can even use
a class preserving one-one hypothesis space in place of Gp,1.

7 A Special Case

In this section, a subclass of SECp,q consisting of regular sets only will be consid-
ered which is defined as follows: Rp,q = {x1 ·Y ∗

1 ·x2 ·Y ∗
2 ·...·xp ·Y ∗

p : x1, x2, ..., xp ∈
Σ∗, Y1, Y2, ..., Yp ⊆ Σ∗, |Y1| + |Y2| + ... + |Yp| ≤ q}.

This subcase is obtained by permitting only right contexts and by requiring
that the strings in every context are different from ε at only one place. Note that
Rq+1,q = R∗,q and for the unary alphabet SECp,q = R1,q.

Remark 17. As one can construct, for each language in Rp,q, a finite automa-
ton accepting it, the inclusion-problem for these languages is decidable. Thus,
by Corollary 7

Iterative Learning of Simple External Contextual Languages 371

– Rp,q is conservatively learnable and
– there is a recursive function which computes for every L ∈ Rp,q (given

in adequate form) a finite subset D(L) of L such that, for all H ∈ Rp,q,
D(L) ⊆ H ⇒ L ⊆ H .

Remark 18. For q ∈ {6, 7, 8, . . . , ∗}, one cannot iteratively learn Rp,q using a
one-one class-preserving hypothesis space. This holds as the learner on input
a4, a5 either produces a hypothesis L ⊆ a∗ which then can be diagonalized as
shown in Theorem 11 or it produces a hypothesis L which contains some x /∈ a∗.
In the latter case, the learner cannot distinguish the language {a, x}∗ from the
language {a, xx, xxx, ax, xa, xax}∗ = {a, x}∗−{x}. We are not able to use q = 4
or q = 5 as in the proof of Theorem 11, as the language given there for this case
is not in R5,4.

If Σ = {a} then one cannot iteratively learn Rp,2 using a class-preserving one-
one hypothesis space by Theorem 14. Our next result shows that this is possible
in the case that |Σ| ≥ 3 and hence there is a proven dependence on the alphabet
size.

Suppose Σ ⊇ {a, b, c}. Let SL =
⋃

r≥max((s2)3+3s2,1001) a
rbrc{a, b}∗, where s2

is the length of the second shortest string in L.

Theorem 19. For any L,L′ ∈ R3,2, if L − SL ⊆ L′, then SL ∩ L ⊆ L′ (and
thus, L ⊆ L′).

Now one can conclude the following result on the learnability of R3,2 when the
alphabet size is at least 3.

Theorem 20. If {a, b, c} ⊆ Σ then R3,2 can be iteratively learnt using a class
preserving one-one hypothesis space.

Proof. One can use the following iterative algorithm for learning R3,2 using
a class preserving one-one hypothesis space. On input # do not change the
hypothesis. If the input is a string w then proceed according to that of the
following cases which is applicable.

1. If the previous hypothesis was ?, then output a grammar for {w}.
2. If the previous hypothesis contains w, then repeat the hypothesis.
3. If the previous hypothesis H does not contain w and H is not of the form

ahbhc{a, b}∗ for some h > 0, then let S = D(H)∪{w}. Let k be a code for S.
Let n be the length of the second smallest string in S. Output a hypothesis
for ambmc{a, b}∗, where m = 2k(2n3 + 4n + 1001).

4. If the previous hypothesis H of the learner does not contain w and is of
the form ambmc{a, b}∗ for some m > 0, then let S′ be the set coded by
k′ = max{k′′ : 2k′′

divides m} and let S = S′ ∪ {w}.
- If there is an L ∈ R3,2 such that for all L′ ∈ R3,2 the implication
S ⊆ L′ ⇒ L ⊆ L′ holds, then output the hypothesis for L. Note that
the above condition on S and L can be checked by just constructing
XS as in proof of Theorem 6, by checking if a grammar for L is in XS

and by checking whether each hypothesis in XS , which belongs to R3,2,
contains L.

372 L. Becerra-Bonache et al.

- Otherwise, let k be code for finite set S and let n be the length of the
second smallest string in S. Output a hypothesis for ambmc{a, b}∗, where
m = 2k(2n3 + 4n + 1001).

Note that each set of the form ambmc{a, b}∗, does not have a proper superset
in R3,2. Thus, in step 4, when we see a data outside the hypothesis, we know
that coding must have been used. Note furthermore that 2k(2n3 + 4n+ 1001) >
n3 + 3n2 and 2k(2n3 + 4n + 1001) > 1000. Thus the condition of Theorem 19
on the choice of m is satisfied. It follows easily from Theorem 19 that the above
algorithm learns R3,2 using a class preserving one-one hypothesis space. �

Acknowledgments. We thank Samuel E. Moelius III and the anonymous ref-
erees of ALT 2008 for useful comments.

References

[1] Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

[2] Becerra-Bonache, L.: On the Learnability of Mildly Context-Sensitive Languages
Using Positive Data and Correction Queries. PhD thesis, Rovira i Virgili Univer-
sity (2006)

[3] Becerra-Bonache, L., Yokomori, T.: Learning mild context-sensitiveness: toward
understanding children’s language learning. In: Paliouras, G., Sakakibara, Y. (eds.)
ICGI 2004. LNCS (LNAI), vol. 3264, pp. 53–64. Springer, Heidelberg (2004)

[4] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Infor-
mation and Control 28, 125–155 (1975)

[5] Bresnan, J., Kaplan, R.M., Peters, S., Zaenen, A.: Cross-serial dependencies in
Dutch. Linguistic Inquiry 13, 613–635 (1982)

[6] Case, J., Lynes, C.: Inductive inference and language identification. In: Ninth
International Colloquium on Automata, Languages and Programming (ICALP
1982). LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)

[7] Case, J., Moelius, S.E.: Parallelism increases iterative learning power. In: Hutter,
M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp.
41–55. Springer, Heidelberg (2007)

[8] Chomsky, N.: Three models for the description of language. IRE Transactions on
Information Theory 3, 113–124 (1956)

[9] Fernau, H., Holzer, M.: External contextual and conditional languages. In: Re-
cent Topics in Mathematical and Computational Linguistics, Papers in Honor
of Solomon Marcus on the Occasion of his 75th Birthday, pp. 104–120. Editura
Academiei Româe, Bucuresti (2000)

[10] Fulk, M.: Prudence and other conditions on formal language learning. Information
and Computation 85, 1–11 (1990)

[11] Gold, E.M.: Language identification in the limit. Information and Control 10,
447–474 (1967)

[12] Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required
to provide reasonable structural descriptions? In: Natural Language Parsing, pp.
206–250. Cambridge University Press, Cambridge (1985)

[13] Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. Handbook of Formal Lan-
guages, vol. 3, pp. 69–123. Springer, Heidelberg (1997)

Iterative Learning of Simple External Contextual Languages 373

[14] Kudlek, M., Mart́ın-Vide, C., Mateescu, A., Mitrana, V.: Contexts and the concept
of mild context-sensitivity. Linguistics and Philosophy 26, 703–725 (2003)

[15] Lange, S., Zeugmann, T.: Language learning in dependence on the space of hy-
potheses. In: Proceedings of the Sixth Annual Conference on Computational
Learning Theory, COLT 1993, pp. 127–136. ACM Press, New York (1993)

[16] Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages.
New Generation Computing 8, 361–370 (1991)

[17] Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of
Computer and System Sciences 53, 88–103 (1996)

[18] Manaster-Ramer, A.: Some uses and abuses of mathematics in linguistics. In: Is-
sues in Mathematical Linguistics, pp. 73–130. John Benjamins, Amsterdam (1999)

[19] Marcus, S.: Contextual grammars. Revue Roumaine des Mathématiques Pures et
Appliquées 14, 1525–1534 (1969)

[20] Marcus, S., Paun, G., Mart́ın-Vide, C.: Contextual grammars as generative models
of natural languages. Computational Linguistics 24(2), 245–274 (1998)

[21] Parikh, R.J.: On context-free languages. Journal of the ACM 13, 570–581 (1966)
[22] Paun, G.: Marcus Contextual Grammar. Kluwer Academic Publishers, Nether-

lands (1997)
[23] Oates, T., Armstrong, T., Becerra-Bonache, L., Atamas, M.: Inferring grammars

for mildly context-sensitive languages in polynomial-time. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 137–147. Springer, Heidelberg (2006)

[24] Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke,
K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989)

[25] Osherson, D.N., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge
(1986)

[26] Roach, K.: Formal properties of head grammars. In: Manaster-Ramer, A. (ed.)
Mathematics of Language, pp. 293–348. John Benjamins, Amsterdam (1987)

[27] Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York (1967)

[28] Shieber, S.M.: Evidence against the context-freeness of natural language. Linguis-
tics and Philosophy 8, 333–343 (1985)

[29] Shinohara, T.: Rich classes inferable from positive data: Length-bounded elemen-
tary formal systems. Information and Computation 108, 175–186 (1994)

[30] Steedman, M.: Dependency and coordination in the grammar of Dutch and Eng-
lish. Language 61, 523–568 (1985)

[31] Wexler, K., Culicover, P.W.: Formal Principles of Language Acquisition. MIT
Press, Cambridge (1980)

[32] Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Elektronische Informationsverarbeitung und Kybernetik 12, 93–99 (1976)

[33] Yoshinaka, R.: Learning efficiency of very simple grammars from positive data.
In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI),
vol. 4754, pp. 227–241. Springer, Heidelberg (2007)

Topological Properties of Concept Spaces

Matthew de Brecht and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University
Yoshida Honmachi, Sakyo-ku, Kyoto, Japan 606-8501

matthew@iip.ist.i.kyoto-u.ac.jp
akihiro@i.kyoto-u.ac.jp

Abstract. Based on the observation that the category of concept spaces
with the positive information topology is equivalent to the category of
countably based T0 topological spaces, we investigate further connections
between the learning in the limit model of inductive inference and topol-
ogy. In particular, we show that the “texts” or “positive presentations”
of concepts in inductive inference can be viewed as special cases of the
“admissible representations” of computable analysis. We also show that
several structural properties of concept spaces have well known topo-
logical equivalents. In addition to topological methods, we use algebraic
closure operators to analyze the structure of concept spaces, and we show
the connection between these two approaches. The goal of this paper is
not only to introduce new perspectives to learning theorists, but also
to present the field of inductive inference in a way more accessible to
domain theorists and topologists.

1 Introduction

It is well known among learning theorists that there are many connections be-
tween topology and inductive inference [16, 21], and that some important notions
in inductive inference can be easily formalized by introducing the positive in-
formation topology on to a concept space [18]. Here we take “concept space” to
mean a subset of the powerset of natural numbers. What is less well known is that
every countably based T0 topological space is homeomorphic to some concept
space. Therefore, it is important to clarify the connection between properties
of concept spaces proposed by learning theorists and properties of topological
spaces, which is one of the goals of this paper. For example, we show that the
property that every concept has a finite tell-tale [1] is equivalent to a separation
axiom that has been around since the early 1960’s [3], and also that “texts” or
“positive presentations” are a special kind of the admissible representations [25]
used in computable analysis [27].

In addition to topological methods, we also use algebraic closure operators
to analyze structural properties of concept spaces. This should not be confused
with the topological closure operator defined on the concept space, instead we are
referring to an operator defined on the set of natural numbers that arises when
one embeds the concept space into a minimal algebraic closed set system. This

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 374–388, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Topological Properties of Concept Spaces 375

approach has the benefit that it retains some information about the structure of
a concept space that is lost when we take a purely topological view.

Another one of our goals is to explain some of the basic concepts of inductive
inference in a way more accessible to domain theorists and topologists. It is our
hope that this will promote a more fluid exchange of ideas between these fields.

We do not consider computability issues in this paper, and so the learners
we consider will be non-computable in general. In the next section we introduce
concept spaces and learning in the limit with an emphasis on the topologi-
cal characteristics of these notions. We introduce algebraic closure operators in
the third section. In the fourth section, we analyze some well known structural
properties of concept spaces using topology and algebraic closure operators. We
conclude in the fifth section.

2 Concept Spaces and Learning in the Limit

We assume the reader has a basic knowledge of topology [15]. In this paper,
X ⊆ Y will mean that X is a subset of Y , and X ⊂ Y will mean that X is a
proper subset of Y . We denote set difference by X \ Y . Given a function f from
a set X to a set Y , X will be called the “domain” of f , and Y the “codomain” of
f . The range of f will be denoted rng(f). The image of a subset S ⊆ X under f
will be denoted f(S). Given functions f and g such that the domain of g equals
the codomain of f , their composition will be denoted g ◦ f . The set of natural
numbers will be denoted by N. A concept space is a collection of subsets of N. An
element of a concept space is called a concept. Given a concept space L and any
subset S of N, we define ↑LS = {L ∈ L |S ⊆ L} and ↓LS = {L ∈ L |L ⊆ S}.

Definition 1 (Luo and Schulte [18]). Let L be a concept space. A subset of
L is called a Π-basic open set if and only if it is equal to ↑L F for some finite
subset F of N. An arbitrary union (including the empty union) of Π-basic open
sets is called a Π-open set. Π-closed sets and Π-clopen sets are defined as usual.
The resulting topology is called the positive information topology (Π-topology)
on the concept space L. A mapping between concept spaces that is continuous
with respect to the Π-topologies is said to be Π-continuous. �	

The following proposition should probably be attributed to Dana Scott.

Proposition 1. Every countably based T0 space is homeomorphic to some con-
cept space with the Π-topology.

Proof. Let X be a countably based T0 space and let {βi}i∈I be a countable
base for X , where I ⊆ N. For x ∈ X , define η(x) = {i ∈ I |x ∈ βi}. Define
P (X) = {η(x) |x ∈ X}. Then P (X) is a concept space, and it is easy to see that
η:X → P (X) is a homeomorphism. �	

Since every concept space is a countably based T0 space, Proposition 1 implies
that the category of concept spaces and Π-continuous maps is equivalent to the

376 M. de Brecht and A. Yamamoto

category of countably based T0 spaces and continuous maps (see Mac Lane [19]
for more on category theory).

Let T (L) = {T ∈ (N∪{#})N | rng(T)\{#} ∈ L}. T (L) will be called the set
of texts for concepts in L. Here, (N∪{#})N is the set of all functions from N to
N∪ {#}, and we can alternatively think of it as the set of all countably infinite
sequences of elements of N ∪ {#}. The element # is a special symbol not in N
that is necessary for defining texts for empty concepts. For formal purposes, we
will view T (L) as a concept space, where each T ∈ T (L) is the concept of all
finite initial prefixes of T properly encoded as natural numbers.

Define the mapping τL: T (L) → L so that τL(T) = rng(T)\{#} for each T ∈
T (L). We will say that T is a text for L ∈ L if and only if τL(T) = L. Intuitively,
T is a text for L if and only if it is an infinite enumeration of the elements of
L, with occasional pauses denoted by #. It is easily seen that τL: T (L) → L is
a Π-continuous quotient map.

Recall that a topological space is zero-dimensional if and only if it has a basis
of clopen sets. Clearly T (L) is a zero-dimensional concept space. The mapping
τL has a kind of “universal” property as seen in the following theorem. The
proof can be given by adapting Matthias Schröder’s proof of his Theorem 12
characterizing admissible representations of topological spaces [25].

Theorem 1. Let K be a zero-dimensional concept space, and f :K → L be a
Π-continuous map. Then there exists a Π-continuous map g:K → T (L) such
that f = τL ◦ g. �	

Theorem 1 essentially means that the pair 〈T (L), τL〉 is an admissible represen-
tation for L (for more on admissible representations and their applications in
computable analysis, see [25, 27]). In light of Theorem 1, admissible representa-
tions provide a notion of a “text” to a topological space, without having to first
find a homeomorphic concept space (we should note that admissible representa-
tions are not unique to a space, although they can be continuously reduced to
one another). We get a nice corollary that follows from Schröder’s Generalized
Main Theorem1 [25] and our Theorem 1.

Corollary 1. A function f :K → L between concept spaces is Π-continuous if
and only if there is a Π-continuous function g: T (K) → T (L) such that f ◦ τK =
τL ◦ g. �	

The Π-continuous function g in the corollary can be thought of as an operator
that gradually reads in a text for some K ∈ K and outputs a text for f(K) ∈ L.
Since a finite portion of the output of g depends only on a finite portion of the
input, we can see that this is essentially the same as the enumeration operators
used in analyzing the reducibility of one concept space to another (see [12] for
the definition of strong and weak reductions). Luo and Schulte [18] were the first
to notice that a strong reduction between concept spaces induces an injective

1 Note that the sequential continuity mentioned in [25] is equivalent to the usual notion
of continuity for countably based spaces.

Topological Properties of Concept Spaces 377

continuous function between them, and we can easily see from the above corollary
that the converse also holds if we allow non-effective learners and enumeration
operators.

A hypothesis space for a concept space L is a pair 〈H, h〉, where H is a discrete
concept space (i.e. the Π-topology is the discrete topology) and h:H → L is a
Π-continuous surjective function. Every function from a discrete space is con-
tinuous, but we include the Π-continuity requirement to allow the definition to
be easily generalized to non-discrete hypothesis spaces. We will give an example
of a non-discrete hypothesis space towards the end of this paper. We should also
point out that every discrete concept space is countable, but since non-countable
concept spaces would not be learnable with an uncountable discrete hypothesis
space anyways (see [20]), this does not pose a problem for us.

Given a hypothesis space 〈H, h〉 for L, we let HN denote the concept space of
countably infinite sequences of concepts in H. If we view N as a concept space
homeomorphic to the natural numbers with the discrete topology, then HN is
an exponential object [19] in the category of concept spaces and Π-continuous
functions. But for our purposes, we can just think of the concepts in HN as being
the set of all finite prefixes of some infinite sequence of concepts of H (properly
encoded as natural numbers). Thus the Π-topology on HN is similar to the Π-
topology on T (L), and both can be thought of as subspaces of the Baire space
[14]. We first give a topological definition of learning in the limit.

Definition 2. A learner for L with respect to the hypothesis space 〈H, h〉 is a
Π-continuous function ψ: T (L) → HN. We say that ψ learns L in the limit from
positive data if and only if for every T ∈ T (L), the sequence ψ(T) of elements of
H converges to some H ∈ H such that τL(T) = h(H). L is said to be learnable
in the limit from positive data if and only if there exists a learner that learns L
with respect to some hypothesis space. �	

The word “converges” in the above definition is to be taken in the topological
sense [15]. We next give what we will call the “standard” definition of learning
in the limit. Let SEQ be the set of all finite sequences of elements of N ∪ {#}.
Given a text T , we let T [n] denote the initial segment of T of length n.

Definition 3 (Gold [10]). A learner for L with respect to the hypothesis space
〈H, h〉 is a function ψ:SEQ → H ∪ {?}, where ? is a special symbol not in H.
We say that ψ learns L in the limit from positive data if and only if for every
T ∈ T (L), there is some H ∈ H and some m ∈ N such that ψ(T [n]) = H
for all n ≥ m and τL(T) = h(H). L is said to be learnable in the limit from
positive data if and only if there exists a learner that learns L with respect to
some hypothesis space. �	

Note that we do not require ψ to be computable. Since we have required that
hypothesis spaces be discrete, it is not difficult to see that both definitions give
the same notion of learnability to concept spaces. Although the definitions of a
learner are technically different, it is easy enough to convert one type of learner
to the other type that we will not be overly concerned with the differences.

378 M. de Brecht and A. Yamamoto

3 Algebraic Closure Operators

We next give a way of analyzing the structure of a concept space using algebraic
closure operators. Several terms such as closed set and compact will clash with
their topological meanings, but it should be clear from context what we mean,
because the Π-topology is on a concept space (i.e., a set of subsets of N), whereas
the algebraic closure operators we discuss are defined on N itself. Thus if we talk
about the closure of a set of natural numbers, it is clear that we are not referring
to any Π-closed set.

Definition 4 (see [5]). Let U be a set, and let C: 2U → 2U be a mapping on
the powerset of U . C is called an algebraic closure operator on U if the following
conditions hold for all subsets X and Y of U :

1. X ⊆ C(X).
2. C(X) = C(C(X)).
3. X ⊆ Y implies C(X) ⊆ C(Y).
4. C(X) =

⋃
{C(F) |F is a finite subset of X}.

An operator that only fulfills the first three conditions above is simply called
a closure operator. A closed set or a fixed point of C is a set X such that
X = C(X). A finitely generated closed set is a set X such that X = C(F) for
some finite subset F of U . �	

The set of all fixed points of an algebraic closure operator is called an algebraic
closure system. An algebraic closure system C forms a complete lattice (ordered
by subset inclusion) where:

∨
i∈I

C(Xi) = C

(⋃
i∈I

Xi

)
and

∧
i∈I

C(Xi) =
⋂
i∈I

C(Xi).

Given a poset P , a non-empty subset D of P is called a directed set if for all
x, y ∈ D, there exists z ∈ D such that x ≤ z and y ≤ z.

Definition 5. Let L be a lattice and let x be an element of L. We say that x
is compact if and only if for every directed set D ⊆ L such that x ≤

∨
D, there

exists an element d ∈ D such that x ≤ d. �	

The compact elements of an algebraic closure system are precisely the finitely
generated closed sets [5]. Compact elements are sometimes called finite or finitary
elements. We now introduce the following closure operator on N with respect to
a given concept space.

Definition 6. Let L be a concept space. For any subset S of N, let

CL(S) =
⋃

{
⋂

{L ∈ L |F ⊆ L} |F is a finite subset of S}.

Define A(L) to be the set of fixed points of CL(·). �	

Topological Properties of Concept Spaces 379

It can be shown that A(L) is the smallest algebraic closure system that contains
L (we should note that we follow the convention that

⋂
∅ = N). Intuitively, given

a set S ⊆ N, CL(S) is the largest subset of N that we can be sure is included in
each concept of L that contains S, given that we can only inspect finite subsets
of S at a given time. Thus, given two finite subsets F and G of some unknown
concept L ∈ L, we can think of F as containing “more information” about L
than G if CL(G) ⊂ CL(F).

The Π-topology on A(L) is precisely the Scott-topology on A(L) when viewed
as a lattice (see [9] for more on the Scott-topology). It follows that a function
f :A(K) → A(L) is Π-continuous (equivalently, Scott-continuous) if and only if
f(
∨

D) =
∨

f(D) for every directed subset D of A(K).

Definition 7. Let K and L be concept spaces, and let f :K → L be a Π-
continuous function. Define A(f):A(K) → A(L) so that for each X ∈ A(K),
A(f)(X) =

⋃
{
⋂
{f(K) |F ⊆ K ∈ K} |F is a finite subset of X}. �	

The following can be proven as a special case of proposition II-3.9 in [9].

Theorem 2. A(f):A(K) → A(L) is Scott-continuous and A(f)(L) = f(L) for
all L ∈ L. Furthermore, A(f) is the supremum (ordered pointwise, i.e., g ≤ h
iff g(X) ⊆ h(X) for all X) of all such Scott-continuous extensions of f . �	
Thus, given a text T for some L ∈ L, we can let D = {X0, X1, X2, . . .} represent
the ascending chain of the closed sets produced by applying CL to the set of nat-
ural numbers appearing in each initial finite segment of T . Since L =

∨
i∈N Xi =∨

D and D is directed, in fact a chain, f(L) = A(f)(
∨

D) =
∨
A(f)(D). Thus,

we can produce a text for f(L) by enumerating in parallel the elements of each
A(f)(Xi), while we can obtain each Xi by seeing more and more of T . More
abstractly, we can think of A(f):A(K) → A(L) as a mapping from partial in-
formation about some K ∈ K to partial information about f(K) ∈ L. The fact
that it is the supremum of all continuous extensions means that it is the “best”
such mapping of partial information.

We mention to those familiar with category theory that, despite our notation,
A is not a functor because although it preserves identities it does not preserve
composition.

4 Structural Properties of Concept Spaces

We now introduce a handful of structural properties that have been introduced
by learning theorists to characterize the learnability of concept spaces. We can
only give a brief explanation of their importance, and the reader should consult
the references for more details. In the following subsections, we will assume that
K and L are arbitrary concept spaces.

4.1 Finite Thickness and Finite Elasticity

The first two structural properties of concept spaces that we will consider are
finite thickness and finite elasticity. Both are sufficient conditions for a concept
space to be learnable in the limit.

380 M. de Brecht and A. Yamamoto

Definition 8 (Angluin [1]). We say that L has finite thickness if and only if
for each x ∈ N, ↑L {x} is finite. �	
Finite thickness was introduced by Angluin, and is well known to be a property
held by pattern languages [1].

Definition 9 (Wright [28], Motoki et al. [22]). We say that L has infinite
elasticity if and only if there exists an infinite sequence of concepts L1, L2, L3, . . .
in L and elements x0, x1, x2, . . . such that {x0, . . . , xn−1} ⊆ Ln but xn �∈ Ln. L
has finite elasticity if and only if it does not have infinite elasticity. �	
Finite elasticity is strictly weaker than finite thickness and was introduced by
Wright [28] because it is preserved under “unions” of concept spaces (we use
quotations and the symbol ∪̃ to distinguish from the set theoretical definition of
union):

Theorem 3 (Wright [28]). If K and L have finite elasticity, then their “union”
K∪̃L = {K ∪ L |K ∈ K and L ∈ L} has finite elasticity. �	
Neither finite thickness nor finite elasticity are topological properties in the sense
that they are not topologically invariant [15]. A topologically invariant property
is a property that if held by one space is held by every other homeomorphic
space. As an example showing that finite thickness and finite elasticity are not
topologically invariant, we let SINGLE = {{n} |n ∈ N} and let L1 = {Li | i ≥
0} ∪ {Ji | i ≥ 0} where:

L0 = {〈n, 0〉 |n ∈ N} ∪ {〈0, 1〉}; Li = {〈n, 0〉 | 0 ≤ n ≤ 2i & n �= i} ∪ {〈i, 1〉}
J0 = {〈n, 1〉 |n ∈ N} ∪ {〈0, 0〉}; Ji = {〈n, 1〉 | 0 ≤ n ≤ 2i & n �= i} ∪ {〈i, 0〉}
It is easy to see that SINGLE has finite thickness. However, since L1 ∪ J1 ⊂

L2 ∪ J2 ⊂ · · · and L0 ∪ J0 =
⋃

i≥1 Li ∪ Ji, it can be proven that L1∪̃L1 is not
learnable from positive data. Therefore, L1 does not have finite elasticity. But
it can easily be shown that L1 is homeomorphic to SINGLE , because L0 is the
only concept that contains the subset {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}, J0 is the only one
that contains {〈0, 0〉, 〈0, 1〉, 〈1, 1〉} and all of the other concepts are finite and
not contained in any other concepts.

Since we have shown that finite thickness and finite elasticity are not topo-
logically invariant, we can not hope to have a nice topological characterization
of these properties. However, there is a nice characterization of finite elasticity
using algebraic closure operators.

Theorem 4. The following statements are equivalent for any concept space L.

1. L has finite elasticity.
2. A(L) has finite elasticity.
3. A(L) is Noetherian (every strictly increasing chain of closed sets is finite).
4. Every closed set in A(L) is compact.
5. A(L) is learnable in the limit from positive data. �	

The main parts of the proofs can be found in [6] and [7]. The equivalence of
Noetherian and learnable algebraic closure systems is a generalization of the
same result in [26] for the class of ideals of a ring.

Topological Properties of Concept Spaces 381

4.2 Scattered Concept Spaces

Scattered concept spaces are defined topologically, and therefore the property is
easily seen to be topologically invariant. The notion was introduced to the learn-
ing community by Luo and Schulte [18] as a means of characterizing mind-change
complexity. Mind-change complexity is a means of measuring the “difficulty” of a
learning problem using ordinals. We will use the standard definition of a learner
in the following definition, with the convention that for every learner ψ, ψ(ε) =?,
where ε is the empty sequence.

Definition 10 (Freivalds and Smith [8]). Given an ordinal α, an α-mind-
change counter for a learner ψ is a function ρψ:SEQ → (α + 1) such that
ρψ(ε) = α and ψ(σ) �= ψ(σ - x) implies ρψ(σ) > ρψ(σ - x). We say that a
concept space L is learnable with mind-change bound α if and only if there
exists some ψ that learns L with some α-mind-change counter ρψ. We say that
L has mind-change complexity α if and only if L is learnable with mind-change
bound α but is not learnable with mind-change bound β for any β < α. �	
Intuitively, when the learner changes its hypothesis, it must decrement its ordi-
nal counter without going below zero. Some learning theorists (such as Luo and
Schulte [18]) do not require the learner to decrement its counter when its pre-
vious hypothesis was “?”. We do require that the learner decrement its counter
after every change of hypothesis, because we feel that the theory becomes more
mathematically natural this way (see [21] for further support for this approach
to mind-change complexity). For example, using our definition, for every count-
able ordinal α, the concept space αop (a concept space order-isomorphic to α
with the reversed ordering) has mind-change complexity α, whereas according
to Luo and Schulte’s definition, ωop and (ω+1)op would both have mind-change
complexity ω. Thus, our definition of accumulation order is slightly different
than [18], but has the advantage that it is equivalent to the standard definition
of the Cantor-Bendixon rank of a topological space (see [14]). The differences
are minor, and it is easily seen that we can still use Luo and Schulte’s results by
slightly adjusting them to meet our definitions.

Definition 11. A concept L ∈ X ⊆ L is an isolated point of X if and only if
there is a Π-open subset U of L such that L ∈ U and X∩U = {L}. If L ∈ X ⊆ L
and L is not an isolated point of X, then L is an accumulation point of X. �	
Definition 12 (see [14, 18]). Let L be a concept space. For each ordinal α,
the α-th derived set of L, denoted L(α), is defined inductively as follows:

1. L(0) is defined to be L.
2. If α is a successor ordinal, then L(α) is defined to be the set of all accumu-

lation points of L(α−1).
3. If α is a limit ordinal, then L(α) is defined to be

⋂
β<α L(β).

The accumulation order of a concept L ∈ L, denoted accL(L), is defined as the
maximal ordinal α such that L ∈ L(α). The accumulation order of a concept
space L, denoted acc(L), is the least ordinal α such that L(α) = L(α+1). If
acc(L) = α and L(α) is empty, then L is said to be scattered. �	

382 M. de Brecht and A. Yamamoto

Since all concept spaces are countably-based, it can be shown that acc(L) is
defined for every concept space L and is always strictly less than ω1, the least
uncountable ordinal (see Theorem I.6.9 in [14] for the key part of the proof of
this claim). We can also see that every scattered concept space L contains at
most a countable number of concepts, since every L ∈ L has a finite subset F
such that ↑LF contains L and no other concept with accumulation order greater
than or equal to accL(L), which gives an injection from L to finite subsets of N.

Scattered concept spaces also have an important role in weak reductions (see
[12] for definition and details). A weak-complete [12] concept space is one that is
learnable, and in which every other learnable concept space is weakly reducible
to it. The following property is used in the characterization of weak-complete
concept spaces.

Definition 13 (Jain et al. [11]). A concept space L is quasi-dense if L is non-
empty and for any finite F ⊆ N, either there exists no concept in L containing
F or else there exist infinitely many distinct concepts in L containing F . �	

Jain et al. [11] characterized weak-complete concept spaces as precisely those
that are learnable and contain a quasi-dense subspace2.

Theorem 5. The following statements are equivalent for any concept space L.

1. L is a scattered concept space.
2. L is inferable from positive data with a mind change bound.
3. L does not contain a quasi-dense subspace.
4. There exists a concept space K with finite elasticity and an injective Π-

continuous function f :L → K.

Proof. The equivalence of 1 and 2 is the main result of [18]. To show that 1
implies 3, assume S is a quasi-dense subspace of L. Since any Π-open subset
of L that intersects S intersects an infinite subset of S, it can be shown using
transfinite induction that S ⊆ L(α) for all α, and therefore L is not scattered.
To see that 3 implies 1, note that if L is not scattered then there is a subset
L(α) = L(α+1) of L (for some ordinal α) that is infinite and easily seen to be
quasi-dense.

That 4 implies 1 is due to Luo and Schulte [18]. They showed that every
concept space with finite elasticity is scattered, and also that if a concept space
L1 is weakly reducible to a concept space L2, then if L2 is learnable with a
mind-change bound α then so is L1. Since a Π-continuous injection from L to
K is essentially a strong reduction (a special kind of weak reduction), the claim
follows.

To show 2 implies 4, assume that L is learnable with mind-change bound α.
Let ι be an indexing of L (i.e. ι:L → N is an injective function). For L ∈ L, define
Kι(L) = {ι(L′) |L = L′ or accL(L) < accL(L′)}, and let K = {Kι(L) |L ∈ L}. K
2 To be more precise, Jain et al. [11] included an effectiveness condition since they

were concerned with effective learners and reductions. However, the proof can easily
be generalized to this form when allowing non-effective learners and reductions.

Topological Properties of Concept Spaces 383

has finite elasticity, because a proof that K has infinite elasticity could be used
to construct an infinitely decreasing sequence of ordinals (the reader should
also note that acc(L) = acc(K)). Finally, the function f :L → K such that
f(L) = Kι(L) is clearly an injection and can be shown to be Π-continuous in the
usual way. �	
The equivalence of 1 and 4 is interesting because it is an example of reduc-
ing a “complicated” concept space to a less “complicated” one (in the sense
that each concept in K is the closure of a single natural number, and A(K) is
Noetherian). The equivalence of 2 and 3 is particularly interesting because, com-
bined with Luo and Schulte’s work on the relationship between weak-reductions
and mind-change complexity [18], it shows that without any restrictions con-
cerning computability, the ordering relation between learnable concept spaces
induced by weak reductions is strictly weaker than the ordering relation induced
by mind-change complexity.

4.3 Alexandrov Concept Spaces

Alexandrov spaces are topological spaces that are useful because of their close
relationship to partial orders (see [13]).

Definition 14. An Alexandrov concept space is a concept space in which every
concept has a smallest open neighborhood. �	
Note that if U is a smallest open neighborhood of L ∈ L, then U must be equal
to ↑L L. The following property was proposed as part of a sufficient condition
for computable learners to learn an indexed family of recursive sets.

Definition 15 (Angluin [2], Kobayashi [17]). Let L be a concept in L. A
characteristic set for L is a finite set F such that F ⊆ L and for all L′ ∈ L, if
F ⊆ L′ then L ⊆ L′. �	
The following theorem shows that these properties are equivalent, and further-
more that they are topologically invariant properties. It is also clear that every
Alexandrov concept space is countable.

Theorem 6. The following statements are equivalent for any concept space L.

1. L is an Alexandrov concept space.
2. Every L in L has a characteristic set.
3. Every L in L is compact in A(L).

Proof. Easily follows from the definitions. �	
As is mentioned in [23], the second statement in the above theorem is also
equivalent to the finite cross property proposed by Sato and Umayahara [24]3.

The topological properties of an Alexandrov concept space are determined
by the subset relation among its concepts. Π-continuous mappings to and from
Alexandrov concept spaces are particularly easy to work with because of the
following two lemmas.
3 We thank the anonymous referee for introducing us to [23].

384 M. de Brecht and A. Yamamoto

Lemma 1. For any Alexandrov concept space L and any concept space K, a
map f :L → K is Π-continuous if and only if it is monotonic with respect to set
inclusion. �	

Note, however, that all Π-continuous functions are monotonic. The above lemma
shows that monotonicity is sufficient for Alexandrov concept spaces.

Lemma 2. Assume that L is an Alexandrov concept space, and let f :K → L
be a Π-continuous map from any concept space K to L. Then for every K ∈ K
there is a finite F ⊆ K such that A(f)(CK(F)) = f(K). �	

It is easy to see that the class of scattered Alexandrov concept spaces properly
contains the class of concept spaces with finite elasticity. In addition, there exists
non-scattered Alexandrov spaces, such as FIN (the set of all finite subsets of
N), and also non-Alexandrov scattered spaces, such as L2 = {Lω}∪{Li | i ≥ 0},
where Li = {〈i, 1〉} ∪ {〈j, 0〉 | j ≤ i} for i ≥ 0, and Lω = {〈j, 0〉 | j ≥ 0}.

The accumulation order of scattered Alexandrov concept spaces has the fol-
lowing simple characterization (which is a transfinite generalization of Luo and
Schulte’s notion of inclusion depth [18]). For any scattered Alexandrov concept
space L, inductively define µL(L) = sup{µL(L′) + 1 |L ⊂ L′ ∈ L} for L ∈ L.

Theorem 7. acc(L) = sup{µL(L) + 1 |L ∈ L} for any scattered Alexandrov
concept space L. �	

4.4 Finite Tell-Tales

The last major property we will investigate is the notion of a finite tell-tale.
This was given by Angluin as part of a necessary and sufficient condition for the
learnability of a concept space.

Definition 16 (Angluin [1]). Let L be a concept in L. A finite tell-tale for L
is a finite set F such that F ⊆ L and for all L′ ∈ L, if F ⊆ L′ then L′ �⊂ L. �	

This is related to the following topological notion (this is the only place in this
paper where “closed” is meant in the topological sense).

Definition 17. A subset S of topological space X is locally closed in X if and
only if there exists an open set U and a closed set V such that S = U ∩ V . �	

The following is a separation axiom proposed by Aull and Thron [3] that is
strictly between the T0 and T1 axioms4.

Definition 18 (Aull and Thron [3]). A TD-space is a topological space X
such that {x} is locally closed in X for every x ∈ X. �	

4 The authors learned of this separation axiom from [13], and at the time of writing
this paper have not yet been able to obtain a copy of [3].

Topological Properties of Concept Spaces 385

Theorem 8. The following statements are equivalent for any concept space L.

1. L is countable and every L in L has a finite tell-tale.
2. L is learnable in the limit from positive data.
3. L is a countable TD-space.
4. There exists an Alexandrov concept space K and an injective Π-continuous

function f :L → K.

Proof. The equivalence of 1 and 2 is essentially due to Angluin [1] (she proved
an effective version, but the generalized version is an easy corollary [20]). The
equivalence of 1 and 3 is easily seen by noting that F is a finite tell-tale of L if
and only if (↑LF) ∩ (↓LL) = {L}, and that ↓LL is Π-closed for every L ∈ L.

The proof that 2 implies 4 is due to Jain et al. [11], where they showed that
every learnable concept space can be strongly reduced to RINIT 0,1, which is
defined as all subsets of the rationals Q of the form {q ∈ Q | 0 ≤ q ≤ r} for
each rational r between 0 and 1 (inclusive). RINIT 0,1 is easily seen to be an
Alexandrov concept space, and the essence of their proof (although it is done
for effective learners) can easily be generalized. This induces, as we mentioned
earlier, an injective Π-continuous function f from L to RINIT 0,1.

To see that 4 implies 1, let L ∈ L. By Lemma 2, there is a finite F ⊆ L such
that A(f)(CL(F)) = f(L). For any L′ ∈ L such that L′ ⊆ L and F ⊆ L′, the
monotonicity of A(f) implies that A(f)(CL(F)) ⊆ A(f)(L′) ⊆ A(f)(L). Thus
f(L′) = f(L). Since f is injective, L = L′. �	

It is clear from the above proof that the TD axiom states that every concept has
a finite tell-tale. Being a topologically invariant property, it is then meaningful to
say that every real number in the Euclidean real line has a finite tell-tale. Since
the space of reals R are uncountable, they are not learnable by the standard
definition. However, if we let HR = {η(x) |x ∈ R}, where η(x) = {〈c, r〉 ∈
Q × Q | r > |x − c|} if x ∈ R \ Q and η(x) = {〈x, 0〉} if x ∈ Q (Q being the
set of rationals), and let hR:HR → R be defined as hR(η(x)) = x, then we
can see that the Euclidean real line is learnable according to Definition 2 using
the non-discrete hypothesis space 〈HR, hR〉. Intuitively, a learner in this case
would be required to converge exactly for rational numbers, but only gradually
for irrational numbers.

Given a hypothesis space 〈H, h〉 for L and a Π-continuous injection f :L → K
to an Alexandrov concept space K, we can define a learner ψf for L in the
following way. For σ ∈ SEQ, let rng(σ) be the set of elements in σ other than
“#”. Let ψf (ε) =?. Assume ψf (σ) is defined, and for x ∈ N ∪ {#}, let:

ψf (σ - x) =
{

HL if A(f)(CL(rng(σ - x))) = f(L),
ψf (σ) otherwise;

where HL ∈ H is some pre-defined hypothesis such that h(HL) = L. From the
above theorem, it is easy to see that ψf learns L in the limit from positive data.
Although not all learners for L can be defined in this way, many “intuitive”
learning strategies are of this form. For example, consider L2, which we gave

386 M. de Brecht and A. Yamamoto

earlier as an example of a scattered concept space that is not Alexandrov. We
can define a concept space N⊥ = {N⊥} ∪ {Ni | i ≥ 0}, where N⊥ = {0} and
Ni = {0, i + 1}. Define the Π-continuous function f :L2 → N⊥ so that f(Lω) =
N⊥ and f(Li) = Ni for i ≥ 0. Intuitively, ψf chooses a hypothesis for Lω until
it sees evidence that confirms otherwise. It is easy to see that ψf learns L2 with
an optimal mind-change bound.

Finally, we mention that the class of countable TD concept spaces properly
includes both the class of Alexandrov concept spaces and the class of scattered
concept spaces. An example of a learnable concept space that is neither Alexan-
drov nor scattered is COSINGLE = {N\{n} |n ∈ N}. The “intuitive” learning
strategy for this space is given by a Π-continuous injection into the ordinal
ω (viewed as a concept space, i.e., for each n ∈ N there is a concept n̄ ∈ ω
containing all natural numbers less than n) which maps N \ {n} to n̄.

5 Concluding Remarks

We have made several connections between topology and learning in the limit,
and have analyzed some of the structural properties of concept spaces.

By interpreting both texts and hypothesis spaces topologically, we can now
apply the information theoretic intuitions from topology and domain theory to
various aspects of the learning process. For example, open sets are often thought
of as “observable” properties by domain theorists, and since the goal of learning
is to identify a particular point in the space, smaller open sets can be viewed
as more informative observations. It is important to note that the topology on
the concept space is determined by the way it is presented, thus informants and
queries will result in different topologies on the concept space. The hypothe-
sis space H generally induces an even finer topology (by taking the quotient
topology) on the concept space. Thus, H is a more “informative” representation
of the concept space than texts are, since it makes more properties observable.
This gives us an information theoretic interpretation of learning as the process
of converting a given representation of a concept into a more “informative” rep-
resentation. However, since the limiting process is non-continuous, the open sets
induced by H are only observable in the limit, via the learner, given the initial
representation of the concept space by texts.

Cartesian closed categories are important in modeling the semantics of com-
putation, but unfortunately the category of countably based T0 spaces is not
cartesian closed. However, by replacing T (L) with an admissible representation
for L in Definition 2, we can naturally extend the learning in the limit paradigm
to the cartesian closed category of spaces with admissible representations [25].
Such a generalization would give an approach to investigating the semantic con-
nections between learning and computation, which has not yet been thoroughly
investigated. We expect that this would lead to a more “goal oriented” approach
to learning, where the interest becomes in determining whether or not a concept
space can be learned “well enough” to compute some function between concept
spaces to an arbitrarily high precision. This approach would probably require

Topological Properties of Concept Spaces 387

us to allow non-discrete hypothesis spaces (or take some similar tactic) to relax
our definition of convergence.

The “problem of induction” occurs when generalizing a finite number of obser-
vations to an infinite hypothesis, or in other words, when the learner conjectures
a hypothesis that is not completely entailed by the observations. By saying that
a set of observations X entails a set Y , we mean that Y ⊆ CL(X). The use of the
word “entails” is justified, and can be more thoroughly formalized, by the fact
that 〈A(L), CL〉 is essentially an abstract algebraic logic (see [4]), where we view
N as a set of formulas, and logical consequence between a set of formulas X and
a formula φ is given by X 0 φ ⇐⇒ φ ∈ CL(X). The role of closure operators in
learning is that they give an upper bound of what deductive reasoning (meaning
true assumptions lead to true conclusions) can tell us about which elements of N
are “true” in the sense that they belong to the unkown concept being presented.
These observations are important so that we can better distinguish between the
deductive and inductive reasoning that is used in learning.

Acknowledgements

This work was partly supported by Grant-in-Aid for Scientific Research (B)
19300046 from JSPS, and by Kyoto University Global COE “Information Edu-
cation and Research Center for Knowledge-Circulating Society”. We also thank
the anonymous referees for their helpful comments.

References

[1] Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

[2] Angluin, D.: Inference of reversible languages. Journal of the ACM 29, 741–765
(1982)

[3] Aull, C.E., Thron, W.J.: Separation axioms between T0 and T1. Indag. Math. 24,
26–37 (1963)

[4] Brown, D.J., Suszko, R.: Abstract logics. Dissertationes Mathematicae 102, 9–41
(1973)

[5] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Hei-
delberg (1981)

[6] de Brecht, M., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Inferability of closed
set sytems from positive data. In: Washio, T., Satoh, K., Takeda, H., Inokuchi,
A. (eds.) JSAI 2006. LNCS (LNAI), vol. 4384, pp. 265–275. Springer, Heidelberg
(2007)

[7] de Brecht, M., Yamamoto, A.: Mind change complexity of inferring unbounded
unions of pattern languages from positive data. In: Balcázar, J.L., Long, P.M.,
Stephan, F. (eds.) ALT 2006. LNCS (LNAI), vol. 4264, pp. 124–138. Springer,
Heidelberg (2006)

[8] Freivalds, R., Smith, C.H.: On the role of procrastination for machine learning.
Information and Computation 107, 237–271 (1993)

[9] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.W.:
Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

388 M. de Brecht and A. Yamamoto

[10] Gold, E.M.: Language identification in the limit. Information and Control 10,
447–474 (1967)

[11] Jain, S., Kinber, E., Wiehagen, R.: Language learning from texts: Degrees of
intrinsic complexity and their characterizations. Journal of Computer and System
Sciences 63, 305–354 (2001)

[12] Jain, S., Sharma, A.: The intrinsic complexity of language identification. Journal
of Computer and System Sciences 52, 393–402 (1996)

[13] Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
[14] Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)
[15] Kelley, J.: General Topology. Springer, Heidelberg (1975)
[16] Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)
[17] Kobayashi, S.: Approximate identification, finite elasticity and lattice structure

of hypothesis space. Technical Report, CSIM 96-04, Dept. of Compt. Sci. and
Inform. Math., Univ. of Electro- Communications (1996)

[18] Luo, W., Schulte, O.: Mind change efficient learning. Information and Computa-
tion 204, 989–1011 (2006)

[19] Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

[20] Martin, E., Osherson, D.: Elements of Scientific Inquiry. MIT Press, Cambridge
(1998)

[21] Martin, E., Sharma, A., Stephan, F.: Unifying logic, topology and learning in
parametric logic. Theoretical Computer Science 350, 103–124 (2006)

[22] Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity:
Corrigendum to identification of unions. In: Proc. COLT 1991, p. 375 (1991)

[23] Sato, M., Mukouchi, Y., Zheng, D.: Characteristic sets for unions of regular pat-
tern languages and compactness. In: Richter, M.M., Smith, C.H., Wiehagen, R.,
Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 220–233. Springer,
Heidelberg (1998)

[24] Sato, M., Umayahara, K.: Inductive inferability for formal languages from positive
data. IEICE Trans. Inf. and Syst. E75-D(4), 415–419 (1992)

[25] Schröder, M.: Extended admissibility. Theoretical Computer Science 284, 519–538
(2002)

[26] Stephan, F., Ventsov, Y.: Learning algebraic structures from text. Theoretical
Computer Science 268, 221–273 (2001)

[27] Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)
[28] Wright, K.: Identification of unions of languages drawn from an identifiable class.

In: Proc. COLT 1989, pp. 328–333 (1989)

Dynamically Delayed Postdictive Completeness

and Consistency in Learning

John Case and Timo Kötzing

Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716-2586, USA

{case,koetzing}@cis.udel.edu

Abstract. In computational function learning in the limit, an algorith-
mic learner tries to find a program for a computable function g given
successively more values of g, each time outputting a conjectured pro-
gram for g. A learner is called postdictively complete iff all available data
is correctly postdicted by each conjecture.

Akama and Zeugmann presented, for each choice of natural number
δ, a relaxation to postdictive completeness: each conjecture is required
to postdict only all except the last δ seen data points.

This paper extends this notion of delayed postdictive completeness
from constant delays to dynamically computed delays. On the one hand,
the delays can be different for different data points. On the other hand,
delays no longer need to be by a fixed finite number, but any type of
computable countdown is allowed, including, for example, countdown in
a system of ordinal notations and in other graphs disallowing computable
infinitely descending counts.

We extend many of the theorems of Akama and Zeugmann and pro-
vide some feasible learnability results. Regarding fairness in feasible
learning, one needs to limit use of tricks that postpone output hypothe-
ses until there is enough time to “think” about them. We see, for poly-
time learning, postdictive completeness (and delayed variants): 1. allows
some but not all postponement tricks, and 2. there is a surprisingly
tight boundary, for polytime learning, between what postponement is
allowed and what is not. For example: 1. the set of polytime computable
functions is polytime postdictively completely learnable employing some
postponement, but 2. the set of exptime computable functions, while
polytime learnable with a little more postponement, is not polytime
postdictively completely learnable! We have that, for w a notation for ω,
the set of exptime functions is polytime learnable with w-delayed post-
dictive completeness. Also provided are generalizations to further, small
constructive limit ordinals.

1 Introduction

“Explanatory learning”, or Ex-learning for short, is a standard model of limit
learning of computable functions. In this model a learner is given successively
longer initial segments of a target function. For each initial segment of the target

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 389–403, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

390 J. Case and T. Kötzing

function, the learner gives an hypothesis. The learner is said to successfully Ex-
learn the target function iff the infinite sequence of hypotheses generated by the
learner on the initial segments of the target functions converges in the limit to
a (single) correct program for the target function [JORS99].

In some literature on limit learning this intuitively simple success criterion
is used as a minimal requirement for success, and additional requirements are
defined and examined. We call two such extra requirements postdictive com-
pleteness (the hypotheses correctly postdict the data seen so far) and postdic-
tive consistency (the hypotheses do not explicitly contradict the given data)
[Bār74, BB75, Wie76, Wie78].1 There are Ex-learnable sets of functions that
cannot be learned with the additional requirement of postdictive completeness
or consistency.

Akama and Zeugmann [AZ07] presented success criteria that are a little less
restrictive than postdictively complete Ex-learning. Their criteria delay the re-
quirement to postdict a given datum by a fixed natural number δ of (not nec-
essarily distinct) hypotheses output. For ordinary postdictive completeness, if a
learner h has seen so far, on a computable g input, g(0), . . . , g(n − 1), then h’s
corresponding hypothesis, pn, must correctly compute g(0), . . . , g(n − 1).2 For
delay δ, Akama and Zeugmann, require only that, on g(0), . . . , g(n−1), h’s later
hypothesis, pn+δ, must correctly compute g(0), . . . , g(n− 1). Essentially, the de-
lay δ learner could, after seeing g(0), . . . , g(n− 1), run a counter down from δ to
0 to see which future hypothesis must correctly compute g(0), . . . , g(n− 1).

In the present paper we extend this notion of delayed postdictive complete-
ness from constant delays δ to dynamically computed delays. One of the ways
we consider herein to do this involves counting down from notations for con-
structive ordinals. We explain. Everyone knows how to use the natural numbers
for counting, including for counting down. Freivalds and Smith [FS93], as well
as [ACJS04], employed in learning theory notations for constructive ordinals
[Rog67, § 11.7] as devices for algorithmic counting down. Theorems 4 and 5 in
Section 3 provide strong justification for studying the herein ordinal countdown
variants of Postdictive Completeness.

[SSV04] gives a further generalized notion of counting down. They consider
certain partial orders with no computable infinitely descending chains. In the
present paper we consider arbitrary and also computable graphs with no infi-
nite, computable paths, and we algorithmically count “down” along their paths.
Theorem 11, in Section 4.2 below, gives a nice example of a linearly ordered, com-

1 We use the terminology postdictive completeness because the the hypotheses must
completely postdict the data seen to that point. We use the terminology postdictive
consistency because the the hypotheses need only avoid explicit inconsistencies with
the data seen to that point. Such an hypothesis may, then, on some input for which
the data seen to that point tells the answer, go undefined (i.e., go into an infinite
loop) and, thereby, not explicitly contradict the known data. In the literature on
these requirements, except for [Ful88], what we call postdictively complete is called
consistent, and what we call postdictively consistent is called conformal.

2 Note that, for n = 0, the data seen is empty and the output hypothesis, p0, is
unconstrained.

Postdictive Completeness and Consistency 391

putable such graph which nonetheless has infinite paths (just not computable
ones). We call our graphs in the present paper, countdown graphs.

We make use of countdown graphs for delaying the requirement of postdic-
tive completeness (respectively, consistency) by requiring a learner to start an
independent countdown for each datum g(i) seen and to be postdictively com-
plete (respectively, consistent) regarding g(i) as soon as the countdown for g(i)
terminates.3

Section 2 will introduce the notation and concepts used in this paper.
In the prior literature we also see further variants of postdictive completeness

and consistency not based on delay. For example, [CJSW04] surveys with refer-
ences these variants. Roughly, below, when we attach R to the front of a name
of a criterion requiring postdictive completeness or consistency, this means that
the associated learnability must be witnessed by a (total) computable learner
as opposed to just a partial computable learner (defined at least where it min-
imally needs to be); when we attach a T to the front of a name of a criterion
requiring postdictive completeness (respectively, consistency), this means that
the associated learnability must be witnessed by a (total) computable learner
which is postdictively complete (respectively, consistent) on all input functions
regardless of whether the learner actually learns them.

Sections 3 and 4 present our results. All of our results in Section 3 provide
information about polynomial time learners. Furthermore, some of our results
in Section 4.1 entail learnability with linear time learners. These time bounds
are uniform bounds on how much time it takes the learner to conjecture each
hypothesis in terms of the total size of the input data it can use for making this
conjecture. Suppose for discussion p is a polynomial time bound. Pitt [Pit89]
notes that Ex-learning allows unfair postponement tricks, i.e., a learner h can
put off outputting significant conjectures based on data σ until it has seen a much
larger sequence of data τ so that p(|τ |) is enough time for h to think about σ as
long as it needs.4 In this way the polytime restriction on each output does not,
by itself, have the desirable effect of constraining the total learning time. Pitt
[Pit89] then lays out some additional constraints toward avoiding “cheating”
by such postponement tricks. He discusses in this regard what we are calling
postdictive completeness. He also considers further constraints since he wants
to forbid enumeration techniques [JORS99]. For our complexity-bounded results
in Section 4.1 we get by with an extremely fair, restricted kind of linear-time
learner, we call transductive. A transductive learner has access only to its current
datum.

In Section 3 we see, from Theorems 4 and 5 and the proof of the first, that,
for polytime learning, postdictive completeness (and delayed variants): 1. allows
some but not all postponement tricks, and 2. there is a surprisingly tight bound-
ary, for polytime learning, between what postponement is allowed and what
is not. For example: 1. the set of polytime computable functions is polytime

3 Below we refer to a vector of such individual counts as a multicount.
4 Pitt talks in this context of delaying tricks. We changed this terminology due to the

clash with Akama and Zeugmann’s terminology for delayed postdictive completeness.

392 J. Case and T. Kötzing

postdictively completely Ex-learnable (by a complexity-bounded enumeration
technique) employing some postponement, but 2. the set of exptime computable
functions, while polytime Ex-learnable with a little more postponement, is not
polytime postdictively completely Ex-learnable! From Theorem 4, we see that,
for w a notation for ω, the set of exptime functions is polytime Ex-learnable
with w-delayed postdictive completeness. Theorems 4 and 5 also provide gener-
alizations to further, small constructive limit ordinals.

Section 4.1 shows how the different variants of our criteria relate in learning
power. Our main theorem in this section is Theorem 6. For example, it entails
that there is a set of computable functions which is postdictively consistently
learnable (with no delays) by a transductive, linear time learner but is not post-
dictively completely learnable with delays employing any countdown graph.

In Section 4.2, our main result, Theorem 13, entails (including with Corollar-
ies) complete characterizations of learning power in dependence on associated
(computable) countdown graphs. Corollary 16 extends the finite hierarchy given
in [AZ07] into the constructive transfinite.

We omit most proofs due to space constraints. A more complete version of
the present paper can be found online [CK08]. Many of our omitted proofs
use Kleene’s Recursion Theorem [Rog67, page 214, problem 11-4] or the Case’s
Operator Recursion Theorem [Cas74] (and are a bit combinatorially difficult).

2 Mathematical Preliminaries

Any unexplained complexity-theoretic notions are from [RC94]. All unexplained
general computability-theoretic notions are from [Rog67].

Strings herein are finite and over the alphabet {0, 1}. {0, 1}∗ denotes the set
of all such strings; ε denotes the empty string.

N denotes the set of natural numbers, {0,1,2,. . . }. We do not distinguish
between natural numbers and their dyadic representations as strings.5

For each w ∈ {0, 1}∗ and n ∈ N, wn denotes n copies of w concatenated end
to end. For each string w, we define size(w) to be the length of w. As we identify
each natural number x with its dyadic representation, for all n ∈ N, size(n)
denotes the length of the dyadic representation of n. For all strings w, we define
|w| to be max{1, size(w)}. 6

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset
and proper superset relation between sets.

For sets A,B, we let A \B := {a ∈ A | a �∈ B}, A := N \A.
We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda

notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N,
λx c is the constantly c function of one argument.

5 The dyadic representation of a natural number x := the x-th finite string over {0, 1}
in lexicographical order, where the counting of strings starts with zero [RC94]. Hence,
unlike with binary representation, lead zeros matter.

6 This convention about |ε| = 1 helps with runtime considerations.

Postdictive Completeness and Consistency 393

A function ψ is partial computable iff there is a Turing machine computing
ψ. R and P denote the set of all (total) computable and partial computable
functions N → N, respectively. If ψ is not defined for some argument x, then
we denote this fact by ψ(x)↑, and we say that ψ on x diverges. The opposite is
denoted by ψ(x)↓, and we say that ψ on x converges.

We say that a partial function ψ converges to p iff ∀∞x : ψ(x)↓ = p.
[RC94, §3] describes an efficiently numerically named or coded7 programming

system for multi-tape Turing machines (TMs) which compute the partial com-
putable functions N → N. Herein we name this system ϕ. ϕp denotes the partial
computable function computed by the TM-program with code number p in the
ϕ-system, and Φp denotes the partial computable runtime function of the TM-
program with code number p in the ϕ-system. In the present paper, we employ
a number of complexity bound results from [RC94, §§ 3 & 4] regarding (ϕ,Φ).
These results will be clearly referenced as we use them.

We fix the 1-1 and onto pairing function 〈·, ·〉 : N × N → N from [RC94],
which is based on dyadic bit-interleaving. Pairing and unpairing is computable
in linear time. π1 and π2, respectively, denote the unpairing into the left and
right component of a given coded pair, respectively.

For all f, g ∈ R we let 〈f, g〉 denote λi 〈f(i), g(i)〉.
Whenever we consider tuples of natural numbers as input to TMs, it is under-

stood that the general coding function 〈·, ·〉 is used to (left-associatively) code
the tuples into appropriate TM-input.

A finite sequence is a mapping with a finite initial segment of N as domain
(and range, N). ∅ denotes the empty sequence (and, also, the empty set). The
set of all finite sequences is denoted by Seq. For each finite sequence σ, we will
denote the first element, if any, of that sequence by σ(0), the second, if any,
with σ(1) and so on. last(σ) denotes the last element of σ, if any. #elets(σ)
denotes the number of elements in a finite sequence σ, that is, the cardinality of
its domain.

We use - (with infix notation) to denote concatenation on sequences. For any
natural number x, we let x denote the sequence of length one with only element
x, and we let xn be the code of the sequence of length n, each element being x.

From now on, by convention, f , g and h with or without decoration range over
(partial) functions N → N, x, y with or without decorations range over N and
σ, τ with or without decorations range over finite sequences of natural numbers.

Following [LV97], we fix a coding 〈·〉Seq of all sequences into N (= {0, 1}∗) –
with the following properties.

The set of all codes of sequences is decidable in linear time. The
time to encode a sequence, that is, to compute λk, v1, . . . , vk 〈v1, . . . , vk〉Seq
is O(λk, v1, . . . , vk

∑k
i=1 |vi|). Therefore, the size of the codeword is

also linear in the size of the elements: λk, v1, . . . , vk |〈v1, . . . , vk〉Seq| is

7 This numerical coding guarantees that many simple operations involving the coding
run in linear time. This is by contrast with historically more typical codings featuring
prime powers and corresponding at least exponential costs to do simple things.

394 J. Case and T. Kötzing

O(λk, v1, . . . , vk

∑k
i=1 |vi|).8 We also have λ〈σ〉Seq #elets(σ) is linear time com-

putable; λ〈σ〉Seq, i
{
σ(i), if i < #elets(σ);
0, otherwise,

is linear time computable; and

∀σ : #elets(σ) ≤ |〈σ〉Seq|. (1)

Henceforth, we will many times identify a finite sequence σ with its code num-
ber 〈σ〉Seq. However, when we employ expressions such as σ(x), σ = f and σ ⊂ f ,
we consider σ as a sequence, not as a number.

For a partial function g and i ∈ N, if ∀j < i : g(j)↓, then g[i] is defined to be
the finite sequence g(0), . . . , g(i− 1).

A pre-order is a pair (A,≤A) such that ≤A is a transitive and reflexive binary
relation on A.

Church and Kleene introduced systems of ordinal notations. See Rogers
[Rog67, § 11.7]. For us, a system of ordinal notations is a pair (N ,≤N) and
associated functions kN , pN , qN ∈ P and νN mapping N into the set of all con-
structive ordinals, such that N ⊆ N, and, for all u, v ∈ N , we have: u ≤N v
iff νN (u) ≤ νN (v); if νN (u) = 0, then kN (u) = 0; if νN (u) is successor ordinal,
then kN (u) = 1 and νN (pN (u)) + 1 = νN (u); if νN (u) is limit ordinal, then
kN (u) = 2 and ϕqN (u) is a monotonic increasing computable function such that
νN ◦ ϕqN (u) converges to νN (u).

Note that ≤N is not necessarily computable. If it is, then (N ,≤N) is called
computably related.

For countdown in polynomial time, we use feasibly related feasible systems
of ordinal notations [CKP07]. In such systems, many predicates and operations
on notations are feasibly computable. For example, one can use the (efficiently)
coded tuple 〈an, . . . , a0〉 as a notation for the ordinal ωn · an + . . . ω0 · a0. The
resulting system of ordinal notations gives a notation to all ordinals < ωω and
allows for polytime comparing, adding and so on.

Note that, for any constructive ordinal α, there is a computably related system
of ordinal notations which gives a notation to α [Rog67]; furthermore, there is
also a feasibly related feasible system of ordinal notations giving a notation to
α [CKP07].

In this paper we consider several indexed families of learning criteria. We
proceed somewhat abstractly to avoid needless terminological repetitions.

For each C ⊆ P and δ ⊆ R2, we say that the pair (C, δ) is a learning criterion
(for short, criterion). The set C is called a learner admissibility restriction, and
intuitively serves as a limitation on what functions will be considered as learners.
Typical learner admissibility restrictions are P ,R, as well as complexity classes.
The predicate δ is called a sequence acceptance criterion, intuitively restricting
what output-sequences by the learner are considered a successful learning of a
given function. For h ∈ P , g ∈ R we say that h (C, δ)-learns g iff h ∈ C and
(λx h(g[x]), g) ∈ δ. For h ∈ P , g ∈ R, we call λx h(g[x]) the learning-sequence
of h given g. Here’s an example δ, herein called Ex. Let Ex = {(〈p, d〉, q) ∈
8 For these O-formulas, |ε| = 1 helps.

Postdictive Completeness and Consistency 395

R2 | p converges to some e ∧ ϕe = q}. Intuitively, (〈p, d〉, q) ∈ Ex means that
the learning-sequence 〈p, d〉 successfully learns the function q iff: for some i, p(i)
is a correct program number for q, and this hypothesized program number will
never change after that point i. N.B. For this example, the learning-sequence is
a sequence of coded pairs and Ex completely disregards the second component
d. Some other sequence acceptance criteria below make use of d as an auxiliary
output of the learner. In these cases, d will code countdowns until some events
of interest must happen. For h ∈ P and S ⊆ R we say that h (C, δ)-learns S
iff, for all g ∈ S, h (C, δ)-learns g. The set of (C, δ)-learnable sets of computable
functions is Cδ := {S ⊆ R | ∃h ∈ C : h (C, δ)-learns S}. Instead of writing the
pair (C, δ), we will ambiguously write Cδ. We will omit C if C = P .9 One way to
combine two sequence acceptance criteria δ and δ′ is to intersect them as sets.
We write δδ′ for the intersection, and we present examples featuring countdowns
in the next section.

We can turn a given sequence acceptance criterion δ into a learner admissi-
bility restriction T δ by admitting only those learners that obey δ on all input :
T δ := {h ∈ P | ∀g ∈ R : (λx h(g[x]), g) ∈ δ}.

The following two definitions formalize the intuitive discussion about count-
down graphs as given above in Section 1.

A graph is a pair (G,→), where G ⊆ N and → is a binary relation on G. We
will use infix notation for →. For each graph (G,→), we say that τ is a G-path iff
#elets(τ) > 0, ∀i < #elets(τ) : τ(i) ∈ G and ∀i < #elets(τ)−1 : τ(i) → τ(i+1).
For each graph G, let #G denote the set of all G-paths. (S,R) is a subgraph of
(G,→), iff S ⊆ G and R is → restricted to (S × S).

For all m,n ∈ N, we write m →∗ n (respectively, m →+ n) iff there is a G-path
τ such that τ(0) = m, last(τ) = n (respectively, additionally #elets(τ) > 1). We
sometimes write G for (G,→). A graph (G,→) is said to be computable iff G

and → are computable. Note that G ∈ G is computable iff #G is computable. For
a graph (G,→) we sometimes identify m ∈ G with {n ∈ G | m →+ n}. With
every pre-order (A,≤A) we associate the graph (A,>A), where, for all a, b ∈ A,
a >A b iff (b ≤A a and a �≤A b).

A graph (G,→) is called a countdown graph, iff ¬∃r ∈ R∀i ∈ N : r(i) →
r(i + 1). Note that if G is a countdown graph, then so is every subgraph of G.
Let G, Gcomp, respectively, denote the set of all and all computable countdown-
graphs, respectively.

Example countdown graphs can be obtained from systems of ordinal nota-
tions. Let (N ,≤N) be a system of ordinal notations. Then, (N ,≤N) is a pre-
order without infinite descending chains, so the graph associated with (N ,≤N)
is a countdown graph. If (N ,≤N) is computably related, then the associated
graph will be computable.

9 Thus, every sequence acceptance criterion denotes at the same time a learning cri-
terion and the set of learnable sets. It will be clear from context which meaning is
intended. An example: Ex, then, denotes sequence acceptance criterion Ex, learning
criterion (P ,Ex) and set PEx of (P ,Ex)-learnable sets.

396 J. Case and T. Kötzing

In Theorem 11 below we give one example of a countdown graph not based
on a system of ordinal notations.

Soon we define what postdictive completeness, respectively consistency, with
respect to G ∈ G means. Intuitively, every learner is required to have two outputs:
a hypothesis, and a countdown output. For any learnee g ∈ R, if the learner sees
g[i], the countdown output will need to encode one countdown for each j < i.
As soon as the countdown for a given data item is over, the hypothesis has to be
postdictively complete, respectively consistent, for that data item. We will refer
to the countdown output of a learner as a multicount (as it represents more than
one countdown). We refer to a learning-output of hypothesis and multicount as
a hypothesis-multicount.

The set of all multicountdown sequences is defined as M := {σ ∈ Seq | ∀i <
#elets(σ) : (σ(i) ∈ Seq ∧ #elets(σ(i)) = i)}.10

An example multicountdown sequence is σ0 := 〈〉Seq, 〈3〉Seq, 〈2, 3〉Seq,
〈1, 2, 2〉Seq, 〈0, 1, 2, 1〉Seq, 〈0, 0, 2, 2, 2〉Seq, 〈2, 0, 2, 3, 1, 1〉Seq, 〈0, 0, 2, 7, 0, 0, 5〉Seq.
σ0 can be displayed as a matrix like this:

σ0 =

x
n

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 1 0 0 2 0
3 2 1 0 0 0

2 2 2 2 2
1 2 3 7

2 1 0
1 0

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

In (2) each column is a multicount. For example, column x = 4 represents the
multicount σ0(4) = 〈0, 1, 2, 1〉. Each row of (2) provides the successive values of
a particular countdown. For example, the n-th row of (2) (without initial empty
entries) is the n-th countdown of σ0. As we will see below, for an associated
learnee g, the n-th row will be relevant to g(n).

For each σ ∈ M and n < #elets(σ) − 1 we define row(n, σ) := 〈σ(n +
1)(n), . . . , σ(#elets(σ) − 1)(n)〉Seq. For σ0 as presented above in (2), we have,
for example, row(4, σ0) = 〈2, 1, 0〉Seq. Each row(n, σ) is a countdown.

We will consider a given countdown sequence τ as terminated with respect to
a given countdown graph G ∈ G, iff τ �∈ #G. We then say that “τ has terminated”
or “τ has bottomed out”. For a given multicountdown sequence we will define
the set of all n such that the n-th countdown has (started and) bottomed out
just below. For all σ and all G ∈ G, define ⊥G(σ) = {n < #elets(σ) − 1 | σ �∈
M ∨ row(n, σ) �∈ #G}. We omit the subscript G whenever no confusion can arise.

We pronounce ⊥ as “bottom”. For σ ∈ M, ⊥(σ) is the set of all countdown
numbers where the countdown has terminated.

Let us, for example, consider the finite countdown graph G on {0, 1, 2, 3}
with the natural >-order on N. For σ0 depicted above in (2), we have ⊥G(σ0) =
10 Of course, σ(i) ∈ Seq means that the number σ(i) is the code of a sequence.

Postdictive Completeness and Consistency 397

{0, 1, 2, 3, 6}. The example of rows n = 4 and n = 5 shows that reaching a
minimal element (in this case 0) of G does not imply immediate termination of
the countdown. The example of rows n = 2 and n = 3 shows how countdowns
terminate when not obeying the graph relation. Note that the countdown for
row n = 6 has terminated immediately when it started, as it started with 5, and
〈5〉Seq is not a G-path. From rows n = 4 and n = 6 we see that the different
countdowns do not have to terminate in row order.

Next we define two families of sequence acceptance criteria, employing count-
downs as described above. The rest of the paper will be concerned with studying
these criteria in various settings.

Definition 1. For G ∈ G let, for all p, d, q ∈ R,

– PcpG(〈p, d〉, q) :⇔ ∀x∀n ∈ ⊥G(d[x]) : ϕp(x)(n)↓ = q(n); and
– PcsG(〈p, d〉, q) :⇔ ∀x∀n ∈ ⊥G(d[x]) : ϕp(x)(n)↓ ⇒ ϕp(x)(n) = q(n).

For all g ∈ R and h, f ∈ P , we say that 〈h, f〉 works postdictively completely (re-
spectively, consistently) on g with G-delay iff (λi (〈h(g[i]), f(g[i])〉), g) ∈ PcpG

(respectively, PcsG). We omit “with G-delay”, if no confusion can arise.

3 Complexity Results

For this section only, let N be a feasibly related feasible system of ordinal no-
tations for at least the ordinals < ω2. Let w be a notation for ω in N . For
each n ∈ N, n denotes a notation for n in N , such that λn n is computable in
polytime. We will assume for all constructive ordinals α,

∀n ∈ N, u ∈ N : (u is notation in N for α + n) ⇒ n ≤ u.11 (3)

Definition 2. Let exp denote the function λx 2x. Furthermore, for all n, we
write expn for the n-times application of exp. In particular, exp0 denotes the
identity. For all k let ExpkPrograms := {e | e ∈ N ∧ ∃p polynomial ∀n ∈
N : Φe(n) ≤ expk(p(|n|))} and EXPkF := {ϕe | e ∈ ExpkPrograms}. Also,
we let ExpPrograms := Exp1Programs, EXPF := EXP1F, PolyPrograms :=
Exp0Programs and PF := EXP0F.

For g ∈ PF we say that g is computable in polytime, or also, feasibly computable.
Recall that we have, by (1), ∀σ : #elets(σ) ≤ |σ|.

Definition 3. Let S, T be such that

∀p, x, t : S(p, x, t) =

{
ϕp(x), if Φp(x) ≤ |t|;
0, otherwise;

(4)

∀p, x, t : T (p, x, t) =

{
1, if Φp(x) ≤ |t|;
0, otherwise.

(5)

11 Specific systems of ordinal notations seen in the literature typically, perhaps always,
satisfy (3).

398 J. Case and T. Kötzing

We now use the notion introduced above for subscripting our criteria with
ordinal notations instead of countdown graphs.

Theorem 4
(a) PF ∈ PFPcp0Ex.
(b) EXPF ∈ PFPcpwEx.
(c) ∀n : EXPnF ∈ PFPcpw·nEx.

Furthermore, each of (a), (b) and (c) is witnessed by a respective learner 〈h, f〉
such that range(h) ⊆ PolyPrograms, ⊆ ExpPrograms and ⊆ ExpnPrograms,
respectively.

Proof of (a). This proof employs a complexity-bounded enumeration technique
[JORS99]. By [RC94, Theorem 3.13], there is a linear time computable patch0

such that,

∀σ∀x : ϕpatch0(σ)(x) =

{
σ(x), if x < #elets(σ);
0, otherwise;

(6)

and all outputs of patch0 are programs computable in linear time.
By [RC94, Theorems 4.13(b) & 4.17] there is a linear time computable e such

that PF = {ϕe(j) | j ∈ N} and ∀j ∈ N : e(j) ∈ PolyPrograms. From [RC94,
Corollary 3.7] S and T from (4) and (5) above are polytime computable.12 Then,
by [RC94, Lemmas 3.15 & 3.16], it is easy to see that there is h ∈ PF such that

∀σ : h(σ) =

⎧⎪⎪⎨⎪⎪⎩
e(j),

if there is a minimal
j ≤ |σ| : ∀x < #elets(σ) :
(T (e(j), x, σ) ∧ S(e(j), x, σ) = σ(x));

patch0(σ), otherwise.

(7)

To show that h converges on all g ∈ PF: Let g ∈ PF. Let j0 be minimal such
that ϕe(j0) = g. Let p be a polynomial such that ∀x : Φe(j0)(x) ≤ p(|x|). We then
have the following.

– ∀∞n, j0 ≤ n ≤ |g[n]| (by (1)).
– ∀∞n∀j < j0 : g[n] �⊆ ϕe(j) (as j0 minimal such that ϕe(j0) = g).
– We have ∀∞x : Φe(j0)(x) ≤ x.13 Hence, ∀∞n∀x ≤ n : Φe(j0)(x) ≤ n.14

Therefore, using (1), ∀∞n∀x < n : T (e(j0), x, g[n]); hence, also ∀∞n∀x < n :
S(e(j0), x, g[n]) = ϕe(j0)(x) = g(x).

By the three items above, we have ∀∞n : h(g[n]) = e(j0). Let f = λσ 0. Obvi-
ously, 〈h, f〉 witnesses PF ∈ Pcp0Ex. The furthermore clause follows from the
choice of e and patch0. (of (a))
12 N.B. S and T above are variants of the S and T featured in [RC94, Corollary 3.7].
13 By [RC94, §2.5, (9)], there are a, b ∈ N such that ∀x : 2|x| ≤ a · x + b; thus,

there is d > 0 such that ∀∞x : 2|x| ≤ d · x. Clearly, ∀∞x : p(|x|) ≤ 1
d
2|x|. Thus,

∀∞x : p(|x|) ≤ x.
14 Let n0, n1 be such that ∀x ≥ n0 : Φe(j0)(x) ≤ x and ∀x < n0 : Φe(j0)(x) ≤ n1. Then,

for all n ≥ max{n0, n1} and for all x ≤ n, we have (if x < n0) Φe(j0)(x) ≤ n1 ≤ n,
and (otherwise) Φe(j0)(x) ≤ x ≤ n.

Postdictive Completeness and Consistency 399

We will not give proofs for (b) and (c), as they are only slight modifications
of the proof for (a). Note that (a) and (b) are both special cases of (c).

Theorem 5

(a) ∀n ∈ N : EXPF �∈ PFPcpnEx.
(b) ∀k, n ∈ N : EXPk+1F �∈ PFPcpw·k+nEx.

We will not prove (b), but only its simpler to prove special case (a).
Proof of (a). Suppose by way of contradiction otherwise as witnessed by n and
〈h, f〉. Note that {σ | ∃g ∈ EXPF, σ ⊂ g} = Seq; thus, 〈h, f〉 ∈ T Pcpn.

Define g ∈ R according to the following informal definition in stages. gs

denotes g as defined until before stage s.
g0 = ε
stage s = 0 to ∞

if h(gs - 0 - 0n) = h(gs)
then gs+1 = gs - 1 - 0n

else gs+1 = gs - 0 - 0n

Claim 1: h does not converge on g.
We show the claim by showing ∀s : h(gs+1) �= h(gs). As 〈h, f〉 ∈ T Pcpn, we

have for all s ∈ N and each j ∈ {0, 1}, λi ≤ n f(gs - j - 0i) is not a n-path, as
there is no path of length n + 1 in n; hence, ϕh(gs�j�0n

)(#elets(gs)) = j.
If now h(gs - 0 - 0n) = h(gs), then ϕh(gs+1)(#elets(gs)) =

ϕh(gs�1�0n
)(#elets(gs)) = 1 �= 0 = ϕh(gs�0�0n

)(#elets(gs)) = ϕh(gs)(#elets(gs));
thus, h(gs+1) �= h(gs).

If h(gs - 0 - 0n) �= h(gs), then h(gs+1) = h(gs - 0 - 0n) �= h(gs).
(of Claim 1)

Claim 2: g ∈ EXPF.
By the construction of g, we have ∀s : gs ∈ {0, 1}s·(n+1). Hence, to compute g(x)
for any given x, it suffices to execute stages 0 through x of the above algorithm
to get gx+1, from which g(x) can then be extracted. Therefore, it suffices to show
that, for all s, the stages 0 through s of the above algorithm can be done with
an appropriate timebound.

Let p be a polynomial upper-bounding the runtime of h such that ∀x : x ≤
p(x). For any stage s, the time to execute stage s is in O(λs p(|gs - 0n+1|) +
p(|gs|)) = O(λs p(|gs| + n + 1)) =15O(λs p(s · (n + 1) + n + 1)) = O(λs p(s)).
Therefore, for all s, the time to execute all stages 0 to s is bounded above by
O(λs (s + 1) · p(s)) ⊆ O(λs 2p′(|s|)) for some polynomial p′.16

(of Claim 2) (of (a))

15 O(|gs|) = O(#elets(gs)).
16 Find k such that O(p) = O(λx xk). By [RC94, §2.5, (9)], there are a, b such that

x ≤ a · 2|x| + b. Thus, there is are c, d, c′, d′ such that ∀x : p(x) ≤ c · xk + d ≤
c · (a · 2|x| + b)k + d ≤ c′ · 2k·|x| + d′.

400 J. Case and T. Kötzing

4 General Results

4.1 Results Mostly Not Comparing Graphs

The following theorem shows the relationship between the different learning
criteria as defined in this paper.

Theorem 6. We have the following.

∀G ∈ Gcomp : T PcpGEx = T PcsGEx. (8)

RPcs∅Ex \ (
⋃

G∈G
PcpGEx) �= ∅. (9)

RPcp∅Ex \ (
⋃

G∈G
T PcpGEx) �= ∅. (10)

Pcp∅Ex \ (
⋃

G∈Gcomp

RPcsGEx) �= ∅. (11)

Furthermore, the separations (9) and (10) are witnessed by sets of functions
such that the positive part of the separation is witnessed by a (fair) learner
computable in linear time working transductively.

Our proof of (8) above is an extension of Fulk’s proof of the G = ∅ case [Ful88].

Proof of (10). 17 Let S := {g ∈ R | (0 - (π1 ◦ g), g) ∈ Pcp∅Ex}. Obvi-
ously, S ∈ LinFTdPcp∅Ex ⊆ RPcp∅Ex. Let G ∈ G. Suppose, by way of
contradiction, S ∈ T PcpGEx as witnessed by 〈h0, f0〉. Define, for all e ∈ N,
Se := {σ | ∀i < #elets(σ) : π1(π1(σ(i))) = e}. Note that Se is uniformly com-
putable in e. By KRT, there is e such that ϕe is defined as the union over an
infinite, with respect to sequence-extension strictly increasing, family of finite
sequences (σs)s∈N recursively specified as follows.

σ0 := ∅; (12)
∀s : σs+1 := µσ ∈ Se σs ⊂ σ ∧ h0(σ) �= h0(σs). (13)

We reason by induction that, for all s, σs is defined. Clear for σ0. Let s be
such that σs is defined. Let τ , τ ′ ∈ Se be two extensions of σs such that τ
and τ ′ differ at position #elets(σs) (the first position not in σs), and #elets(σs)
is in the bottomed-out set of f0 after f0 gets any one of the sequences τ or
τ ′ as input. Then, as 〈h0, f0〉 ∈ T PcpG, ϕh0(τ)(#elets(σs)) = τ(#elets(σs)) �=
τ ′(#elets(σs)) = ϕh0(τ ′)(#elets(σs)). Hence, for at least one σ ∈ {τ, τ ′}, h0(σ) �=
h0(σs).

We have a contradiction, as trivially ϕe ∈ S and 〈h0, f0〉 does not T PcpGEx-
identify ϕe. (for (10))

17 An anonymous referee pointed out that (10) can be proven by showing that all sets
in T PcpGEx can be reliably learned, as it is known that not all reliably learnable
sets are RPcp∅Ex-learnable [CJSW04]. We give this proof as a particularly short
examplar of many proofs omitted in Section 4.

Postdictive Completeness and Consistency 401

Theorem 7. Let G ∈ G. Then T PcpGEx is closed under computably enumer-
able unions.

Our proof for Theorem 7 makes use of the notion of reliability [Min76, BB75].

Theorem 8. We have ⋃
G∈G

PcsGEx ⊂ Ex. (14)

Furthermore, the separation is witnessed by a (fair) learner computable in linear
time working transductively.

4.2 Dependencies on the Countdown Graphs

Next we define a pre-order, ≤CD, on G. We will see that ≤CD characterizes
relative learning-power in dependence on countdown graphs.

Definition 9. For two graphs G,G′ we write G ≤CD G′ (read: G is countdown
reducible to G′) iff there is a k ∈ R, such that

(i) for all y ∈ G: k(y) ∈ G′;
(ii) for all τ - y ∈ #G such that #elets(τ) > 0, we have k(τ) →G′ k(τ - y).

Intuitively, k maps any G-path into a vertex of G′.18 Clearly, ≤CD is a pre-order.

Proposition 10. Let G,G′ ∈ G. Let k ∈ R. The following are equivalent.

(a) G ≤CD G′ as witnessed by k;
(b) ∀τ ∈ #G : (λi < #elets(τ) k(τ [i + 1])) ∈ #G′.

Next we exhibit nice example countdown graphs and indicate how they compare
by ≤CD.

ω denotes the order-type of the natural numbers ordered by ≤, ω−1 denotes
the order-type of the natural numbers ordered by ≥.

Theorem 11. There is a computable total ordering ≤R on N of order-type
ω + ω−1 such that there are no computable infinitely descending chains with
respect to ≤R; hence, (N, >R) is a countdown graph.

For the rest of this section, let ≤R be as in Theorem 11, and let R denote the
countdown graph (N, >R).

Example 12. Let (N ,≤N), (N ′,≤N ′) be computably related systems of ordinal
notations. Then we have

(a) N ≤CD N ′ ⇒ N ′ gives a notation to at least all the ordinals N gives a
notation to;

18 Neither of mapping G vertices into G′ vertices nor mapping G paths into G′ paths
will give us the same characterization results that we have in Theorem 13 below.

402 J. Case and T. Kötzing

(b) N ≤CD R ⇔ N gives a notation to all and only the ordinals < ω · i + j for
some i ∈ {0, 1}, j ∈ N; and

(c) R �≤CD N .

Theorem 13. Let G ∈ Gcomp, G′ ∈ G. We have

T PcpGEx ⊆ T PcpG′Ex ⇔ G ≤CD G′.

Next are three corollaries to Theorem 13 (or its proof). The first two are regard-
ing the other restricted learnability notions of the present paper. The third is
our hierarchy theorem for ordinal notations.

Corollary 14. Let G ∈ Gcomp. We have

T PcpGEx \
⋃

G′∈Gcomp

G 	≤CDG′

PcsG′Ex �= ∅.

Next is a characterization of the graph dependence of relative learning power for
the restricted learning criteria not covered by Theorem 13.

Corollary 15. For all G,G′ ∈ Gcomp we have

G ≤CD G′ ⇔ RPcpGEx ⊆ RPcpG′Ex (15)
⇔ RPcsGEx ⊆ RPcsG′Ex (16)
⇔ PcpGEx ⊆ PcpG′Ex (17)
⇔ PcsGEx ⊆ PcsG′Ex. (18)

Recall that, from Section 2, for a graph G ∈ G and m ∈ G, we ambiguously use
m to refer to the countdown-graph {n ∈ G | m →+ n}. For two sets M,N we
write M # N iff (M �⊆ N ∧ N �⊆ M).

Corollary 16. Let (N ,≤N) be a computably related system of ordinal notations.
Let u, v ∈ N . Then we have

u <N v ⇔ u <CD v (19)
⇔ T PcpuEx ⊂ T PcpvEx. (20)

Furthermore, if N gives a notation to at least all ordinals < ω · 2, then

T PcpNEx # T PcpREx. (21)

References

[ACJS04] Ambainis, A., Case, J., Jain, S., Suraj, M.: Parsimony hierarchies for in-
ductive inference. Journal of Symbolic Logic 69, 287–328 (2004)

[AZ07] Akama, Y., Zeugmann, T.: Consistent and coherent learning with δ-delay.
Technical Report TCS-TR-A-07-29, Hokkaido Univ. (October 2007)

Postdictive Completeness and Consistency 403

[Bār74] Bārzdiņš, J.: Inductive inference of automata, functions and programs. In:
Int. Math. Congress, Vancouver, pp. 771–776 (1974)

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Information and Control 28, 125–155 (1975)

[Cas74] Case, J.: Periodicity in generations of automata. Mathematical Systems
Theory 8, 15–32 (1974)

[CJSW04] Case, J., Jain, S., Stephan, F., Wiehagen, R.: Robust learning – rich and
poor. Journal of Computer and System Sciences 69, 123–165 (2004)

[CK08] Case, J., Kötzing, T.: Dynamically delayed postdictive completeness and
consistency in machine inductive inference (2008),
http://www.cis.udel.edu/∼case/papers/PcpPcsDelayTR.pdf

[CKP07] Case, J., Kötzing, T., Paddock, T.: Feasible iteration of feasible learning
functionals. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007.
LNCS (LNAI), vol. 4754, pp. 34–48. Springer, Heidelberg (2007)

[FS93] Freivalds, R., Smith, C.: On the role of procrastination in machine learn-
ing. Information and Computation 107(2), 237–271 (1993)

[Ful88] Fulk, M.: Saving the phenomena: Requirements that inductive machines
not contradict known data. Inform. and Comp. 79, 193–209 (1988)

[JORS99] Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An
Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

[LV97] Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its
Applications, 2nd edn. Springer, Heidelberg (1997)

[Min76] Minicozzi, E.: Some natural properties of strong identification in inductive
inference. In: Theoretical Computer Science, pp. 345–360 (1976)

[Pit89] Pitt, L.: Inductive inference, DFAs, and computational complexity. In:
Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidel-
berg (1989)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967) (Reprinted by MIT Press, Cambridge,
Massachusetts, 1987)

[RC94] Royer, J., Case, J.: Subrecursive Programming Systems. In: Progress in
Theoretical Computer Science, Birkhäuser (1994)

[SSV04] Sharma, A., Stephan, F., Ventsov, Y.: Generalized notions of mind change
complexity. Information and Computation 189, 235–262 (2004)

[Wie76] Wiehagen, R.: Limes-erkennung rekursiver Funktionen durch spezielle
Strategien. Elek. Informationverarbeitung und Kyb. 12, 93–99 (1976)

[Wie78] Wiehagen, R.: Zur Theorie der Algorithmischen Erkennung. Disserta-
tion B. Humboldt University of Berlin (1978)

http://www.cis.udel.edu/~case/papers/PcpPcsDelayTR.pdf

Dynamic Modeling in Inductive Inference

John Case and Timo Kötzing�

Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716-2586, USA

{case,koetzing}@cis.udel.edu

Abstract. Introduced is a new inductive inference paradigm, Dynamic
Modeling. Within this learning paradigm, for example, function h learns
function g iff, in the i-th iteration, h and g both produce output, h gets
the sequence of all outputs from g in prior iterations as input, g gets all
the outputs from h in prior iterations as input, and, from some iteration
on, the sequence of h’s outputs will be programs for the output sequence
of g.

Dynamic Modeling provides an idealization of, for example, a social
interaction in which h seeks to discover program models of g’s behavior
it sees in interacting with g, and h openly discloses to g its sequence of
candidate program models to see what g says back.

Sample results: every g can be so learned by some h; there are g that
can only be learned by an h if g can also learn that h back; there are ex-
tremely secretive h which cannot be learned back by any g they learn, but
which, nonetheless, succeed in learning infinitely many g; quadratictime
learnablity is strictly more powerful than lintime learnablity.

This latter result, as well as others, follow immediately from general
correspondence theorems obtained from a unified approach to the para-
digms within inductive inference.

Many proofs, some sophisticated, employ machine self-reference,
a.k.a., recursion theorems.

1 Introduction and Motivation

In Computational Limit Learning of Computable Functions mapping the
non-negative integers to same, an algorithmic learner is iteratively given more and
more finite information generated by a computable target function. From this in-
formation, the learner, in each iteration, (may) synthesize a (suitably interpreted)
natural number as output. In the literature, many criteria of successful learning
have been proposed. Each such learning criterion defines precisely, possibly among
other things, in what way the information will be generated by the target func-
tion and how the sequence of iteratively generated outputs and the target function
have to relate for the learning to be considered successful. Sometimes each output
number will be interpreted as (numerically naming) a program, other times each

� The authors would like to thank Samuel E. Moelius III for various fruitful discussions,
especially on reactive learnees.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 404–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Modeling in Inductive Inference 405

number will represent a prediction for a yet unseen data point. It is helpful for the
present paper to briefly consider some illustrative examples.

Ex-learning [Gol67] exemplifies the category of identification. h Ex-learns tar-
get g iff, in the i-th iteration, h outputs a conjecture on input g(0) . . . g(i − 1)
and there are j, e such that ∀k ≥ j : h(g(0) . . . g(k − 1)) = e and e is a program
for g.1 Such a program e could be carried away and used offline.

Nv-learning [Bār71, BB75] exemplifies the category of extrapolation. h Nv-
learns target g iff, h is total and, in the i-th iteration, h outputs a conjecture on
input g(0) . . . g(i − 1) and there is a j such that ∀k ≥ j : h(g(0) . . . g(k − 1)) =
g(k).2 The successful extrapolants h(g(0) . . . g(k−1)), k ≥ j, can be used online.

Coord-learning [MO99] exemplifies the category of coordination. h Coord-
learns a target g iff, in the i-th iteration, h and g both produce output, h gets
the sequence of all outputs from g in prior iterations as input, g gets all the
outputs from h in prior iterations as input, and, from some iteration on, the
sequence of h’s outputs will be the same as the sequence of g’s outputs. The
finally successfully coordinated matching outputs can be used online.

We see above that, while Coord-learning features a reactive learnee g, Ex-
and Nv-learning feature a passive learnee g.

Passive Learnee Reactive Learnee

Off-Line Identification ??

On-Line Extrapolation Coordination

In the just above table, there is a missing, not heretofore studied category en-
try for offline with reactive learnee. We refer to this category as dynamic modeling,
and it is the subject of the present paper.XBc-learning exemplifies the category of
dynamic modeling. h XBc-learns a target g iff, in the i-th iteration, h and g both
produce output,hgets the sequence of all outputs from g inprior iterations as input,
g gets all the outputs from h in prior iterations as input, and, from some iteration
on, the sequence of h’s outputs will be programs for the output sequence of g.3

In cognitive science, theory of mind refers to ones having a model (or models) of
another’s thoughts, emotions, and perspectives — including those different from
ones own. Ideally, one might have a program (or programs) generating the behav-
ior of the other, but — the behavior presented by the other would, in reality, be
all and only that resulting from crossfeeding between oneself and the other. While
one is attempting to synthesize program(s) for the other, a technique to employ

1 The term ‘Ex’ stands for explanatory [CS83].
2 The term ‘Nv’ stands for next value [Bār71].
3 X we pronounce cross, and it is short for crossfeed. Of course crossfeeding of data is

common to both the categories of coordination and dynamic modeling. In Section 3 we
use the X also in talking about the former category. Bc stands for behaviorally correct
[CS83].

406 J. Case and T. Kötzing

is to pass on a sequence of remarks such as, “I think you are like . . . ,” (where
. . . might be a program), and, then, attend to the resultantly elicited sequence of
reactions of the other — as one formulates further programs/models of the other.
Of course, in reality, one might, in seeking social understanding, carry out vari-
ants, including highly filtered variants, of the just above scenario. The unfiltered
and very idealized scenario above is, nonetheless, covered by dynamic modeling.

Next we summarize the contents of the remaining sections.
In Section 2 below we present mathematical preliminaries.
Section 3 presents a unified approach to limiting learning criteria. This pays

off in Section 5 where we can then provide general results applying to many
criteria at once and, thereby, quickly obtain some nice corollaries.4

Section 4 involves cooperativeness vs. secretiveness in dynamic modeling. Con-
sidered are dynamic modelers which may or may not, in return, be dynamically
modeled themselves. Proposition 4 implies that no computable g can keep models
of its behavior totally secret; moreover, for any computable g, there are infinitely
many constant functions h that XBc-learn g.5

Surprisingly, Theorem 6 implies that there is a computable g so that, no com-
putable h that XBc-learns g can keep models of its behavior a secret from g, i.e.,
such h gives itself away: g, in turn, XBc-learns h. Positively, such a g is, then, ex-
tremely cooperative: informally, g can figure out the behavior of any computable
h that figures out its behavior. Furthermore, such a g can be chosen to be lintime
computable! The proof (included) of Theorem 6 is particularly elegant.

We say that computable h is extremely uncooperative iff {computable g |
h XBc-learns g ∧ g XBc-learns h} = ∅. Theorem 10 implies there are ex-
tremely uncooperative computable h which, nonetheless, are infinitely successful,
i.e, such that h XBc-learns infinitely many computable g.

Results in Section 4 feature open disclosure of certain learners’ models of
another while not disclosing their own models to the other. For comparison and
contrast, a zero-knowledge proof [BSMP91] permits open, convincing disclosure
of its existence without disclosing how it works.

Section 5 features two general and powerful correspondence theorems (Theo-
rems 17 and 19) regarding many of the criteria discussed above and in Section 3.

The first immediately yields Corollary 18 which implies, for example, that
quadratictime XBc-learnablity is strictly more powerful than lintime XBc-
learnablity.6

4 In Section 3 Ex-learning will be called GEx-learning, where the G is for Gold [Gol67].
Nv-learning will be called RGM, where the R is for (total) computable learner and
learnee, and the M is for Matching. Coord-learning will be called XM-learning.

5 Actually, Proposition 4 is stated for a more restrictive criterion within the dynamic
modeling category.

6 Nothing like this happens for, for example, Ex-learning, since by an extension of
Pitt’s postponement tricks from [Pit89], (otherwise unrestricted) Ex-learning with
lintime learners is just as powerful as Ex-learning. As we’ll see from Theorem 14,
also in Section 5, such extended postponement tricks do, nonetheless, apply to (even
a restricted special case of) the XBc-learning of any computably enumerable set of
computable functions.

Dynamic Modeling in Inductive Inference 407

Theorem 19 immediately yields Corollary 20 which provides a number of learn-
ing criteria hierarchies and separations. An example: the powers of XBc-learning
and of Coord-learning are incomparable.

Many proofs are left out because of space constraints, and many proofs, some
sophisticated, employ machine self-reference techniques, including Kleene Re-
cursion Theorem (krt) [Rog67, page 214, problem 11-4] and Case’s Operator
Recursion Theorem (ort) [Cas74, Cas94]. The latter achieves infinitary self (and
other) reference. See www.cis.udel.edu/~case/papers/DynamicModelingTR.pdf
for a more complete version of the present paper.

2 Mathematical Preliminaries

Any unexplained complexity-theoretic notions are from [RC94]. All unexplained
general computability-theoretic notions are from [Rog67].

N denotes the set of natural numbers, {0,1,2,. . . }. ∗ is a symbol such that, for
all n ∈ N, n < ∗. For two functions f, g and n ∈ N, f =n g means that f and g
differ on at most n arguments, f =∗ g means that f and g differ only on finitely
many arguments.

The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset
and proper superset relation between sets. P and R, respectively, denote the set
of all partial ans total functions N → N, respectively.

The quantifier ∀∞x means “for all but finitely many x”, the quantifier ∃∞x
means “for infinitely many x”.

We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda
notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N,
λx c is the constantly c function of one argument.

A function ψ is partial computable iff there is a Turing machine computing
ψ. R and P denote the set of all (total) computable and partial computable
functions N → N, respectively. If ψ is not defined for some argument x, then
we denote this fact by ψ(x)↑, and we say that ψ on x diverges. The opposite is
denoted by ψ(x)↓, and we say that ψ on x converges.

We say that a partial function ψ converges to p iff ∀∞x : ψ(x)↓ = p.
[RC94, §3] describes an efficiently numerically named or coded7 programming

system for multi-tape Turing machines (TMs) which compute the partial com-
putable functions N → N. Herein we name this system ϕ. ϕp denotes the partial
computable function computed by the TM-program with code number p in the
ϕ-system, and Φp denotes the partial computable runtime function of the TM-
program with code number p in the ϕ-system. By [RC94, Lemma 3.13], s-m-n,
which provides for algorithmic storage of data in programs, has a lintime in-
stance in this system. Hence, it can be shown that this system also has a lintime
instance of 1-1 ort.

7 This numerical coding guarantees that many simple operations involving the coding
run in linear time. This is by contrast with historically more typical codings featuring
prime powers and corresponding at least exponential costs to do simple things.

408 J. Case and T. Kötzing

Whenever we consider tuples of natural numbers as input to functions, it is
understood that a fixed efficient pairing function 〈·, ·〉 (as in [RC94]) is used to
code (left-associatively) the tuples into a single natural number.

A finite sequence is a mapping with a finite initial segment of N as domain
(and range, N). ∅ denotes the empty sequence (and, also, the empty set). The
set of all finite sequences is denoted by Seq. For each finite sequence σ, we will
denote the first element, if any, of that sequence by σ(0), the second, if any, by
σ(1) and so on. #elets(σ) denotes the number of elements in a finite sequence
σ, that is, the cardinality of its domain. last(σ) denotes the last element of σ (if
any).

For a partial function g and i ∈ N, if ∀j < i : g(j)↓, then g[i] is defined to be
the finite sequence g(0), . . . , g(i− 1).

We take N = {0, 1}∗ for ease of measurement of the size of each natural
number. Following [LV97], we fix an easily computed and inverted coding of
all finite sequences of natural numbers into N so that the size of any sequence,
defined as the size of its coding, is sensible for measuring the computational
complexity of functions which take sequences as inputs. In particular the size of
any sequence σ should be linear in #elets(σ) and the size of each natural number
in σ.

We let LinF, PF and EXPF be the set of all lintime, polytime and exptime
computable functions, respectively.

Henceforth, we will many times identify a finite sequence σ with its code num-
ber 〈σ〉Seq. However, when we employ expressions such as σ(x), σ = f and σ ⊂ f ,
we consider σ as a sequence, not as a number.

There are 1-1 function pad and function unpad1, both ∈ LinF and such that
for all n, e: ϕpad(n,e) = ϕe and unpad1(pad(n, e)) = n.

3 Unified Approach to Limit Learning Criteria

In this section, in the interest of generality, we give many definitions for limit
learning also involving non-algorithmic learning. Nonetheless, all of the re-
sults given in the present paper concern only algorithmic (including complexity
bounded) learning.

3.1 Definitions

Any set C ⊆ P is a learner admissibility restriction; intuitively, a learner admis-
sibility restriction defines which functions are admissible as potential learners,
e.g., P ,R,LinF,

Every computable operator P×R → P2 is called a sequence generating oper-
ator; intuitively, a sequence generating operator defines how learner and learnee
interact to generate two infinite sequences, one for learner-outputs (we call this
sequence the learner-sequence) and one for learnee-outputs.8 For example, for
8 Essentially, these computable operators are the recursive operators of [Rog67] but

with two arguments and two outputs and restricted to the indicated domain.

Dynamic Modeling in Inductive Inference 409

Ex-learning (to be renamed in Section 3.2), for a (then, passive) learnee g, its
learnee outputs would be g(0), g(1), Below, in general, even for reactive
learnees, we refer to the sequence of learnee-outputs as a data-sequence.

For h ∈ P , g ∈ R and β a sequence generating operator, we call the first
component of β(h, g) the learner-sequence of h given g (denoted by β1(h, g)),
the second the data-sequence of g given h (denoted by β2(h, g)).

Every subset of P2 is called a sequence acceptance criterion. Intuitively, a
sequence acceptance criterion defines which learner-sequences are considered a
successful learning of a data-sequence. Any two such sequence acceptance criteria
δ and δ′ can be combined by intersecting them. For ease of notation we write
δδ′ instead of δ ∩ δ′.

A learning criterion (or short criterion) is a 3-tuple consisting of a learner
admissibility restriction, a sequence generating operator and a sequence accep-
tance criterion. Let C, β, δ, respectively, be a learner admissibility restriction, a
sequence generating operator and a sequence acceptance criterion, respectively.
For h ∈ P, g ∈ R we say that h (C, β, δ)-learns g iff h ∈ C and β(h, g) ∈ δ.
For h ∈ P and S ⊆ R we say that h (C, β, δ)-learns S iff, for all g ∈ S, h
(C, β, δ)-learns g. The set of (C, β, δ)-learnable sets of computable functions is

Cβδ := {S ⊆ R | ∃h ∈ P : h (C, β, δ)-learns S}. (1)

We refer to the sets Cβδ as in (1) as learnability classes. Instead of writing
the tuple (C, β, δ), we will ambiguously write Cβδ. For h ∈ P, the set of
all computable learnees (C, β, δ)-learned by h is denoted by Cβδ(h) := {g ∈
R | h (C, β, δ)-learns g}.

For any sequence generating operator β, we can turn a given sequence accep-
tance criterion δ into a learner admissibility restriction Tβδ by admitting only
those learners that obey δ on all possible input :

Tβδ := {h ∈ P | ∀g ∈ R : β(h, g) ∈ δ}.

3.2 Examples

In this section we give many examples illustrating our definitions and give an
overview as to how our notation covers criteria from the literature. Past this
section, we will not be concerned with every example given in this section, but
some of them will be employed.

Example 1. Two typical learner admissibility restrictions are P and R. Fur-
thermore, any set of functions computable with a resource restriction (such as
the set of all lintime computable functions) may be used as a learner admissi-
bility restriction. For each sequence generating operator β and each F ⊆ R, the
set Relβ,F of all functions reliable on F [Min76, BB75] (defined below) is also a
learner admissibility restriction.

Relβ,F := {h ∈ P | ∀g ∈ F ∀p, q ∈ P : (β(h, g) = (p, q)
∧ p converges to some p′) ⇒ ϕp′ = q}.

410 J. Case and T. Kötzing

When denoting criteria with P as the learner admissibility restriction, we will
omit P .

Example 2. We define the following example sequence generating operators.
All learners give an initial conjecture, say, of 0, based on no data.

– Goldstyle [Gol67]: G : P × R → P × R, (h, g) �→ (λi h(g[i]), g).
– Iterative [Wie76]: It : P × R → P × R, (h, g) �→ (p, q) such that p(0) = 0,

∀n : p(n + 1) = h(q(n), p(n)) and q = g.
– Transductive: Td : P × R → P × R, (h, g) �→ (p, q) such that p(0) = 0,

∀n : p(n + 1) = h(q(n)) and q = g.
– Crossfeeding [MO99] X : P×R → P×P, (h, g) �→ (p, q) such that ∀n p(n) =

h(q[n]) ∧ q(n) = g(p[n]).
– Learnee Iterative: Li : P × R → P × P, (h, g) �→ (p, q) such that ∀n p(n) =

h(q[n]) ∧ q(0) = 0 ∧ ∀n : q(n + 1) = g(p(n), q(n)).

“G” is a reference to Gold [Gol67]. Intuitively, G takes a learner h and a learnee
g, and feeds longer and longer initial segments of g into h, considering the suc-
cessive outputs as coding an infinite sequence of hypotheses. The second output
is just g, meaning that the target concept to be learned is all of g. In this setting,
the learner gets a lot of information about the learnee, while the learnee does
not react at all to the learning process. For It and Td defined above, a learner
for the latter has less information at its disposal than for the former.

Regarding X, learner and learnee have symmetrical information in each it-
eration. Li lessens the information that the learnee has in a similar way that
iterative learning lessens the information of the learner.

The first three bullets given in Example 2 involve passive learnees, while the
last two examples involve reactive learnees.

We note the following three important properties relating G and X, which
are of importance to this paper. Let f, g, h, p, q ∈ P .

X(h, g) = (p, q) ⇒ G(h, q) = (p, q). (2)
X(h, g) = (p, q) ⇒ G(g, p) = (q, p). (3)
X(h, λσ f(#elets(σ))) = G(h, f). (4)

Example 3. We define the following sequence acceptance criteria.

– Explanatory: Ex = {(p, q) ∈ P2 | p converges to some p′ and ϕp′ = q}.
– Explanatory with up to a ∈ N ∪ {∗} errors [CS83, BB75]:

Exa = {(p, q) ∈ P2 | p converges to some p′ and ϕp′ =a q}.
– Behaviorally correct [CS83, Bār74b]: Bc = {(p, q) ∈ P2 | ∀∞n ϕp(n) = q}.
– Behaviorally correct with up to a ∈ N ∪ {∗} errors [CS83]:

Bca = {(p, q) ∈ P2 | ∀∞n ϕp(n) =a q}.
– Matching [Bār71, BB75, MO99]: M = {(p, q) ∈ P × R | p =∗ q}.

All the above criteria include global restrictions on the path to successful learning.
The following defines several criteria only involving local restrictions.

Dynamic Modeling in Inductive Inference 411

– Postdictively complete [Bār74a, BB75, Wie76]: Pcp = {(p, q) ∈ R2 | ∀n∀i <
n : ϕp(n)(i) = q(i)}.

– Hypotheses are programs for total functions [CS83]: T = {(p, q) ∈ R2 | ∀n :
ϕp(n) ∈ R}.

– Always giving hypotheses: R2.

The idea of dividing a learning criterion is not entirely new. For example,
Freivalds et. al. [FKS95] defined admissible sequences for a given function, which
basically defines a binary predicate on a pair of infinite sequences.

We can now express several learning criteria as defined in the prior literature
(left-hand-side below) with our notation system (right-hand-side below). Recall
that the default learner admissibility restriction is P ; hence, all learning criteria
displayed just below are for algorithmic learners.

Ex ↔ GEx
Bc ↔ GBc
Nv ↔ RGM
Nv′ ↔ GR2M

Nv′′ ([Pod74]) ↔ GM
Cons ↔ GPcpEx

R-Cons ↔ RGPcpEx
T-Cons ↔ TGPcpGEx

Reliable on R ↔ RelRGEx
It ↔ ItEx

learneable by a player ([MO99]) ↔ XM
learneable by a total player ([MO99]) ↔ RXM

A sequence acceptance criterion δ is said to be degenerate iff ∃(p, q) ∈ δ : p =∗

λx ↑. All sequence acceptance criteria given above are non-degenerate, and the
authors don’t know of any degenerate sequence acceptance criteria implicit in the
prior literature. We conjecture that any degenerate sequence acceptance criteria
would be useless to model learning. Hence, the present paper will solely focus
on non-degenerate such criteria.

It is easy to see that, for non-degenerate δ, we have for all C ⊆ P that the
learnability classes CXδ and CXR2δ are equal.

Similarities between extrapolation (like GM) and coordination (like XM)
have been pointed out in [CJM+05]. In particular, blind learnees are defined as
functions where each output only depends on the length of it’s input, and with
each function g ∈ R, a blind learnee g′ = λσ g(#elets(σ)) is associated. The
mapping Θ = λg g′ is then a natural embedding of learnees in the G-sense to
learnees in the X-sense, more formally, for all δ ⊆ P ×R and S ⊆ R,S ∈ Gδ ⇔ Θ(S) ∈ Xδ. (5)

The special case of (5) with δ = M is used in [CJM+05].

4 Cooperation and Secretiveness

The main emphasis of the present paper, as seen in Section 1, features XBc-
learning, but, based on the thinking of Section 3, one might wonder why we didn’t

412 J. Case and T. Kötzing

talk about XEx-learning. We’ll talk about it now. Suppose h XEx-learns g. The
learner-sequence of h interacting with g, is, then, a total, almost everywhere
constant function. Suitable g, then, easily XEx-learn h.9

The proposition just below implies that, any computable g gets XBc-learned
by some computable h. Hence, any g can have its secrets learned by some learner.
The interesting thing, then, is whether, when h XBc-learns g, h can keep models
of itself secret from g. This is considered in Theorem 6 further below.

Proposition 4. Let g ∈ R. Then there are infinitely many (total) constant
functions h XBc- (in fact, XEx-) learning g.

Proof. Let n ∈ N. There is, by krt, en such that, with

p = λx pad(n, en), (7)

∀x : ϕen(x) = g(p[x]). (8)

Let hn ∈ R such that
∀σ : hn(σ) = pad(n, en). (9)

There is q ∈ R such that X(hn, g) = (p, q). Then we have, for all t and x, we
have

ϕp(t)(x) =
(7)

ϕpad(n,en)(x) = ϕen(x) =
(8)

g(p[x]) =
choice of q

q(x). (10)

Hence, hn XBc-learns g. Trivially, we have for all l �= m, hl �= hm. This
shows that there are infinitely many different (constant) functions XEx-learning
g.

Definition 5. We define the following sequence acceptance criteria.

– Cooperative Bc: Bcc = {(p, q) ∈ R2 | ∀∞n ϕp(n) = q ∧ ∀∞n ϕq(n) = p}
(= BcBc−1).

– Secretive Bc: Bcs = {(p, q) ∈ R2 | ∀∞n ϕp(n) = q ∧ ¬∀∞n ϕq(n) = p}
(= BcBc−1).

Clearly, for all h, g ∈ R, h XBcc-learns g iff, h XBc-learns g and g XBc-learns
h; similarly, h XBcs-learns g iff, h XBc-learns g and g does not XBc-learn h.

It is easy to see that there are computable functions which are not XBcc-
learnable, for example λσ #elets(σ).10 At first glance, it seems likely that all
computable functions can be XBcs-learned, as, by Proposition 4 above, for
9 We have, more generally, that

∃g ∈ R ∀h ∈ R : h XEx-learns g ⇒ g XEx-learns h. (6)

10 For all g ∈ R, and p, q ∈ R such that X(λσ #elets(σ), g) = (p, q), we have that p is
the identity on N; hence, λσ #elets(σ) does not XBc-learn g.

Dynamic Modeling in Inductive Inference 413

any given function g, there are infinitely many functions h XBc-learning g. We
were, then, surprised that not all computable functions can be XBcs-learned,
as seen below in Theorem 6. Intuitively, this theorem means that there is a
g ∈ R such that, for all h ∈ P , if h XBc-learns g, then h has to give away
enough information about itself so that g will be able to XBc-learn h. Even more
surprisingly, such a g can be chosen to be lintime computable! On the other hand,
Theorem 6 also has a positive interpretation: it is possible to find a function
g that will XBc-learn every function h that XBc-learns g – in other words,
there are extremely cooperative functions that will cooperate with any function
XBc-learning them. We denote the set of extremely cooperative functions with
EC := {h ∈ R | ∀g ∈ R : g XBc-learns h ⇒ hXBc-learns g}.11

Theorem 6 (Secretiveness Fails)

∃g ∈ LinF : {g} �∈ XBcs.

Proof. By 1-1, lintime ort there is 1-1 g ∈ LinF such that

∀τ, x : ϕg(τ)(x) = last(g−1(ϕlast(τ)(x + 1))).12 (11)

Let h ∈ P be such that g ∈ XBc(h). Let p, q ∈ R be such that X(h, g) = (p, q).
Since (p, q) ∈ Bc, there is n0 such that

∀n ≥ n0 : ϕp(n) = q. (12)

Claim: ∀∞n : ϕq(n) = p.

Proof. We have

∀n ≥ n0 + 1, x : ϕp(n−1)(x + 1) =
(12)

q(x + 1) =
choice of q

g(p[x + 1]). (13)

Hence, for all n ≥ n0 + 1 and all x,

ϕq(n)(x) =
choice of q

ϕg(p[n])(x) =
(11)

last(g−1(ϕp(n−1)(x + 1)))

=
(13)

last(g−1(g(p[x + 1]))) = last(p[x + 1]) = p(x). (14)

(for claim)

Hence, by the claim, g ∈ XBcc(h); therefore, {g} �∈ XBcs.
(for theorem)

[MO99] examined uncooperativeness of coordinators. In particular, two sets
of total computable functions are constructed such that any learner learning
all of the functions from one of the sets cannot coordinate with any function
11 It is easy to see that EC = {h ∈ R | XBcs−1(h) = ∅}.
12 Note that ϕg(τ)(x) might be undefined for various reasons, for example last is not

total. Furthermore, note that accessing g−1 is a valid use of ort.

414 J. Case and T. Kötzing

from the other set. Furthermore, [CJM+05] extended this result showing that
for all k ≥ 2, one can find k such sets of uncooperative learners. Below, we give
an analog of this result for cooperation in the XBcc-sense, where we give an
infinite family of uncooperative sets, so that any learner that can XBc-learn any
of the functions in one of the sets cannot XBc-learn any of the functions of any
other set.

Theorem 7 (Incompatible Mutual Cooperation Camps). There is a 1-1
e ∈ R such that for all m,n, ϕe(m,n) total and, defining Sn := {ϕe(m,n) ∈ R | m ∈
N}, for each n all members of Sn XBcc-learn each other, while each function
h ∈ P XBcc-learns functions from at most one of the sets in {Sn | n ∈ N}.
The theorem just above can be shown by an application of the Generalized
Delayed Recursion Theorem [Cas74, Theorem 23].

As a contrast to the extremely cooperative functions as defined above, we say
that h ∈ R is extremely uncooperative iff XBcc(h) = ∅ (i.e., h cooperates with
no function). The set of all extremely uncooperative functions is denoted by EU .
Trivially, EU �= ∅, as EU contains each function h that doesn’t XBc-learn any
function. Interestingly, EU is rather big in the sense that the closure under LinF
composition of EU is equal to R.13 However, many of the functions h ∈ EU will
not XBc-model anything. We define a (computable) operator below, turning a
given learner h into an uncooperative learner h′, which intuitively doesn’t lose
too much of the learning power of h.

Furthermore, Theorem 10 below states the existence of h ∈ EU with XBc(h)
infinite.

Definition 8. For all h ∈ R there is, by lintime ort, h′ ∈ LinF such that

∀σ, x : ϕh′(σ)(x) =

⎧⎨⎩ϕh(σ)(x),
if σ = ∅ ∨ ∃s ≥ #elets(σ), t :
ϕϕh(σ)(s)(t)↓ �= h′(ϕh(σ)[t])↓;

↑, otherwise.
(15)

Intuitively, h′ makes conjectures mostly behaviorally equivalent to those of h,
but modified so that the conjectures are definitely wrong as soon as the input
seems to learn the outputs of h′.

Define Ψ = λh ∈ R h′. N.B. For each h ∈ R, Ψ(h) ∈ LinF.

Lemma 9. Let h ∈ R. Then XBcc(Ψ(h)) = ∅.
Theorem 10 (Extremely Uncooperative Infinitely Successful Learn-
ers). There are functions h ∈ R such that XBcs(Ψ(h)) is infinite, but
XBcc(Ψ(h)) = ∅ (i.e., no function XBc-learned by Ψ(h) can XBc-learn Ψ(h)).

The next theorem intuitively implies that requiring a learner to be extremely un-
cooperative will decrease its learning power with respect to plain uncooperative
learning.

Corollary 11. EUXBcs ⊂ RXBcs.14

13 Let f ∈ R, let p be such that ϕp = λx ↑. Then f ′ = λx pad(f(x), p) ∈ EU . Define
a = λx unpad1(x) ∈ LinF. Then a ◦ f ′ = f .

14 Less surprisingly, one can also show ECXBcc ⊂ RXBcc.

Dynamic Modeling in Inductive Inference 415

5 General Crossfeeding

Most lemmas, propositions and theorems of this section carry over with slightly
modified hypotheses to the case of Li in the place of X.

Just below is a proposition with corollary regarding which sequence accep-
tance criteria allow dynamical modeling all of R.

Proposition 12. Let δ be a sequence acceptance criterion, let C ⊆ P . Then we
have

R ∈ CXδ ⇔ R ∈ CGδ.

We get the following corollary by a theorem of Harrington, cited in [CS83].

Corollary 13
R ∈ XBc∗.

Gold [Gol67] introduced learning by enumeration. Analogous to, but harder to
prove than the case for G-style learning, we have, by the next theorem that any
computably enumerable set of (total) computable functions are XEx-modelable,

Theorem 14 (Dynamic Modeling by Enumeration). Let r ∈ R be an
enumeration of program numbers of (total) computable functions. We have

{ϕr(n) | n ∈ N} ∈ XEx.15

Proof. By ort, there are programs e, e′, as well as an infinite enumeration s ∈ R
of programs such that, with h = ϕe and u = ϕe′ ,16

∀σ : u(σ) = µk ≤ #elets(σ) σ ⊆ X2(h, ϕr(k)); (17)
∀m : ϕs(m) = X2(h, ϕr(m)); (18)
∀σ : h(σ) = s(u(σ)). (19)

By induction, we can show h, u ∈ R. Let n ∈ N. Let g = ϕr(n). We show that
h XEx-learns g. Let p, q ∈ R be such that X(h, g) = (p, q). Obviously, for all
j, u(q[j])↓ ≤ n. Also, u is monotone in the sense that ∀i, j : i ≤ j ⇒ u(q[i]) ≤
u(q[j]). Thus, there is m such that

∀∞j : u(q[j]) = m. (20)

15 In fact, Ex could be replaced by any δ from a wide set of sequence acceptance
criteria.

16 For a number-theoretic (partial) predicate P and n ∈ N, we let

µx ≤ n P (x) =

���
��

x, if ∀y < x : P (y)↓ �= true and P (x)↓ = true;

n + 1, if ∀y < n + 1 : P (y)↓ �= true;

↑, otherwise.

(16)

416 J. Case and T. Kötzing

Hence, p converges. By (17) and (20),

∀∞j : q[j] ⊆ X2(h, ϕr(m)); thus, (21)
q = X2(h, ϕr(m)). (22)

The following completes the proof.

∀∞j : ϕp(j) =
def p

ϕh(q[j]) =
(19) & (20)

ϕs(m) =
(18)

X2(h, ϕr(m)) =
(22)

q. (23)

The enumeration technique used in our proof of the theorem just above can
be modified with techniques from [RC94] so as to obtain a lintime computable
learner for any given computably enumerable set of functions. However, in gen-
eral it is not the case that any XEx-learnable set is also XEx-learnable by a
lintime learner. This will be stated formally in Corollary 18 below, for which we
now give definitions to set it up.

Definition 15. Let δ be a sequence acceptance criterion.

– δ is called non-trivial iff ∀σ : σ - R �∈ Gδ.
– Let D ⊆ R. δ allows for lintime path finding for D iff there is r ∈ LinF such

that, for all σ, τ of equal length and q ∈ D and e with σ ⊆ q = ϕe, we have
(τ - λx r(x, e, σ), q) ∈ δ

We illustrate the definitions by giving the following examples.

Example 16

– Bc∗ is a trivial sequence acceptance criterion, while Ex,Bc,Bcs,Bcc and
M are non-trivial.

– Ex,Bc and Bc∗ allow for lintime path finding for R as witnessed by
r = λx, e, σ e. M allows for lintime pathfinding for total finite variants of
constant functions.17

Note that non-triviality is inherited by subsets, and allowing for lintime path
finding by supersets.

Theorem 17 (Learner Correspondence). Let δ be non-trivial such that δ
allows for lintime path finding for total finite variants of constant functions. Let
C, C′ ⊆ R be closed under generalized composition with LinF and LinF ⊆ C, C′.
Then

CXδ ⊆ C′Xδ ⇔ C ⊆ C′.

Suppose for discussion Q is a polynomial time bound. Pitt [Pit89] notes that
polytime (update) Ex-learning allows unfair postponement tricks, i.e., a learner
h can put off outputting significant conjectures based on data σ until it has
17 M allows for not necessarily lintime path finding for R.

Dynamic Modeling in Inductive Inference 417

seen a much larger sequence of data τ so that Q(|τ |) is enough time for h to
think about σ as long as it needs. In fact, by an extension of Pitt’s postponement
tricks, LinFGEx = GEx. A direct application of Theorem 17, e.g., Corollary 18,
implies that dynamic modeling does not allow for those kinds of postponement
tricks in general.18 We let α, as from [CLRS01, §21.4], be a very slow growing,
unbounded, lintime computable function ≤ an inverse of Ackermann’s function;
let LinF+ε := {ϕe ∈ R | ∃k∀n : Φe(n) ≤ k · |n| · log(|n|) ·α(|n|)+ k}. The classes
LinF and LinF+ε have long been known to separate [HS65].

The following corollary gives a sample of the universal power of Theorem 17.

Corollary 18 (Learner Complexity Matters). Let δ ∈ {Ex,Bc,M}.

(a) LinFXδ ⊂ LinF+εXδ.
(b) PFXδ ⊂ EXPFXδ.

Theorem 17 can be generalized so as to show RXδ ⊆ PXδ for δ as in Corol-
lary 18.

Theorem 19 (Sequence Acceptance Correspondence). Let δ, δ′ be such
that δ ⊆ R2 and δ′ is non-trivial. We have

Xδ ⊆ Xδ′ ⇔ δ ⊆ δ′.

The following corollary gives a sample of the universal power of Theorem 19.

Corollary 20 (Hierarchies and Separations)

(a) For all a, b ∈ N ∪ {∗} : XBca �⊆ XExb.
(b) For all a, b ∈ N ∪ {∗} : XExa ⊆ XBcb ⇔ a ≤ b.
(c) For all n ∈ N : XM �⊆ XEx∗,XBcn.
(d) For all n ∈ N : XEx∗,XBcn �⊆ XM.

References

[Bār71] Bārzdiņš, J.: Prognostication of automata and functions. Information
Processing 1, 81–84 (1971)

[Bār74a] Bārzdiņš, J.: Inductive inference of automata, functions and programs.
In: Int. Math. Congress, Vancouver, pp. 771–776 (1974)

[Bār74b] Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: The-
ory of Algorithms and Programs, Latvian State University, Riga, vol. 210,
pp. 82–88 (1974)

18 However, as we saw from Theorem 14 above, such extended postponement tricks
do, nonetheless, apply to the special case of the XEx-learning of any computably
enumerable set of computable functions.

However, we believe we can show that Theorem 14 doesn’t hold for LinFXPcpEx
in place of LinFXEx; hence, postdictive completeness prevents some postponement
tricks.

418 J. Case and T. Kötzing

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference.
Information and Control 28, 125–155 (1975)

[BSMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-
knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

[Cas74] Case, J.: Periodicity in generations of automata. Mathematical Systems
Theory 8, 15–32 (1974)

[Cas94] Case, J.: Infinitary self-reference in learning theory. Journal of Experi-
mental and Theoretical Artificial Intelligence 6, 3–16 (1994)

[CJM+05] Case, J., Jain, S., Montagna, F., Simi, G., Sorbi, A.: On learning to
coordinate: Random bits help, insightful normal forms, and competency
isomorphisms. Journal of Computer and System Sciences 71(3), 308–332
(2005); Special issue for selected learning theory papers from COLT 2003,
FOCS 2003, and STOC 2003

[CS83] Case, J., Smith, C.: Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science 25, 193–220 (1983)

[CLRS01] Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algo-
rithms, 2nd edn. MIT Press, Cambridge (2001)

[FKS95] Freivalds, R., Kinber, E.B., Smith, C.H.: On the intrinsic complexity of
learning. Information and Computation 123(1), 64–71 (1995)

[Gol67] Gold, E.: Language identification in the limit. Information and Control 10,
447–474 (1967)

[HS65] Hartmanis, J., Stearns, R.: On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society 117, 285–306
(1965)

[LV97] Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its
Applications, 2nd edn. Springer, Heidelberg (1997)

[Min76] Minicozzi, E.: Some natural properties of strong identification in inductive
inference. In: Theoretical Computer Science, pp. 345–360 (1976)

[MO99] Montagna, F., Osherson, D.: Learning to coordinate: A recursion theoretic
perspective. Synthese 118, 363–382 (1999)

[Pit89] Pitt, L.: Inductive inference, DFAs, and computational complexity. In:
Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidel-
berg (1989)

[Pod74] Podnieks, K.: Comparing various concepts of function prediction. Theory
of Algorithms and Programs 210, 68–81 (1974)

[RC94] Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and
Succinctness. In: Research monograph in Progress in Theoretical Com-
puter Science, Birkhäuser, Boston (1994)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967) (Reprinted by MIT Press, Cambridge,
Massachusetts, 1987)

[Wie76] Wiehagen, R.: Limes-erkennung rekursiver Funktionen durch spezielle
Strategien. Electronische Informationverarbeitung und Kybernetik 12,
93–99 (1976)

Optimal Language Learning

John Case and Samuel E. Moelius III

Department of Computer & Information Sciences
University of Delaware

103 Smith Hall
Newark, DE 19716

{case,moelius}@cis.udel.edu

Abstract. Gold’s original paper on inductive inference introduced a
notion of an optimal learner . Intuitively, a learner identifies a class of
objects optimally iff there is no other learner that: requires as little of
each presentation of each object in the class in order to identify that
object, and, for some presentation of some object in the class, requires
less of that presentation in order to identify that object. Wiehagen con-
sidered this notion in the context of function learning, and characterized
an optimal function learner as one that is class-preserving , consistent ,
and (in a very strong sense) non-U-shaped , with respect to the class of
functions learned.

Herein, Gold’s notion is considered in the context of language learning.
Intuitively, a language learner identifies a class of languages optimally iff
there is no other learner that: requires as little of each text for each
language in the class in order to identify that language, and, for some
text for some language in the class, requires less of that text in order to
identify that language.

Many interesting results concerning optimal language learners are pre-
sented. First, it is shown that a characterization analogous to Wiehagen’s
does not hold in this setting. Specifically, optimality is not sufficient to
guarantee Wiehagen’s conditions; though, those conditions are sufficient
to guarantee optimality. Second, it is shown that the failure of this ana-
log is not due to a restriction on algorithmic learning power imposed by
non-U-shapedness (in the strong form employed by Wiehagen). That is,
non-U-shapedness, even in this strong form, does not restrict algorithmic
learning power. Finally, for an arbitrary optimal learner F of a class of
languages L, it is shown that F optimally identifies a subclass K of L iff
F is class-preserving with respect to K.

1 Introduction

Gold’s original paper on inductive inference introduced a notion of an optimal
learner [Gol67]. Intuitively, a learner identifies a class of objects optimally iff
there is no other learner that: requires as little of each presentation of each
object in the class in order to identify that object, and, for some presentation of
some object in the class, requires less of that presentation in order to identify
that object.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 419–433, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 J. Case and S.E. Moelius III

Gold’s notion is perhaps most easily exemplified in the context of function
learning, where each object (i.e., function) has one (canonical) presentation,
namely, the sequence of all finite initial segments of that function ordered by
inclusion (i.e., “⊆”). We briefly recall the relevant definitions.

Let N be the set of natural numbers, {0, 1, 2, ...}. Let ϕ0, ϕ1, ... be any ac-
ceptable numbering of the partial computable functions from N to N [Rog67].
For each function f : N → N, and each n ∈ N, let f [n] denote the initial seg-
ment of f whose domain is of size n. A learner F identifies a class of functions
F ⊆ N → N def⇔ for each f ∈ F , there exists n ∈ N such that ϕF(f [n]) = f and
(∀i ≥ n)

[
F(f [i]) = F(f [n])

]
.

For each function learner F, and each f : N → N, let conv be as follows.

conv(F, f) =

⎧⎪⎪⎨⎪⎪⎩
n, where n is least such that ϕF(f [n]) = f

and (∀i ≥ n)
[
F(f [i]) = F(f [n])

]
, if

such an n exists;
undefined, otherwise.

(1)

Intuitively, conv(F, f) indicates how much of f must be presented to F in order
for F to identify f . Thus, if F and G are two function learners and conv(F, f) ≤
conv(G, f) (which are both defined), then F requires as little of f as G requires
to identify f .

In the context of function learning, Gold’s notion can be made precise as
follows. A function learner F optimally identifies a class of functions F def⇔ F
identifies F , and, for each function learner G,

(∀f ∈ F)[conv(G, f) ≤ conv(F, f)] ⇒
(∀f ∈ F)[conv(F, f) ≤ conv(G, f)]. (2)

Thus, F optimally identifies F iff, for every other function learner G, if G
requires as little of each f ∈ F as F requires to identify f , then (conversely) F
requires as little of each f ∈ F as G requires to identify f . Equivalently: there
is no other learner G such that, G requires as little of each f ∈ F as F requires
to identify f , and, for some f ∈ F , G requires less of f than F requires to
identify f .

Wiehagen [Wie91] considered optimal learners in the context of function learn-
ing, and characterized them as follows.

Theorem 1 (Wiehagen [Wie91]). Suppose that a function learner F iden-
tifies a class of functions F . Then, F optimally identifies F ⇔ (a) through (c)
below.

(a) F is class-preserving [Wie91] with respect to F , i.e.,

(∀f ∈ F)(∀n ∈ N)[ϕF(f [n]) ∈ F]. (3)

(b) F is consistent [Bar77, BB75] with respect to F , i.e.,

(∀f ∈ F)(∀n ∈ N)
[
f [n] ⊆ ϕF(f [n])

]
. (4)

Optimal Language Learning 421

(c) F is strongly non-U-shaped [Wie91]1 with respect to F , i.e.,

(∀f ∈ F)(∀n ∈ N)
[
ϕF(f [n]) = f ⇒ (∀i ≥ n)

[
F(f [i]) = F(f [n])

]]
. (5)

Herein, we consider optimal learners in the context of language learning, as done
in [OSW86, Ch. 8]. In this setting, the situation is slightly more complicated,
since, for nearly every object (i.e., language), there is more than one presentation
(i.e., text). We briefly recall the relevant definitions.

For each p ∈ N, let Wp = {x ∈ N | ϕp(x) converges}. Thus, W0,W1, ... is an
enumeration of the recursively enumerable (r.e.) sets [Rog67]. A language is a
subset of N. A text for a language L is a function T : N → (N∪{#}) such that L is
exactly the non-# elements of the range of T , i.e., L = {x ∈ N | (∃i)[T (i) = x]}.
(The symbol ‘#’ is pronounced pause.) Clearly, a text uniquely determines a
language. Furthermore, if L is a non-empty language, then there are uncountably
many texts for L. A language learner F identifies a class of languages L def⇔ for
each L ∈ L, and each text T for L, there exists n ∈ N such that WF(T [n]) = L

and (∀i ≥ n)
[
F(T [i]) = F(T [n])

]
.

For each language learner F, and each text T , let conv be as follows.

conv(F, T) =

⎧⎪⎪⎨⎪⎪⎩
n, where n is least such that WF(T [n]) = L,

(∀i ≥ n)
[
F(T [i]) = F(T [n])

]
, and T is

a text for L, if such n and L exist;
undefined, otherwise.

(6)

In the context of language learning, Gold’s notion can be made precise as
follows. A language learner F optimally identifies a class of languages L def⇔ F
identifies L, and, for each language learner G,

(∀L ∈ L)(∀T a text for L)[conv(G, T) ≤ conv(F, T)] ⇒
(∀L ∈ L)(∀T a text for L)[conv(F, T) ≤ conv(G, T)]. (7)

This definition has an interpretation similar to that of the function learning
setting. Specifically: F optimally identifies L iff, for every other language learner
G, if G requires as little of each text for each L ∈ L as F requires to identify L,
then (conversely) F requires as little of each text for each L ∈ L as G requires
to identify L. Equivalently: there is no other learner G such that, G requires as
little of each text for each L ∈ L as F requires to identify L, and, for some text
for some L ∈ L, G requires less of that text than F requires to identify L.

Many interesting results concerning optimal language learners are presented.
First, we show that a characterization analogous to Wiehagen’s (Theorem 1
above) does not hold in this setting. Specifically, optimality is not sufficient
to guarantee Wiehagen’s conditions; though, those conditions are sufficient to

1 Wiehagen actually used the term semantically finite in place of strongly non-U-
shaped . However, there is a clear connection between this notion and that of non-
U-shapedness [CCJS07, BCM+08, CCJS08, CM08b]. Our choice of terminology is
meant to expose this connection.

422 J. Case and S.E. Moelius III

guarantee optimality (Theorem 8 in Section 3). Second, we show that the failure
of this analog is not due to a restriction on algorithmic learning power imposed
by strong non-U-shapedness. That is, strong non-U-shapedness does not restrict
algorithmic learning power (Theorem 12 in Section 3). Finally, for an arbitrary
optimal learner F of a class of languages L, we show that F optimally identifies
a subclass K of L iff F is class-preserving with respect to K (Theorem 13 in
Section 4).

A primary motivation for considering optimal language learners is the fol-
lowing. There is no generally accepted notion of efficient algorithmic language
learning.2 Optimal learners are, in some sense, maximally efficient , in that they
use as little of the presentation of an object as possible. Thus, one way to argue
that an algorithmic learner is efficient, is to argue that it is relatively efficient
compared to an optimal learner. We give an example (beginning with (8) below),
following some necessary definitions.

Let σ range over finite initial segments of texts. For each text T , and each
n ∈ N, let T [n] denote the initial segment of T of length n. For each σ, let
content(σ) = {x ∈ N | (∃i)[σ(i) = x]}. Let K be the diagonal halting problem,
i.e., K = {p ∈ N | p ∈ Wp} [Rog67]. For each set A ⊆ N, let A = N − A and
A + 1 = {x + 1 | x ∈ A}.

Let L be as follows.

L =
{
{0}

}
∪
{
{p + 1} | p ∈ K

}
∪
{
{0, p + 1} | p ∈ K

}
. (8)

Let f be such that, for each finite A ⊂ N,

Wf(A) = A.3 (9)

For each σ, let M and F be as follows.

M(σ) = f
(
content(σ)

)
. (10)

F(σ) =

⎧⎨⎩
f({0}), if content(σ) ⊆ {0};
f
(
content(σ)

)
, if content(σ) ∩ (K + 1) �= ∅;

f
(
{0} ∪ content(σ)

)
, if content(σ) ∩ (K + 1) �= ∅.

(11)

The discussion proceeds with the observation of a few facts.

Fact 1. L is not algorithmically, optimally identifiable.4

Proof. By way of contradiction, let M′ be an algorithmic learner that optimally
identifies L. Then, by (b) ⇒ (c) of Theorem 8 (Section 3 below), M′ class-
preservingly and consistently identifies L. Note that, for each p ∈ N, there is
exactly one L ∈ L such that p + 1 ∈ L. It follows that

K = {p ∈ N | 0 ∈ WM′(p+1)}. (12)

2 See [Pit89] for a discussion.
3 Such an f exists by s-m-n [Rog67].
4 This is shown for a nearly identical class of languages in [OSW86, Proposi-

tion 8.2.3A]. The proof of Fact 1 is included here for illustration.

Optimal Language Learning 423

Since the right hand side of (12) is r.e. (by supposition), this is a contradic-
tion. � (Fact 1)

Fact 2. M algorithmically identifies L, but not optimally.

Proof. Clearly, M identifies L, and M is algorithmic. Thus, by Fact 1, M cannot
optimally identify L. � (Fact 2)

Fact 3. F optimally identifies L, but not algorithmically.

Proof. Clearly, F identifies L. Furthermore, F is class-preserving, consistent,
and strongly non-U-shaped with respect to L. Thus, by (a) ⇒ (b) of Theorem 8
(Section 3 below), F optimally identifies L. Finally, by Fact 1, F cannot be
algorithmic. � (Fact 3)

Fact 4. On any text T for a language in L, M requires at most one more data-
point than F requires to converge to a correct hypothesis on T . Formally: for
each text T for a language in L,∣∣content

(
T [conv(M, T)]

)∣∣ ≤ ∣∣content
(
T [conv(F, T)]

)∣∣+ 1. (13)

Proof. A straightforward case analysis. � (Fact 4)

Fact 4 gives a sense in which M is relatively efficient compared to F. General-
izations of this notion might allow, e.g., that the size of the set on the right-hand
side of (13) be the argument of an arbitrary polynomial.5

Of course, any such notion of relative efficiency is meaningful only for those
classes of languages for which there exists an optimal learner. Fortunately, how-
ever, Proposition 8.2.1A in [OSW86] says that, for every identifiable class of
languages, there exists an optimal learner.

We hope that the ideas presented here provide for a useful notion of efficient
algorithmic language learning.

2 Preliminaries

Computability-theoretic concepts not covered below are treated in [Rog67].
Lowercase math-italic letters (e.g., a, b, c), with or without decorations, range

over elements of N, unless stated otherwise. Uppercase math-italic letters (e.g.,
A, B, C), with or without decorations, range over subsets of N, unless stated
otherwise. D0, D1, ... denotes a canonical enumeration of all finite subsets of N.
K and L range over collections of subsets of N. E def= {Wp | p ∈ N}. For each A,
|A| denotes the cardinality of A. For each finite, non-empty A, maxA denotes
the maximum element of A. For an arbitrary set X, 2X denotes the collection of
all subsets of X.
5 We do not mean to suggest that the content-based measure of (13) represents the best

possible measure of relative efficiency, just that it is a reasonable one. Alternatives
might involve, e.g., mind-change complexity [BF74, CS83].

424 J. Case and S.E. Moelius III

For each one-argument partial function ψ, and each x, ψ(x)↓ denotes that
ψ(x) converges; ψ(x)↑ denotes that ψ(x) diverges.6 We use ↑ to denote the value
of a divergent computation. Φ denotes a fixed Blum complexity measure for ϕ.
For each i and s, W s

i
def= {x | x < s ∧ Φi(x) ≤ s}.

N#
def= N ∪ {#}. Txt denotes the set of all texts, i.e., functions of type

N → N#. Seq denotes the set of all sequences, i.e., finite initial segments of
texts. T , with or without decorations, ranges over elements of Txt. Lowercase
Greek letters (e.g., ρ, σ, τ), with or without decorations, range over elements of
Seq, unless stated otherwise. For each L and L, TxtL, TxtL, SeqL, and SeqL
are defined as follows.

TxtL = {T | content(T) = L}. (14)
TxtL = {T | (∃L ∈ L)[content(T) = L]}. (15)
SeqL = {σ | (∃T ∈ TxtL)[σ ⊂ T]}. (16)
SeqL = {σ | (∃T ∈ TxtL)[σ ⊂ T]}. (17)

In order to disambiguate expressions such as Seq∅, we write ∅ for the empty
language, and {} for the empty class of languages .

For each A ⊆ N#, A∗ def= {σ | (∀i)[σ(i)↓ ⇒ σ(i) ∈ A]}. Similarly, for
each A ⊆ N#, Aω def= {T | (∀i)[T (i) ∈ A]}. For each x ∈ N#, xω denotes the
unique element of {x}ω. For each A ⊆ N#, A≤ω = A∗ ∪ Aω. In particular,
N

≤ω
= Seq ∪ Txt.
For each f ∈ N

≤ω
, content(f) def= {x ∈ N | (∃i)[f(i) = x]}. For each f ∈ N

≤ω
#

and n, f [n] denotes the initial segment of f of length n, if it exists; f , otherwise.
For each σ, |σ| denotes the length of σ (equivalently, |{i | σ(i)↓}|). For each
non-empty σ, σ− def= σ[|σ| − 1]. For each σ, and each f ∈ N

≤ω
, σ · f denotes

the concatenation of σ and f (in that order). Similarly, for each A ⊆ Seq and
B ⊆ N

≤ω
, A · B def= {σ · f | σ ∈ A ∧ f ∈ B}. λ denotes the empty sequence

(equivalently, the everywhere divergent function).
Following conventions similar to [JORS99], F, G, and H, with our without

decorations, range over arbitrary (partial) functions of type Seq ⇀ N; whereas,
M, with our without decorations, ranges over algorithmic (partial) functions of
type Seq ⇀ N.

conv was defined in (6) (Section 1). For each F and T , we write conv(F, T)↓
when conv(F, T) is defined, and conv(F, T)↑ when conv(F, T) is undefined. An
expression that the reader will see frequently is

T [conv(F, T)], (18)

which is the shortest initial segment of T causing F to converge to a correct
hypothesis for content(T) (if such an initial segment exists).

6 For each one-argument partial function ψ, and each x, ψ(x) converges iff there exists
y such that ψ(x) = y; ψ(x) diverges iff there is no y such that ψ(x) = y. If ψ is
partial computable, and x is such that ψ(x) diverges, then one can imagine that a
program for ψ goes into an infinite loop on input x.

Optimal Language Learning 425

Proposition 2. (∀F, T, σ)
[
T [conv(F, T)] ⊆ σ ⊂ T ⇒ WF(σ) = content(T)

]
.

Proof of Proposition. Let F, T , and σ be fixed, and suppose that T [conv(F, T)] ⊆
σ ⊂ T . Let n = conv(F, T). By the definition of conv, WF(T [n]) = content(T)
and (∀i ≥ n)

[
F(T [i]) = F(T [n])

]
. Let i be such that T [i] = σ. Clearly, i ≥ n.

Thus, WF(σ) = WF(T [i]) = WF(T [n]) = content(T). � (Proposition 2)

The following are the Gold-style learning criteria of relevance to this paper.

Definition 3. Let F and L be fixed.

(a) (Gold [Gol67]) F identifies L ⇔

(∀σ ∈ SeqL)[F(σ)↓] ∧ (∀T ∈ TxtL)[conv(F, T)↓]. (19)

(b) (Wiehagen [Wie91]) F class-preservingly identifies L ⇔ F identifies L
and

(∀σ ∈ SeqL)[WF(σ) ∈ L]. (20)

(c) (Angluin [Ang80]) F consistently identifies L ⇔ F identifies L and

(∀σ ∈ SeqL)[content(σ) ⊆ WF(σ)]. (21)

(d) (Baliga, et al. [BCM+08], Carlucci, et al. [CCJS08]) F non-U-
shapedly identifies L ⇔ F identifies L and

(∀L ∈ L)(∀σ, τ ∈ SeqL)
[
[σ ⊆ τ ∧ WF(σ) �= WF(τ)] ⇒ WF(σ) �= L

]
. (22)

(e) (Wiehagen [Wie91]) F strongly non-U-shapedly7 identifies L ⇔ F iden-
tifies L and

(∀L ∈ L)(∀σ, τ ∈ SeqL)
[
[σ ⊆ τ ∧ F(σ) �= F(τ)] ⇒ WF(σ) �= L

]
. (23)

N.B. Some authors (including ourselves, at times) make allowances outside of
those of Definition 3(a), such as: (1) allowing (∃σ ∈ SeqL)[F(σ)↑], and (2) allow-
ing F : Seq ⇀ (N∪ {?}). However, for the purposes of this paper, insisting that
F satisfy the more stringent requirements of Definition 3(a) greatly simplifies
the presentation. Moreover, such insistence does not affect the essential content
of our results.

Definition 4. For each L, L is identifiable ⇔ (∃F)[F identifies L].

N.B. “L is identifiable” is not equivalent to “L is algorithmically identifiable”,
the latter of which would mean (∃M)[M identifies L].

Definition 5. Let L be fixed.

(a) Suppose that F and G each identify L. Then, (i) and (ii) below.
(i) F 3L G ⇔ (∀T ∈ TxtL)[conv(F, T) ≤ conv(G, T)].
(ii) F ≺L G ⇔

[
F 3L G ∧ (∃T ∈ TxtL)[conv(F, T) < conv(G, T)]

]
.

(b) For each F, F optimally identifies L ⇔
[
F identifies L ∧ (∀G)[G �≺L F]

]
.

7 See footnote 1 above.

426 J. Case and S.E. Moelius III

3 Properties of Optimal Learners

In this section, we show that a characterization analogous to Wiehagen’s (The-
orem 1 in Section 1) does not hold in the language learning setting. Specifically,
optimality is not sufficient to guarantee Wiehagen’s conditions; though, those
conditions are sufficient to guarantee optimality (Theorem 8 below). We also
show that the failure of this analog is not due to a restriction on algorithmic
learning power imposed by strong non-U-shapedness. That is, strong non-U-
shapedness does not restrict algorithmic learning power (Theorem 12 below).

The proof of Theorem 8 relies on the following two lemmas.

Lemma 6. Suppose that F class-preservingly, consistently, and strongly non-
U-shapedly identifies L. Then, for each σ ∈ SeqL, there exists L ∈ L such that

content(σ) ⊆ L ∧ (∀T ∈ TxtL)[σ ⊂ T ⇒ conv(F, T) ≤ |σ|]. (24)

Proof. Let F, L, and σ be as stated. Since F class-preservingly identifies L,
WF(σ) ∈ L. Let L = WF(σ). Since F consistently identifies L, content(σ) ⊆ L.
Since F strongly non-U-shapedly identifies L, (∀τ ∈ SeqL)[σ ⊆ τ ⇒ F(σ) =
F(τ)]. Clearly, the lemma follows. � (Lemma 6)

Lemma 7. Suppose that F and G each identify L. Further suppose that A ⊆
Seq is such that

(∀σ �∈ A)[F(σ) = G(σ)]. (25)

Then,

(∀T ∈ TxtL)
[
conv(F, T) < conv(G, T) ⇒

(∃σ ∈ A)
[
T [conv(F, T)] ⊆ σ ⊂ T

]]
.

(26)

Proof. Let F, G, L, and A be as stated. Let T ∈ TxtL be such that conv(F, T) <
conv(G, T). Clearly, there exists σ such that T [conv(F, T)] ⊆ σ ⊂ T and F(σ) �=
G(σ). By (25), σ ∈ A. � (Lemma 7)

The following is the first main result of this section.

Theorem 8. Let F and L be fixed. Then,

(a) ⇒�⇐ (b) ⇒�⇐ (c), (27)

where (a) through (c) are as follows.8

(a) F class-preservingly, consistently, and strongly non-U-shapedly identifies L.
(b) F optimally identifies L.
(c) F class-preservingly and consistently identifies L.

8 (a) ⇒ (b) of Theorem 8 is an improvement on Proposition 8.2.2A in [OSW86].

Optimal Language Learning 427

Proof. Let F and L be as stated.

(a) ⇒ (b): Suppose that F class-preservingly, consistently, and strongly non-U-
shapedly identifies L. Further suppose, by way of contradiction, that there exist
G, L ∈ L, and T ∈ TxtL such that G 3L F and conv(G, T) < conv(F, T). Let
σ = T [conv(G, T)]. By Lemma 6, there exists L′ ∈ L such that content(σ) ⊆ L′

and
(∀T ′ ∈ TxtL′)[σ ⊂ T ′ ⇒ conv(F, T ′) ≤ |σ|]. (28)

If L = L′, then

conv(F, T) ≤ |σ| {by (28)}
= conv(G, T) {by the choice of σ}
< conv(F, T) {by the choice of T}

— a contradiction. So, it must be the case that L �= L′. Note that, by the choice
of σ,

WG(σ) = WG(T [conv(G,T)]) = L. (29)

Let T ′ ∈ TxtL′ be any such that σ ⊂ T ′. Then,

conv(F, T ′) ≤ |σ| {by (28)}
< conv(G, T ′) {by (29) and L �= L′}.

But this contradicts G 3L F.

(b) ⇒ (c): Suppose that F optimally identifies L. Further suppose, by way of
contradiction, that F does not class-preservingly identify L, or that F does not
consistently identify L. Then, there exists ρ ∈ SeqL such that at least one of (i)
or (ii) below holds.

(i) WF(ρ) �∈ L (in the case that F does not class-preservingly identify L).
(ii) content(ρ) �⊆ WF(ρ) (in the case that F does not consistently identify L).

Let T ∈ TxtL be such that ρ ⊂ T .

Claim 8.1. Suppose that σ ∈ SeqL is such that ρ ⊆ σ ⊆ T [conv(F, T) − 1].
Then,

(∀T ′ ∈ TxtL)[σ ⊂ T ′ ⇒ conv(F, T ′) > |σ|]. (30)

Proof of Claim. The proof is by induction on the length of σ. The case when
ρ = σ is straightforward by the choice of ρ and (i) or (ii) above. So, let σ be
such that ρ ⊂ σ ⊆ T [conv(F, T) − 1], and suppose that

(∀T ′ ∈ TxtL)[σ− ⊂ T ′ ⇒ conv(F, T ′) > |σ−|]. (31)

Further suppose, by way of contradiction, that, for some T ′ ∈ TxtL, σ ⊂ T ′

and conv(F, T ′) ≤ |σ|. Then, by (31), conv(F, T ′) = |σ|. Let G be such that, for
each τ ,

G(τ) =
{
F(σ), if τ = σ−;
F(τ), otherwise. (32)

428 J. Case and S.E. Moelius III

Clearly, G identifies L and conv(G, T ′) ≤ |σ−| < |σ|. Thus, if it can be
shown that G 3L F, then this would (as desired) contradict the fact that
F optimally identifies L. So, suppose that G �3L F. Let T ′′ ∈ TxtL be
such that conv(F, T ′′) < conv(G, T ′′). Then, by Lemma 7 (with A = {σ−}),
T ′′[conv(F, T ′′)] ⊆ σ− ⊂ T ′′. But this contradicts (31). � (Claim 8.1)

Let G be such that, for each σ,

G(σ) =
{
F
(
T [conv(F, T)]

)
, if ρ ⊆ σ ⊆ T [conv(F, T) − 1];

F(σ), otherwise. (33)

Clearly, G identifies L and conv(G, T) ≤ |ρ| < conv(F, T). Thus, if it can
be shown that G 3L F, then this would (as desired) contradict the fact that
F optimally identifies L. So, suppose that G �3L F. Let T ′ ∈ TxtL be such
that conv(F, T ′) < conv(G, T ′). Then, by Lemma 7, there exists σ such that
ρ ⊆ σ ⊆ T [conv(F, T) − 1] and T ′[conv(F, T ′)] ⊆ σ ⊂ T ′. But this contradicts
Claim 8.1.

(a) �⇐ (b): Let L =
{
∅, {0}

}
. Let p∅ and p{0} be grammars for ∅ and {0}, re-

spectively. Let M be as follows.

M(λ) = p{0}.
M(0 · {#, 0}∗) = p{0}.
M(# · {#}∗) = p∅.
M(# · {#}∗ · 0 · {#, 0}∗) = p{0}.

(34)

Clearly, M identifies L. Note that M is U-shaped, e.g., on the text # · 0ω. It
remains to show that M optimally identifies L. By way of contradiction, let F
be such that F ≺L M. Note that, for each T ∈ TxtL, and each n,

conv(M,#ω) = 1;
conv(M, 0 · {#, 0}ω) = 0;
conv(M,# · #n · 0 · {#, 0}ω) = n + 2.

(35)

Let T ∈ TxtL be such that conv(F, T) < conv(M, T). Clearly, conv(M, T) ≥ 1.
Thus, by (35), it suffices to consider the following cases.

Case [T = #ω]. Then, by (35), it must be the case that conv(F, T) = 0
and, thus, WF(λ) = ∅. It follows that conv(F, 0ω) > 0. But then, by (35),
conv(F, 0ω) > conv(M, 0ω), which contradicts F 3L M.

Case [T ∈ (# · #n · 0 · {#, 0}ω), for some n]. Then, by (35), it must be the case
that conv(F, T) ≤ n + 1. Furthermore, by Proposition 2, WF(#n+1) = {0}.
It follows that conv(F,#ω) > n + 1 ≥ 1. But then, by (35), conv(F,#ω) >
conv(M,#ω), which contradicts F 3L M.

(b) �⇐ (c): Let L =
{
∅
}
. Let p∅ and p′∅ be any two distinct grammars for ∅. Let

M be as follows.
M(λ) = p∅.
M(# · {#}∗) = p′∅.

(36)

Clearly, M class-preservingly and consistently identifies L. That M does not
optimally identify L is witnessed by, e.g., λσ p∅. � (Theorem 8)

Optimal Language Learning 429

Remark 9. Requiring that F class-preservingly, consistently, and deci-
sively [BCM+08, CCJS08] identify L is not sufficient to guarantee that F opti-
mally identifies L, as witnessed by the M constructed in the proof that (b) �⇐ (c)
of Theorem 8. Requiring that F class-preservingly, consistently, and non-U-
shapedly identify L is similarly insufficient.

Problem 10. Is there an intuitive property which is less restrictive than strong
non-U-shapedness, and which, when combined with class-preservation and con-
sistency, characterizes optimality? More formally: does there exist an intuitive
predicate P ⊆

(
(Seq ⇀ N) × E

)
satisfying (a) through (c) below?

(a) For each F and L, if F strongly non-U-shapedly identifies L, then P (F,L).
(b) For each F and L, if F class-preservingly and consistently identifies L and

P (F,L), then F optimally identifies L.
(c) For each F and L, if F optimally identifies L, then P (F,L).

One might wonder whether strong non-U-shapedness restricts algorithmic
learning power, and, if so, whether this contributes to the failure of the analog of
Wiehagen’s characterization (Theorem 1 in Section 1). However, as Theorem 12
below states, strong non-U-shapedness does, in fact, not restrict algorithmic
learning power. The proof is abbreviated, due to space constraints. The com-
plete proof may be found in [CM08a].

The proof of Theorem 12 relies on the following lemma.

Lemma 11. For each M, there exists a computable function f : N → N such
that, for each i, Di ⊆ Wf(i) and M does not identify Wf(i).

Proof. See [CM08a]. � (Lemma 11)

Theorem 12. For each L, (∃M)[M identifies L] ⇔ (∃M)[M strongly non-U-
shapedly identifies L].9

Proof (Sketch). Clearly, (∃M)[M strongly non-U-shapedly identifies L] ⇒
(∃M)[M identifies L]. Thus, it suffices to show the converse. Let L be fixed,
and let M be such that M identifies L. Without loss of generality, suppose that
M is prudent and total ([Ful90, Theorem 15] and [JORS99, proof of Proposi-
tion 4.15]).10 A machine M′ is constructed such that M′ strongly non-U-shapedly
identifies L. (Roughly speaking, certain conjectures of M′ will self-destruct when
conditions are met that would cause M′ to make a mind-change. See (38).)

Let f : N → N be as in Lemma 11 for M. For each ρ, σ, s, and τ , let
P (ρ, σ, s, τ) ⇔ there exists α satisfying (a) through (c) below.

(a) |α| ≤ s.
(b) content(α) ⊆ W s

M(ρ).
(c) (∃α′ ⊆ α · τ)[M(σ · α′) �= M(σ)].

9 Theorem 20 in [BCM+08] says: for each L, (∃M)[M identifies L] ⇔ (∃M)[M non-
U-shapedly identifies L]. Theorem 12 above is an improvement on this result.

10 Strictly speaking, the technique employed in the proof of [JORS99, Proposition 4.15]
takes an arbitrary learner into a total, not necessarily prudent learner. However, it
is easily seen that if this technique is applied to an already prudent learner, then the
resulting learner is prudent, as well.

430 J. Case and S.E. Moelius III

For each ρ, σ, s, and τ , let P ∗(ρ, σ, s, τ) ⇔ there exists α satisfying (a) through
(c) just above, and (d) just below.

(d) (∃s′ ≤ s)
[
∅ �=

(
W s′

M(ρ) − content(σ)
)
⊆ content(α)

]
.

Clearly, P and P ∗ are computable predicates. Intuitively, P helps to determine
when a segment of text may be extended in a way that causes M to make a
mind-change. In this sense, the arguments of P play the following roles.

– ρ is used to determine a conjecture of M (i.e., M(ρ)); the elements used to
extend the segment of text σ are drawn from the conjectured language.

– σ is the segment of text to be extended.
– s is used to bound the process of searching for an extension, and helps to

keep P computable.
– τ is a segment of text that should appear at the end of the extension.

Let g : (Seq× N) → Seq be such that, for each ρ and s,

g(ρ, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ, if s = 0;
σ · α, if s �= 0 ∧ P ∗(ρ, σ, s, λ), where σ = g(ρ, s− 1)

and α is any as in (a) through (d) above for
ρ, σ, s, and τ (= λ);

σ, otherwise, where σ = g(ρ, s− 1).

(37)

Clearly, g is computable. Let glim : Seq → Seq be such that, for each ρ, glim(ρ) =
lims→∞ g(ρ, s). It can be shown that glim is well-defined.

By 1-1 s-m-n [Rog67], there exists a 1-1, computable function h : (Seq×N) →
N such that, for each ρ and s,

Wh(ρ,s) =

⎧⎨⎩
WM(ρ), if (∀s′ > s)[g(ρ, s′) = g(ρ, s)],
Wf(i), otherwise, where Di = W s′

M(ρ) for the least
s′ > s such that g(ρ, s′) �= g(ρ, s).

(38)

For each ρ, s, and τ , let Q(ρ, s, τ) ⇔ (a) through (c) below.

(a) g(ρ, s) = g(ρ, s + |τ |).
(b) content

(
g(ρ, s)

)
⊆ content(τ).

(c) P
(
ρ, g(ρ, s), |τ |, τ

)
⇒ content(τ) ⊆ content

(
g(ρ, s)

)
.

Clearly, Q is a computable predicate. Many of the conjectures of M′ are of
the form h(ρ, s), for some ρ and s. For such conjectures, Q helps to determine
appropriate values of ρ and s. Q also helps to determine when such conjectures
should be abandoned.

For each τ , let

M′(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M′(τ−), if (∗)

[
τ �= λ
∧ (∃ρ, s)[M(τ−) = h(ρ, s) ∧ Q(ρ, s, τ)]

]
;

h(ρ, |τ |), where ρ ⊆ τ is shortest such that Q(ρ, |τ |, τ),
if ¬(∗) and such a ρ exists;

f(0), otherwise.

(39)

Optimal Language Learning 431

Clearly, M′ is computable. Let L ∈ L and T ∈ TxtL be fixed. The proof that
M′ is strongly non-U-shaped on T is sketched in Claim 12.1 just below.

Claim 12.1. For each i, if M′(T [i]) �= M′(T [i + 1]), then WM′(T [i]) �= L.
Proof of Claim (Sketch). By way of contradiction, let i be such that M′(T [i]) �=
M′(T [i + 1]) and WM′(T [i]) = L. Then, clearly, there exist ρ ⊆ T [i] and s ≤ i
satisfying

M′(T [i]) = h(ρ, s) ∧ Q(ρ, s, T [i]) ∧ ¬Q(ρ, s, T [i + 1]). (40)

Note that
L = WM′(T [i]) {by supposition}

= Wh(ρ,s) {since M′(T [i]) = h(ρ, s)}.
Clearly then, by (38), WM(ρ) = Wh(ρ,s) (= L). Consider the following cases
(based on ¬Q(ρ, s, T [i + 1])), each of which leads to a contradiction.

Case [g(ρ, s) �= g(ρ, s + i + 1)]. Then, clearly, by (38), L �= Wh(ρ,s) — a contra-
diction.

Case [content
(
g(ρ, s)

)
�⊆ content(T [i + 1])]. From Q(ρ, s, T [i]), it follows that

content
(
g(ρ, s)

)
⊆ content(T [i]) ⊆ content(T [i + 1]). Thus, assuming this case

leads to a contradiction.

Case

[
P
(
ρ, g(ρ, s), i + 1, T [i + 1]

)
∧ content(T [i + 1]) �⊆ content

(
g(ρ, s)

)]
. Let

α be as in (a) through (c) in the definition of P for P
(
ρ, g(ρ, s), i + 1, T [i + 1]

)
.

Then, in particular, content(α) ⊆ W i+1
M(ρ) and (∃α′ ⊆ α·T [i+1])

[
M
(
g(ρ, s)·α′) �=

M
(
g(ρ, s)

)]
. From this and the fact that WM(ρ) = L (shown above), it can be

shown that there exists s′ > s such that g(ρ, s′) �= g(ρ, s). Clearly, then, by (38),
L �= Wh(ρ,s) — a contradiction. � (Claim 12.1)

The proof that M′ identifies L from T is omitted (see [CM08a]). � (Theorem 12)

4 Optimal Identification of Subclasses

In this section, we show that, for an arbitrary optimal learner F of a class of
languages L, F optimally identifies a subclass K of L iff F is class-preserving
with respect to K (Theorem 13 below). The reader may wonder: if F optimally
identifies L, how can there exist a subclass K of L such that F does not optimally
identify K? Intuitively, this can occur as follows. A learner G, knowing that a
language L satisfies L ∈ L − K, never outputs a grammar for L. This, in turn,
can allow G to converge to a correct hypothesis on less of some T ∈ TxtK for
which (∃σ ∈ SeqL)[σ ⊂ T].11

The following is the main result of this section.

Theorem 13. Suppose that F optimally identifies L. Then,

(∀K ⊆ L)[F optimally identifies K ⇔ F class-preservingly identifies K]. (41)
11 This can be observed in the learners M and F given near the end of Section 1.

432 J. Case and S.E. Moelius III

Proof. Let F and L be as stated, and let K ⊆ L be fixed.

(⇒): Immediate by (b) ⇒ (c) of Theorem 8.

(⇐): By way of contradiction, suppose that F class-preservingly identifies K,
but not optimally. Let G be such that G ≺K F. Let H be such that, for each σ,

H(σ) =
{
G(σ), if σ ∈ SeqK;
F(σ), otherwise. (42)

Clearly, H identifies L and H ≺K F. Thus, if it can be shown that H 3(L−K)

F, then this would (as desired) contradict the fact that F optimally identifies
L. So, suppose H �3(L−K) F. Let L ∈ L − K and T ∈ TxtL be such that
conv(F, T) < conv(H, T). By Lemma 7 (with A = Seq− SeqK), there exists σ
such that σ ∈ SeqK and T [conv(F, T)] ⊆ σ ⊂ T. By the latter and Proposition 2,
WF(σ) = L (�∈ K), which contradicts the supposition that F class-preservingly
identifies K. � (Theorem 13)

Remark 14. One might hope for a characterization similar to Theorem 13, but
involving only K and L (and not F) on the right-hand side of the “⇔”, i.e., F
optimally identifies K ⇔ P (K,L), for some predicate P ⊆ (22N × 22N

). However,
such a characterization is not possible, as the following example demonstrates.
Let L =

{
{0}, {1}

}
. Let p{0} and p{1} be grammars for {0} and {1}, respectively.

For each σ, let M0 and M1 be as follows.

M0(σ) =
{
p{0}, if content(σ) ⊆ {0};
p{1}, otherwise. (43)

M1(σ) =
{
p{1}, if content(σ) ⊆ {1};
p{0}, otherwise. (44)

It is easy to verify that both M0 and M1 optimally identify L. However, if one
lets K =

{
{0}

}
, then M0 optimally identifies K; whereas, M1 does not .

Despite Remark 14, Corollary 15 below gives a useful necessary condition similar
to Theorem 13. Moreover, this condition involves only K and L (and not F) on
the right-hand side of the “⇒”.

Corollary 15. Suppose that F optimally identifies L. Then,

(∀K ⊆ L)
[
F optimally identifies K ⇒

(∀L,L′ ∈ L)
[
[L �∈ K ∧ L ⊆ L′] ⇒ L′ �∈ K

]]
.

(45)

Proof of Corollary. Let F, L, and K be as stated, and suppose that F optimally
identifies L. Further suppose, by way of contradiction, that L,L′ ∈ L are such
that [L �∈ K ∧ L ⊆ L′ ∧ L′ ∈ K]. Let T ∈ TxtL be fixed, and let σ =
T [conv(F, T)]. Clearly, WF(σ) = L (�∈ K). Furthermore, since L ⊆ L′, σ ∈
SeqL′ . Thus, F does not class-preservingly identify K, which contradicts (⇒) of
Theorem 13. � (Corollary 15)

Optimal Language Learning 433

Acknowledgements. The authors would like to thank: James Royer, whose
insightful comments inspired much of the work herein; and Timo Kötzing, whose
careful eye caught errors in early versions of the proof of Theorem 12.

References

[Ang80] Angluin, D.: Inductive inference of formal languages from positive data.
Information and Control 45(2), 117–135 (1980)

[Bar77] Barzdin, J.M.: Inductive inference of automata, functions, and programs.
American Mathematical Society Translations: Series 2 109, 107–112
(1977); In: Proceeedings of the 20th International Conference of Mathe-
maticians (1974) (appeared originally) (in Russian)

[BB75] Blum, L., Blum, M.: Toward a mathematical theory of inductive infer-
ence. Information and Control 28(2), 125–155 (1975)

[BCM+08] Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, W.: When
unlearning helps. Information and Computation 206(5), 694–709 (2008)

[BF74] Bārzdiņš, J., Freivalds, R.: Prediction and limiting synthesis of recur-
sively enumerable classes of functions. Latvijas Valsts Univ. Zinatn. Rak-
sti 210, 101–111 (1974) (in Russian)

[CCJS07] Carlucci, L., Case, J., Jain, S., Stephan, F.: Results on memory-limited
U-shaped learning. Information and Computation 205(10), 1551–1573
(2007)

[CCJS08] Carlucci, L., Case, J., Jain, S., Stephan, F.: Non-U-shaped vacillatory
and team learning. Journal of Computer and Systems Sciences 74(4),
409–430 (2008)

[CM08a] Case, J., Moelius, S.E.: Optimal language learning (expanded version).
Technical report, University of Delaware (2008),
http://www.cis.udel.edu/∼moelius/publications

[CM08b] Case, J., Moelius, S.E.: U-shaped, iterative, and iterative-with-counter
learning. Machine Learning 72(1-2), 63–88 (2008)

[CS83] Case, J., Smith, C.: Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science 25(2), 193–220 (1983)

[Ful90] Fulk, M.: Prudence and other conditions on formal language learning.
Information and Computation 85(1), 1–11 (1990)

[Gol67] Gold, E.M.: Language identification in the limit. Information and Con-
trol 10(5), 447–474 (1967)

[JORS99] Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An
Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

[OSW86] Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists, 1st edn.
MIT Press, Cambridge (1986)

[Pit89] Pitt, L.: Inductive inference, DFAs, and computational complexity. In:
Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Hei-
delberg (1989)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967) (Reprinted, MIT Press, 1987)

[Wie91] Wiehagen, R.: A thesis in inductive inference. In: Dix, J., Schmitt, P.H.,
Jantke, K.P. (eds.) NIL 1990. LNCS, vol. 543, pp. 184–207. Springer,
Heidelberg (1991)

http://www.cis.udel.edu/~moelius/publications

Numberings Optimal for Learning

Sanjay Jain1,� and Frank Stephan2,∗

1 Department of Computer Science,
National University of Singapore, Singapore 117543, Republic of Singapore

sanjay@comp.nus.edu.sg
2 Department of Computer Science and Department of Mathematics,

National University of Singapore, Singapore 117543, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. This paper extends previous studies on learnability in non-
acceptable numberings by considering the question: for which criteria
which numberings are optimal, that is, for which numberings it holds
that one can learn every learnable class using the given numbering as
hypothesis space. Furthermore an effective version of optimality is stud-
ied as well. It is shown that the effectively optimal numberings for finite
learning are just the acceptable numberings. In contrast to this, there
are non-acceptable numberings which are optimal for finite learning and
effectively optimal for explanatory, vacillatory and behaviourally correct
learning. The numberings effectively optimal for explanatory learning
are the K-acceptable numberings. A similar characterization is obtained
for the numberings which are effectively optimal for vacillatory learning.
Furthermore, it is studied which numberings are optimal for one and not
for another criterion: among the criteria of finite, explanatory, vacilla-
tory and behaviourally correct learning all separations can be obtained;
however every numbering which is optimal for explanatory learning is
also optimal for consistent learning.

1 Introduction

Consider the following model of learning. The learner receives, over time, more
and more data about the concept to be learnt. From time to time, the learner
conjectures a potential explanation for the data it is receiving. One can say
that the learner learns the concept if the sequence of conjectures eventually
converges to a correct explanation for the concept. This is essentially the no-
tion of explanatory learning considered by Gold [9]. The concepts considered are
usually recursively enumerable (r.e.) languages (subsets of natural numbers) or
computable functions. In this paper we will be concentrating on learning lan-
guages. The explanations thus take the form of grammars or indices from some
hypothesis space or numbering of recursively enumerable languages.

Learning of just one r.e. language is not useful, as a learner which just con-
jectures a grammar for the language, on any data, would be successful on the

� Supported in part by NUS grant number R252-000-308-112.

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 434–448, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Numberings Optimal for Learning 435

language. Thus, it is more useful to consider learnability of a class of languages.
A learner explanatorily learns a class of languages if it explanatorily learns each
language in the class. Since Gold’s paper [9], several other criteria of learnability
have been explored and some of them will be considered in the current paper.

The learnability of the class depends not only on the class itself but also on
the underlying numbering used as a hypothesis space. Angluin [1] initiated the
systematic study of uniformly recursive hypothesis spaces; as such hypothesis
spaces can contain only some but not all recursive sets, these spaces have to be
selected in dependence of the class to be learnt. Lange and Zeugmann [12, 13, 20]
investigated the topic thoroughly. De Jongh and Kanazawa [5] investigated to
which extent one can generalize Angluin’s characterization of learnability [1]
from uniformly recursive to uniformly r.e. hypothesis spaces. Zilles [21] studied
the question how to synthesize a learner from an index of a uniformly r.e. hy-
pothesis space. Most of this and related work considered specialized hypothesis
spaces, which permit only to learn some and not all classes; these specialized
hypothesis spaces often do not even contain all r.e. sets.

In contrast to this, the focus of the present work lies on the question which
hypothesis spaces are optimal for learning in the sense that every learnable class
can be learnt using this hypothesis space. Therefore, a valid hypothesis space
A0, A1, A2, . . . must satisfy that {〈e, x〉 : x ∈ Ae} is recursively enumerable
and that, for every r.e. set B, there is an index e with B = Ae. In particular,
acceptable, K-acceptable and Ke-numberings are considered. (Here a numbering
A0, A1, A2, . . . is acceptable (K-acceptable) if for every further numbering B0,
B1, B2, . . . there is a recursive (K-recursive) function f such that Be = Af(e)

for all e. A Ke-numbering is a numbering of all r.e. sets for which the grammar
equivalence problem is K-recursive.) A more restrictive notion is that of an
effectively optimal hypothesis space where additionally one can effectively obtain
a learner for the class using A0, A1, A2, . . . as hypothesis space from any learner
for the class using another numbering B0, B1, B2, . . . as hypothesis space.

The optimality of the hypothesis space depends on the criterion of learning
considered. The main criteria considered are finite, explanatory, vacillatory and
behaviourally correct learning as defined below in Definition 1; but some inter-
esting results are also obtained for other criteria of learning.

Intuitively, a learner M finitely learns [9] a language class if, for every lan-
guage L in the class, for any order of presentation of elements of L, M outputs
only one conjecture and the conjecture is an index for L. A learner M explanato-
rily learns [9] a language class if, for every language L in the class, for any order
of presentation of elements of L, M outputs a sequence of conjectures which
converges to an index for L. A learner M behaviourally correctly learns [2, 16] a
language class if, for every language L in the class, for any order of presentation
of elements of L, M outputs an infinite sequence of conjectures, all but finitely
many of which are indices for L. Vacillatory learning [4] is a restriction of beha-
viourally correct learning, where the learner outputs only finitely many distinct
conjectures (although some of them might be repeated infinitely often).

436 S. Jain and F. Stephan

The most prominent numberings are the acceptable numberings and Friedberg
numberings. Acceptable numberings are used by many authors as the standard
hypothesis space [9] and every learnable class (according to most criteria) is also
learnable using an acceptable numbering — one exception is the criterion of
learning with additional information, see Theorem 23. However, one-one num-
berings, also known as Friedberg numberings [7], are not optimal for learning
[6, 11]. A central contribution of the present work is to show that there are many
optimal numberings besides the acceptable numberings, but that it depends a lot
on the underlying learning criterion which numberings are optimal for learning
and which are not. For example, a nearly acceptable numbering (as defined in
Definition 4) is effectively optimal for explanatory, vacillatory and behaviourally
correct learning as well as optimal for finite learning (see Proposition 5).

In Theorem 6, we show characterizations for numberings which are effectively
optimal for finite, explanatory and vacillatory learning. In particular, a numbering
A0, A1, A2, . . . is effectively optimal for finite learning iff the numbering is accept-
able. A numbering A0, A1, A2, . . . is effectively optimal for explanatory learning iff
the numbering is K-acceptable. One can also similarly characterize effectively op-
timal numberings for vacillatory learning. We do not have a good characterization
of numberings which are effectively optimal for behaviourally correct learning.

We show that there are numberings which are (non-effectively) optimal but
not effectively optimal for various criteria of inference: Theorem 9 gives this result
for finite learning; Theorem 13 gives this result for explanatory and vacillatory
learning; Theorem 14 gives this result for behaviourally correct learning.

We also show that the set of optimal numberings for finite, explanatory, vac-
illatory and behaviourally correct learning are incomparable. Theorem 9 gives
this result for finite learning versus explanatory, vacillatory and behaviourally
correct learning. Theorem 12 gives this result for behaviourally correct learning
versus finite, explanatory and vacillatory learning. Theorem 11 gives this result
for explanatory and vacillatory learning versus finite learning and behaviour-
ally correct learning. Theorem 10 gives this result for vacillatory learning versus
explanatory learning. The numbering A0, A1, A2, . . . in Theorem 13 gives this
result for explanatory learning versus vacillatory learning.

In Section 4 we give special attention to consistent learning. Theorem 20 shows
that optimal numberings for explanatory learning are optimal for consistent
learning. This is one of the rare cases of an inclusion in the sense that every
numbering optimal for a criterion I is also optimal for a different criterion J .
The inclusion also holds with effective optimality in place of optimality. However,
there are numberings which are effectively optimal for consistent learning but
not optimal for finite, explanatory, vacillatory or behaviourally correct learning.

2 Preliminaries

For the ease of notation, learnability of r.e. subsets of the natural numbers,
N, is studied (and other possible domains are ignored). The learners use some
hypothesis space to represent their conjectures.

Numberings Optimal for Learning 437

The standard hypothesis space W0,W1,W2, . . . is some fixed acceptable num-
bering [17], that is, for every further numbering A0, A1, A2, . . . of r.e. sets, there
is a recursive function f with Wf(e) = Ae for all e. In general, every number-
ing of all r.e. sets can be a hypothesis space. A numbering A0, A1, A2, . . . is
called K-acceptable iff, for every further numbering B0, B1, B2, . . ., there is a
K-recursive function f with Af(e) = Be for all e. Here K denotes the halting
problem {x : x ∈ Wx}.

A text T is a member of (N ∪ {#})∞. T (0), T (1), T (2) and so on denote the
members of T ; T [n] denotes T (0)T (1) . . . T (n− 1). A sequence σ is a member of
(N∪{#})∗. λ denotes an empty sequence. For a text T let content(T) = {T (n) :
n ∈ N∧T (n) ∈ N}; similarly one defines content(σ). The length of a sequence σ,
denoted |σ|, is the number of elements in the domain of σ. One says that σ 3 T
and σ 3 τ iff σ is a prefix of T and τ , respectively. Furthermore, T is a text
for L iff L = content(T). Note that there is a uniformly recursive method for
generating a text Te for We; this text Te is called a canonical text for We.

The general model of learning is that the learner M assigns, to every prefix
T [n] of a given text T for the set L to be learnt, an index M(T [n]) interpreted as
M ’s conjecture for the language L; for finite learning, the learner M is allowed
to output a special symbol “?” which denotes that the learner does not wish to
make a conjecture at this point. One says that a learner M converges on a text T
to an index e (denoted M(T) = e) iff M(T [n]) = e for almost all n. Furthermore,
one says that M outputs an index e on T iff there is an n with M(T [n]) = e.
The following definition gives various criteria of learning.

Definition 1 (Bārzdins [2], Case [4], Gold [9], Osherson and Weinstein
[16]). A class S is finitely learnable using a numbering A0, A1, A2, . . . [9] iff there
is a learner which, for every L ∈ S and every text T for L, outputs exactly one
index e, besides ?, on T and this index e satisfies Ae = L.

A class S is explanatorily learnable using a numbering A0, A1, A2, . . . [9] iff
there is a learner which, for every L ∈ S and every text T for L, converges on T
to an index e such that Ae = L.

A class S is vacillatorily learnable using a numbering A0, A1, A2, . . . [4] iff
there is a learner which, for every L ∈ S and every text T for L, converges on T
to an index d such that, for some e ≤ d, Ae = L.

A class S is behaviourally correctly learnable using a numbering A0, A1, A2, . . .
[2, 16] iff there is a learner M which, for every L ∈ S and every text T for
L, satisfies AM(T [n]) = L for almost all n. Note that it is permitted, but not
required, that the M(T [n]) are syntactically different.

Note that definition of vacillatorily learnable, as defined by Case [4], requires
the learner to eventually output its conjecture only from finitely many correct
indices for the input language — that is, the learner eventually vacillates among
only finitely many correct indices for the input language. The definition used
above is equivalent to this definition and is a useful characterization of vacilla-
tory learning. We defined vacillatory learning using this characterization mainly
because of its ease of use in the proofs below.

438 S. Jain and F. Stephan

For ease of notation below, if the hypothesis space is not specified, then the
default numbering W0,W1,W2, . . . is assumed as hypothesis space.

Definition 2 (Blum and Blum [3], Fulk [8]). A stabilizing sequence for M
on L is a sequence σ such that content(σ) ⊆ L and M(στ) = M(σ) for all
τ ∈ (L ∪ {#})∗. A locking sequence for M on L is a stabilizing sequence σ for
M on L such that M(σ) is an index for L (in the hypothesis space used).

Note that by the locking-sequence hunting construction [3, 8] there is a recursive
enumeration of learners M0,M1,M2, . . . such that (a) every explanatorily learn-
able class is learnt by one of these learners, (b) whenever Me converges on some
text for L, then Me converges on all texts for L to the same index, (c) whenever
Me learns L and T is a text for L, then for some n, T [n] is a locking sequence
for Me on L.

Definition 3. A numbering A0, A1, A2, . . . is called optimal for explanatory
learning iff every explanatorily learnable class can be learnt using the num-
bering A0, A1, A2, . . . as hypothesis space; a numbering A0, A1, A2, . . . is called
effectively optimal for explanatory learning iff for every numbering B0, B1, B2, . . .
one can effectively convert explanatory learners using B0, B1, B2, . . . into ex-
planatory learners using A0, A1, A2, . . . as hypothesis space. Similarly, one can
also define optimality and effective optimality for other learning criteria.

As W0,W1,W2, . . . is acceptable, for showing (effective) optimality of A0, A1,
A2, . . ., it is sufficient to consider converting learners using W0,W1,W2, . . . to
learners using A0, A1, A2, . . . as hypothesis space.

Let C be the plain Kolmogorov complexity [14] and CK be the Kolmogorov
complexity relative to K. Note that CK can be approximated from above relative
to K. Let CK

s denote an approximation of CK relative to K. Approximations
from above or from below relative to K have an easy characterization: A function
g can be approximated from above (below) relative to K iff there are uniformly
recursive functions gs with g(n) = lim sups gs(n) for all n (respectively, g(n) =
lim infs gs(n) for all n).

〈·, ·〉 denotes a recursive bijection from N×N to N. Here we assume that 〈·, ·〉
is increasing in both its arguments.

3 Optimality and Effective Optimality

The following notion generalizes the notion of acceptable numberings; it is an
example of a natural class of numberings which goes beyond acceptable number-
ings but is still optimal for most of the learning criteria studied in the literature.

Definition 4. A numbering A0, A1, A2, . . . is called nearly acceptable iff there
is a recursive function f such that Af(d,e) = We whenever d ∈ We.

Proposition 5. Let A0, A1, A2, . . . be given by the equations

A0 = ∅;
A〈d,e〉+1 = We ∪ {d}.

Numberings Optimal for Learning 439

The numbering A0, A1, A2, . . . is nearly acceptable but not acceptable. Further-
more, every nearly acceptable numbering is optimal for finite learning and effec-
tively optimal for explanatory, vacillatory and behaviourally correct learning.

The effectively optimal numberings for finite, explanatory and vacillatory learn-
ing are easy to characterize.

Theorem 6. A numbering A0, A1, A2, . . . of all r.e. sets is
(a) effectively optimal for finite learning iff it is acceptable;
(b) effectively optimal for explanatory learning iff it is K-acceptable;
(c) effectively optimal for vacillatory learning iff there is a limit-recursive func-
tion g such that, for all d, there is an e ≤ g(d) with Ae = Wd.

Proof. The necessity in the conditions (a) and (b) stems from the fact that,
for each set Wd one can make a learner using W0,W1,W2, . . . which always
conjectures d; this learner can then be effectively converted into a learner using
A0, A1, A2, . . ., which is then simulated on the canonical text Td for Wd. The
simulated learner will reveal — in case (a) directly and in case (b) in the limit
— an e with Ae = Wd. In the case of vacillatory learning, one can similarly
obtain an upper bound g(d) of an e with Ae = Wd.

We now consider sufficiency. For case (a), one can just translate all hypotheses
and so finite learnability is preserved. In case (b) one can translate all hypotheses
in the limit and thus preserve explanatory learnability. In case (c) and given a
vacillatory learner M using W0,W1,W2, . . . for the desired class, on input T for
a language L in the class, one can find in the limit max{g(i) : i ≤ M(T)}, which
is an upper bound for the smallest e with Ae = L, as there is a d ≤ M(T) with
Wd = L. �

We now turn our attention to the separation of effectively and non-effectively
optimal numberings, as well as the separation of optimal numberings for various
criteria of inference. The following propositions are useful for showing some of
our results.

Proposition 7. If S is a finitely learnable class, then there is a number d such
that almost all members of S have at least 2 non-elements below d.

Proof. Suppose M finitely learns S. Fix an L ∈ S. Let σ be such that content(σ)
⊆ L and M(σ) is an index for L. Let d1 = max{content(σ)}. Note that for L′ ∈ S
with L �= L′, content(σ) �⊆ L′. The reason is that otherwise M does not finitely
learn {L,L′}. Thus, for all L′ ∈ S−{L}, there exists an i ≤ d1, such that i �∈ L′.

Let Si = {L′ ∈ S : i �∈ L′}. For non-empty Si, let Li be a fixed member of
Si and let σi be such that content(σi) ⊆ Li and M(σi) is an index for Li. Let
d2 = max{max{content(σi)} : i ≤ d1 ∧ Si �= ∅}. Note that if Si �= ∅, then for
L′ ∈ S with Li �= L′, content(σi) �⊆ L′; thus, for all L′ ∈ S − {Li}, there exists
a j ≤ d2, such that j �= i and j �∈ L′.

Thus, for all L′ ∈ S − ({L} ∪ {Li : Si �= ∅, i ≤ d1}), the set (N − L′) ∩ {x :
x ≤ d1 + d2} contains at least two elements. �

440 S. Jain and F. Stephan

For any n and n distinct numbers a1, a2, . . . , an, let De = {a1, a2, . . . , an} iff
e = 2a1 + 2a2 + . . . + 2an ; furthermore, let D0 = ∅. The number e is called the
canonical index of De.

Proposition 8. Let a uniformly K-recursive one-one listing L0, L1, L2, . . . of
cofinite sets be given such that i = min(N − Li) for all i. Then there is a num-
bering H0, H1, H2, . . . of r.e. sets and a (non-recursive) function g such that for
all i, j:

– ∀i > 0 [Di ⊆ Hi ⊆ Di ∪ {max(Di),max(Di) + 1,max(Di) + 2, . . .}];
– ∀i [Hg(i) = Li];
– ∀i [i /∈ {g(0), g(1), g(2), . . .} ⇒ Hi is finite];
– ∀i, j [if CK(j) ≤ 2i, then j < g(i)].

The function g can be approximated from below relative to K.

Proof. The function g is defined by the following K-recursive approximation:

– in stage 0: choose g0(i) such that Dg0(i) = {0, 1, 2, . . . , i, i + 1} − {i};
– in stage s + 1: if there is an x with max(Dgs(i)) ≤ x ≤ s and (x /∈ Li or

CK
s (x) ≤ 2i),

then choose gs+1(i) such that Dgs+1(i) = {s + 1} ∪ (Li ∩ {0, 1, 2, . . . , s})
else let gs+1(i) = gs(i).

Note that whenever gs+1(i) �= gs(i), then max(Dgs+1(i)) > s and hence gs+1(i) >
s. It follows that the set G = N−{g(0), g(1), g(2), . . .} is K-r.e.; that is, there is
a recursive approximation with i ∈ G ⇔ ∀∞s [i ∈ Gs]. Let H0 = ∅; for i > 0, let

Hi = Di ∪ {t : ∃s [max(Di) ≤ t ≤ s ∧ i /∈ Gs]}.

The sets H0, H1, H2, . . . are uniformly r.e.; furthermore, Hi is finite iff i ∈ Gs for
almost all s. In the case that i = g(j) it follows that max(Di) is an upper bound
on all non-elements of Lj and therefore Hi = Lj. This completes the proof. �

Theorem 9. There is a numbering which is optimal but not effectively optimal
for finite learning. This numbering is not optimal for explanatory, vacillatory
and behaviourally correct learning.

Proof. Let Le = N − {e} for all e; then choose the numbering H0, H1, H2, . . .
according to Proposition 8. Now let A〈0,0〉 = N and A〈0,e+1〉 = He for all e.
Furthermore, for every e and every d > 0, let

A〈d,e〉 =
⋃

s:|{0,1,2,...,d}−We,s|≥2

We,s.

Note that the resulting numbering covers all r.e. sets: first N and every set of
the form N − {a} is covered by sets of the form A〈0,e〉; second, a set We with
least non-elements a, b is equal to A〈d,e〉 for all d > a + b.

Now let S be a finitely learnable class with learner M . Note that if N ∈ S,
then S contains no other languages and thus finite learnability in numbering A

Numberings Optimal for Learning 441

would be trivial. So assume N �∈ S. By Proposition 7 there is a number d such
that all but finitely many members of S have at least 2 non-elements below d.
Without loss of generality, d is so large that these exceptions are all of the form
N − {c} with c ≤ d. Now one builds a new learner N as follows:

– N(σ) is an index 〈0, ec〉 for the set N−{c} whenever {0, 1, 2, . . . , d}− {c} ⊆
content(σ) ⊆ N − {c} and N − {c} ∈ S.

– N(σ) = 〈d,M(σ)〉 whenever M(σ) is defined (that is, M(σ) �= ?) and c ∈
content(σ) for all c with N − {c} ∈ S.

– N(σ) = ?, otherwise.

It is easy to see that N is a finite learner for S.
Note that, by the definition of H0, H1, H2, . . . and A0, A1, A2, . . ., each of the

sets N − {c} have exactly one index 〈0, ec〉 (with respect to A0, A1, A2, . . .),
which also satisfies CK(ec) > 2c. It follows that the class {N − {c} : c ∈ N} is
not behaviourally correctly learnable using A0, A1, A2, . . ., as otherwise CK(ec)
would, for every c, be bounded by c plus a constant independent of c. As {N−{c} :
c ∈ N} is explanatorily learnable, it follows that A0, A1, A2, . . . is not optimal
for explanatory, vacillatory and behaviourally correct learning.

Furthermore, A0, A1, A2, . . . is not acceptable as A0, A1, A2, . . . contains only
one index for each set of the form N − {c}. Thus, by Theorem 6, A0, A1, A2, . . .
is not effectively optimal for finite learning. �

Theorem 10. There is a numbering A0, A1, A2, . . . which is effectively optimal
for vacillatory learning but not optimal for explanatory learning.

Proof. Recall that CK is the Kolmogorov complexity relative to K. Let CKs
s

be an approximation of CK after s steps such that, for all x, CK(x) = lim sup
CKs

s (x) and for all s and c, there are less than 2c numbers y with CKs
s (y) < c.

Now let
A〈d,e〉 =

⋃
s:CKs

s (d)>2e

We,s.

Then A〈d,e〉 is finite for those d and e where CK(d) ≤ 2e. Furthermore, for every
e and all sufficiently large d it holds that CK(d) > 2e.

No class S containing infinitely many infinite sets is explanatorily learnable
using this numbering. The reason is that given the least index e of an infinite
member of the class, the learner would converge on the canonical text of We to
an index of Kolmogorov complexity (relative to K) at most a constant above
that of e; however every index in the given numbering A for We would have
Kolmogorov complexity (relative to K) at least 2e minus a constant. Hence
such an explanatory learner cannot exist. As there exist explanatorily learnable
classes (such as {{〈e, x〉 : x ∈ N} : e ∈ N}) containing infinitely many infinite
sets, it follows that A0, A1, A2, . . . is not optimal for explanatory learning.

On the other hand, one can use Theorem 6 to obtain that the numbering
considered is effectively optimal for vacillatory learning: the reason is that for
every e there is a d ≤ 2e+1 with CK(d) > 2e and A〈d,e〉 = We. �

442 S. Jain and F. Stephan

Theorem 11. There is a numbering A0, A1, A2, . . . which is effectively optimal
for explanatory and vacillatory learning but not optimal for behaviourally correct
learning or finite learning.

Proof. Recall that a simple set [17] is r.e., co-infinite and intersects every infinite
r.e. set. Let a0, a1, a2, . . . be a recursive one-one enumeration of a simple set B
and define

A〈d,e〉 =

⎧⎨⎩We, if d /∈ B ∧ d > e;
{0, 1, 2, . . . , 2s+1 · 3d · 5e}, if d = as ∧ d > e;
{0, 1, 2, . . . , 3d · 5e}, if d ≤ e.

This numbering is a K-acceptable numbering as, for every e, one can find the
least d /∈ B ∪ {0, 1, 2, . . . , e} using the oracle K and then A〈d,e〉 = We. By
Theorem 6, the numbering is effectively optimal for explanatory and vacillatory
learning.

It remains to show that the numbering is not optimal for behaviourally correct
learning or finite learning.

Consider any class S of infinite languages which is behaviourally correctly
learnable but not vacillatorily learnable using W0,W1,W2, . . . as a hypothesis
space [4]. Suppose that M using the numbering A0, A1, A2, . . . behaviourally
correctly learns S. As S is not vacillatorily learnable, it follows by a result
of Case [4] that there are L ∈ S and a recursive text T for L on which the
learner M outputs infinitely many distinct conjectures. For every pair 〈d, e〉
with d ∈ {0, 1, 2, . . . , e} ∪ B, the set A〈d,e〉 is a finite set and has a maximum
which is a multiple of 3d · 5e. Hence M outputs only finitely many of these pairs
on the text T . Now let E be the infinite r.e. set of all indices 〈d, e〉 output by
M on T such that d /∈ {0, 1, 2, . . . , e} ∪B. The set {d : ∃e [〈d, e〉 ∈ E]} is an r.e.
set disjoint to B and hence finite. As for every e there are only pairs 〈d, e〉 with
d > e in E, it follows that E is finite as well in contradiction to the assumption.

From this contradiction it can be concluded that M is not a behaviourally
correct learner for S and the numbering A0, A1, A2, . . . is not optimal for beha-
viourally correct learning.

Consider Ln = {〈n, x〉 : x ∈ N}. Clearly, {L0, L1, L2, . . .} is finitely learn-
able using W0,W1,W2, . . . as hypothesis space. Suppose by way of contradic-
tion that some learner finitely learns {L0, L1, L2, . . .} using A0, A1, A2, . . . as
hypothesis space. Then, given n, one can effectively find an index 〈dn, en〉 such
that A〈dn,en〉 = Ln. In particular, dn �∈ B, dn > en and Wen = Ln. Note
that all en are distinct. But then the set {dn : n ∈ N} is an infinite r.e.
set disjoint from B, a contradiction to B being a simple set. Thus, {L0, L1,
L2, . . .} is not finitely learnable using A0, A1, A2, . . . as hypothesis space. �
Theorem 12. The numbering A0, A1, A2, . . . given by

A〈d,e〉 =
⋃

s:∃m [m=min(We,s)∧(d>|Wm,s|∨|We,s|≤|Wm|)]
We,s

is effectively optimal for behaviourally correct learning but neither optimal for
explanatory nor for vacillatory nor for finite learning.

Numberings Optimal for Learning 443

Proof. The behaviourally correct learner N using A0, A1, A2, . . . is effectively
built by simulating a given learner M using the numbering W0,W1,W2, . . . and
defining N(σ) = 〈|σ|,M(σ)〉. Given a text T for a set L learnt by M , use ed as
short hand for M(T [d]) and note that N(T [d]) = 〈d, ed〉. The learner N succeeds
as shown in the following case distinction.

– L = ∅: then almost all ed are indices of the empty set and hence A〈d,ed〉 is
empty for almost all d as well.

– m = min(L) exists and Wm is infinite: then A〈d,ed〉 = Wed
for all d where

Wed
is correct. Hence N behaviourally correctly learns L as well.

– m = min(L) exists and Wm is finite: then A〈d,ed〉 = Wed
for all d where Wed

is correct and d > |Wm|. Hence N behaviourally correctly learns L as well.

Let pn be the n-th prime number, note that pn > n and n does not divide pn.
Now consider the class consisting of the sets Ln = {n, pn, p

2
n, p

3
n, p

4
n, p

5
n, . . .}. The

class {L0, L1, L2, . . .} is finitely learnable in any acceptable numbering. However
{L0, L1, L2, . . .} is not vacillatorily learnable in the numbering A0, A1, A2, . . . —
otherwise, for any n, one can produce a canonical text for Ln and would then
have that the largest hypothesis output by the learner on this text is an upper
bound for |Wn|, whenever Wn is finite; this contradicts the fact that finiteness
of r.e. sets cannot be decided in the limit. �

Theorem 13. There are numberings A0, A1, A2, . . . and B0, B1, B2, . . . with the
following properties.
(a) Both numberings are optimal for explanatory learning.
(b) Both numberings are neither effectively optimal for explanatory nor effec-
tively optimal for vacillatory learning.
(c) Both numberings are not optimal for behaviourally correct learning.
(d) The numbering A0, A1, A2, . . . is not optimal for vacillatory learning.
(e) The numbering B0, B1, B2, . . . is optimal for vacillatory learning.

Theorem 14. There is a numbering which is optimal but not effectively optimal
for behaviourally correct learning.

Proof. The idea is to construct a uniformly K-r.e. listing L0, L1, L2, . . . of cofi-
nite sets such that, for every m,

– min(N − Lm) exists and is m;
– the machines M0,M1,M2, . . . ,Mm do not behaviourally correctly learn Lm.

Each set Lm is obtained using movable markers a0, a1, a2, . . . , am: One constructs
a text Tm ≤T K which enumerates all numbers except m and the final values
of those markers which move only finitely often. Each marker ak is initialized as
m+k+1. Tm[s] contains only values below s+m+2. In the case that the current
value of ak is not in WMk(Tm[s]), move ak to the value (s + 1)(m + 1) + k + 1.
Furthermore, Tm(s) is the least number x neither in {m}∪ content(Tm[s]) nor a
current value of any marker. In the case that the value of ak changes infinitely
often, Mk does not converge on Tm semantically to Lm, as Mk infinitely often

444 S. Jain and F. Stephan

conjectures a set not containing some intermediate value of ak, even though this
intermediate value belongs to Lm. In the case that the value of ak changes only
finitely often, the final value of ak does not belong to Lm, but belongs to almost
all of the conjectures output by Mk on Tm.

The reader should note that there are uniformly recursive approximations
Lm,s satisfying for all m that

– ∀x ≤ m ∀s [x ∈ Lm,s ⇔ x < m];
– ∀x > m [x ∈ Lm ⇔ ∀∞s [x ∈ Lm,s]].

Using a construction similar to Proposition 8, one can construct a numbering H0,
H1, H2, . . . with the following property: For every k, the cofinite set N − Dk

has exactly one index g(k) and this g(k) satisfies CK(g(k)) > 2k. Thus no
infinite class of cofinite sets can be behaviourally correctly learnt using H0, H1,
H2, . . . as a hypothesis space.

Now define, for all e and d > 0, that A〈0,e〉 = He and A〈d,e〉 is the union of
all We,s for which there are m,x such that

– m < x ≤ d ≤ s and
– m = min(N −We,s) and
– either x ∈

⋂
t=d,d+1,d+2,...,s Lm,t −We,s or x ∈ We,s − Lm,s.

Note that A〈d,e〉 is finite if {0, 1, 2, . . . , d} ⊆ We or there exists a number m < d
with Lm ∩ {0, 1, 2, . . . , d} = We ∩ {0, 1, 2, . . . , d}. Furthermore, H0, H1, H2, . . .
covers all cofinite sets and hence A0, A1, A2, . . . also covers all cofinite sets. The
coverage of the coinfinite sets is now based on the following claim.

Claim 15. Let B be a given r.e. set such that B /∈ {∅,N, L0, L1, L2, . . .}. Then
there is a constant c such that, for all e with We = B and all d > c, it holds that
A〈d,e〉 = B.

To see this claim, let m = min(N − B) and x = min((Lm − B) ∪ (B − Lm)).
Note that x > m. If x /∈ Lm, then let c = x + 1, else choose c so large that
∀s ≥ c [c > x ∧ x ∈ Lm,s]. Let e be such that We = B. Assume that d > c. Note
that x ≤ d. There are two cases.

First x ∈ Lm∧x /∈ B. Then it holds, for all s ≥ d, that x ∈
⋂

t:d≤t≤s Lm,t−We,s

and hence A〈d,e〉 =
⋃

s:s≥d We,s = We.
Second x /∈ Lm∧x ∈ B. Then there are infinitely many s with x ∈ We,s−Lm,s

and A〈d,e〉 is the union of the sets We,s for these s; hence A〈d,e〉 = We = B. This
completes the proof of the claim.

Let S be a behaviourally correctly learnable class with learner M and let
I = {i : Hi ∈ S ∩ {N, L0, L1, L2, . . .}}. By choice of L0, L1, L2, . . . and H0,
H1, H2, . . ., I is finite. For each i ∈ I, let Fi be the tell-tale set for Hi with
respect to S. That is, Fi is a finite subset of Hi such that, for all B ∈ S −{Hi},
¬[Fi ⊆ B ⊆ Hi]. One now defines a new learner N as follows:

N(σ) =
{
〈0, i〉, if i ∈ I and Fi ⊆ content(σ) ⊆ Hi;
〈|σ|,M(σ)〉, if such an i ∈ I does not exist.

Numberings Optimal for Learning 445

If there are several i ∈ I qualifying, one just takes the least of these i. The new
learner N clearly learns {Hi : i ∈ I}. Now consider any text T for a set B ∈
S−{N, L0, L1, L2, . . .}. Then, for all sufficiently large s, WM(T [s]) = B, s > c for
the constant c from the claim and there is no i ∈ I with Fi ⊆ content(T [s]) ⊆ Hi.
It follows that N(T [s]) = 〈s,M(T [s])〉 and AN(T [s]) = A〈s,M(T [s])〉 = B. Hence
N behaviourally correctly learns B using A0, A1, A2, . . . and A0, A1, A2, . . . is
optimal for behaviourally correct learning.

Now assume by way of constradiction that A0, A1, A2, . . . is effectively optimal
for behaviourally correct learning. Thus, one can effectively find a learner Nd

for {N − Dd} (using the numbering A0, A1, A2, . . .). Let Td be a text for N −
Dd, obtained effectively from d. Let h be a partial K-recursive function such
that h(d) = e, if Nd on Td converges to e; otherwise, h(d) is undefined. Note
that h(d) = g(d) for all d such that N − Dd = Ln for some n. Furthermore,
CK(h(d)) ≤ d + c, for some constant c, whenever h(d) is defined. However,
recall that CK(g(d)) ≥ 2d for all d. This leads to contradiction, as there exist
infinitely many distinct d such that N−Dd = Ln for some n. It follows that A0,
A1, A2, . . . is not effectively optimal for behaviourally correct learning. �

4 Consistent Learning

There are various versions of requiring consistency for learning. For example,
one can either require that consistency holds only for texts for sets from the
class to be learnt or for all texts. Furthermore, one might either require that a
learner is partial or that a learner is total. In the following, the version is chosen
which Wiehagen and Zeugmann [19] called “totally consistent” and where the
learner has to be total and always outputs hypotheses containing all data seen
so far (even on data not belonging to any set to be learnt).

Definition 16 (Wiehagen and Liepe [18]). A learner M is consistent iff for
every sequence σ it holds that M(σ) is defined and content(σ) ⊆ WM(σ). A class
S is consistently learnable iff there is a consistent learner which explanatorily
learns S.

Proposition 17. If a numbering is effectively optimal for explanatory learning
then it is also effectively optimal for consistent learning.

Proof. Let A0, A1, A2, . . . be a numbering which is effectively optimal for ex-
planatory learning. Then there is, by Theorem 6, a recursive function f such
that, for all e, d = lims f(e, s) exists and Ad = We. Now let S be a consistently
learnable class and let M be a consistent learner using W0,W1,W2, . . . for S.
The new learner using A0, A1, A2, . . . for S is given as

N(σ) = f(M(σ), s) for the least s with s > |σ| ∧ content(σ) ⊆ Af(M(σ),s),s.

As M is consistent, content(σ) ⊆ WM(σ). Furthermore, f(M(σ), s) converges to
a fixed value d as s goes to infinity; this d satisfies content(σ) ⊆ Ad,s for almost

446 S. Jain and F. Stephan

all s. Hence, if s is sufficiently large, content(σ) ⊆ Af(M(σ),s),s as well. It follows
that above new learner N is total and consistent.

Furthermore, when M converges on a text T to e, then N converges to a
value d = lims f(e, s). The reason is that there are only finitely many s for
which f(e, s) differs from d; thus if the initial segment σ 3 T processed by M
is sufficiently large, then M(σ) = e and all s > |σ| satisfy f(e, s) = d — hence
N(σ) = d. By the definition of f , Ad = We. So it follows that N using A0, A1,
A2, . . . explanatorily learns S. �

Definition 18 (Osherson, Stob and Weinstein [15], Fulk [8]). A learner
is called prudent if it learns (according to the relevant criterion) every set for
which it outputs a hypothesis on some data.

Theorem 19. If M consistently learns a class S, then there is also a consistent
and prudent learner N for S.

Theorem 20. If A0, A1, A2, . . . is optimal for explanatory learning, then A0,
A1, A2, . . . is also optimal for consistent learning.

Proof. Let Te be the canonical text for We; note that the Te are all uniformly
recursive. Assume that A0, A1, A2, . . . is optimal for explanatory learning and
let S be a consistently learnable class. By Theorem 19 there is a prudent and
consistent learner M using W0,W1,W2, . . . for S. As A0, A1, A2, . . . is optimal
for explanatory learning, there is also a further explanatory learner P using A0,
A1, A2, . . . for the class consistently learnt by M . The new consistent learner N
using A0, A1, A2, . . . is defined as follows:

N(σ) = P (TM(σ)[n]) for the least n with n > |σ| and content(σ) ⊆
AP (TM(σ)[n]),n.

The learner N uses A0, A1, A2, . . . and is partial-recursive. As M(σ) is the index
of a set containing content(σ), the learner P converges on the text TM(σ) to an
index c with content(σ) ⊆ WM(σ) = Ac. Hence the parameter n in the algorithm
to compute N(σ) is always found; so the learner N is total and consistent.
Furthermore, if M converges on a text to e, then P is, from some time onwards,
always simulated on Te. As P converges on Te to an index d with Ad = We

and as N always chooses a parameter n > |σ|, it follows that N converges to
this d as well. Hence N explanatorily learns all the sets consistently learnt by
M ; in particular, N explanatorily learns the class S. This shows that A0, A1,
A2, . . . is optimal for consistent learning. �

The converse is not true. There is a numbering which is effectively optimal for
consistent learning but not optimal for explanatory learning.

Theorem 21. There is a numbering A0, A1, A2, . . . such that:
(a) A0, A1, A2, . . . is effectively optimal for consistent learning;
(b) A0, A1, A2, . . . is not optimal for finite, explanatory, vacillatory or beha-
viourally correct learning.

Numberings Optimal for Learning 447

Note that the proof of Theorem 9 gives a numbering which is optimal for fi-
nite learning but not optimal for consistent learning. The proof of Theorem 10
gives a numbering which is effectively optimal for vacillatory learning but not
optimal for consistent learning. The proof of Theorem 12 gives a numbering
which is effectively optimal for behaviourally correct learning but not optimal
for consistent learning. Separation of non-effective and effective optimality for
consistent learning can be obtained using the numbering A0, A1, A2, . . . in the
omitted proof of Theorem 13.

5 Learning with Additional Information

Learning with additional information is a scenario in which a learner receives,
besides the text of the set to be learnt, also an upper bound on an index (in the
numbering used as hypothesis space) for the set to be learnt. We can consider
the learner as receiving two items as input: first an upper bound on an index for
the input language and second the text for the language to be learnt.

Definition 22. A class S is explanatorily learnable with additional information
using A0, A1, A2, . . . iff there is a learner M such that, for every d, e with d >
e∧Ae ∈ S and for every text T for Ae, limn→∞ M(d, T [n]) converges to an index
c with Ac = Ae.

Note that the additional information d must be chosen according to the hypothe-
sis space A0, A1, A2, . . . used and not according to any other numbering.

Jain and Stephan [11] called a numbering A0, A1, A2, . . . of all r.e. sets a
Ke-numbering iff {〈i, j〉 : Ai = Aj} ≤T K. Ke-numberings are generalizations
of Friedberg numberings and can never be acceptable or K-acceptable.

Theorem 23. A numbering is optimal for learning with additional information
iff it is effectively optimal for learning with additional information iff it is a
Ke-numbering.

Remark 24. It follows along the lines of previous work [11] that the classes {L0,
L1, L2, . . .} given by Ln = {2m : m ∈ N} ∪ {2n+ 1} and {H0, H1, H2, . . .} given
by Hn = {2m : m ≤ |Wn|} ∪ {2n + 1} are both finitely learnable using W0,W1,
W2, . . ., but for every Ke-numbering A0, A1, A2, . . . at least one of these classes
is not vacillatorily learnable using this numbering. Hence Ke-numberings are
not optimal for finite, explanatory and vacillatory learning.

An open question by Jain and Stephan [11] asks whether every behaviourally
correctly learnable class has a learner which uses a Ke-numbering as hypothesis
space. The natural counterpart of this question is to ask for the existence of a Ke-
numbering which is optimal for behaviourally correctly learning. This question
is open. The same question is open for consistent learning as well.

448 S. Jain and F. Stephan

References

[1] Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

[2] Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of
Algorithms and Programs, LSU, Riga, Latvia, vol. 1, pp. 82–88 (1974)

[3] Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Infor-
mation and Control 28, 125–155 (1975)

[4] Case, J.: The power of vacillation in language learning. SIAM Journal on Com-
puting 28, 1941–1969 (1999)

[5] de Jongh, D., Kanazawa, M.: Angluin’s theorem for indexed families of r.e. sets
and applications. In: Proceedings of the Ninth Annual Conference on Computa-
tional Learning Theory, pp. 193–204. ACM Press, New York (1996)

[6] Freivalds, R., Kinber, E., Wiehagen, R.: Inductive inference and computable one-
one numberings. Zeitschrift für mathematische Logik und Grundlagen der Math-
ematik 28, 463–479 (1982)

[7] Friedberg, R.: Three theorems on recursive enumeration. The Journal of Symbolic
Logic 23(3), 309–316 (1958)

[8] Fulk, M.: Prudence and other conditions on formal language learning. Information
and Computation 85, 1–11 (1990)

[9] Gold, E.M.: Language identification in the limit. Information and Control 10,
447–474 (1967)

[10] Jain, S., Sharma, A.: Learning with the knowledge of an upper bound on program
size. Information and Computation 102, 118–166 (1993)

[11] Jain, S., Stephan, F.: Learning in Friedberg numberings. In: Hutter, M., Servedio,
R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 79–93. Springer,
Heidelberg (2007)

[12] Lange, S.: Algorithmic Learning of Recursive Languages. Habilitationsschrift, Uni-
versität Leipzig, Mensch und Buch Verlag, Berlin (2000)

[13] Lange, S., Zeugmann, T.: Language learning in dependence on the space of hy-
potheses. In: Proceedings of the Sixth Annual Conference on Computational
Learning Theory, Santa Cruz, California, United States, pp. 127–136 (1993)

[14] Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 2nd edn. Springer, Heidelberg (1997)

[15] Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge
(1986)

[16] Osherson, D.N., Weinstein, S.: Criteria of language learning. Information and
Control 52, 123–138 (1982)

[17] Soare, R.I.: Recursively enumerable sets and degrees. Perspectives in Mathemat-
ical Logic. Springer, Berlin (1987)

[18] Wiehagen, R., Liepe, W.: Charakteristische Eigenschaften von erkennbaren
Klassen rekursiver Funktionen. Journal of Information Processing and Cyber-
netics (EIK) 12, 421–438 (1976)

[19] Wiehagen, R., Zeugmann, T.: Learning and consistency. In: Lange, S., Jantke,
K.P. (eds.) GOSLER 1994. LNCS, vol. 961, pp. 1–24. Springer, Heidelberg (1995)

[20] Zeugmann, T.: Algorithmisches Lernen von Funktionen und Sprachen. Habilita-
tionsschrift, Technische Hochschule Darmstadt (1993)

[21] Zilles, S.: Increasing the power of uniform inductive learners. Journal of Computer
and System Sciences 70, 510–538 (2005)

Learning with Temporary Memory

Steffen Lange1, Samuel E. Moelius III2, and Sandra Zilles3

1 Fachbereich Informatik, Hochschule Darmstadt
s.lange@fbi.h-da.de

2 Department of Computer & Information Sciences, University of Delaware
moelius@cis.udel.edu

3 Department of Computing Science, University of Alberta
zilles@cs.ualberta.ca

Abstract. In the inductive inference framework of learning in the limit,
a variation of the bounded example memory (Bem) language learning
model is considered. Intuitively, the new model constrains the learner’s
memory not only in how much data may be retained, but also in how
long that data may be retained. More specifically, the model requires
that, if a learner commits an example x to memory in some stage of
the learning process, then there is some subsequent stage for which x no
longer appears in the learner’s memory. This model is called temporary
example memory (Tem) learning. In some sense, it captures the idea
that memories fade.

Many interesting results concerning the Tem-learning model are pre-
sented. For example, there exists a class of languages that can be iden-
tified by memorizing k + 1 examples in the Tem sense, but that cannot
be identified by memorizing k examples in the Bem sense. On the other
hand, there exists a class of languages that can be identified by memo-
rizing just 1 example in the Bem sense, but that cannot be identified by
memorizing any number of examples in the Tem sense. (The proof of this
latter result involves an infinitary self-reference argument.) Results are
also presented concerning the special cases of: learning indexable classes
of languages, and learning (arbitrary) classes of infinite languages.

1 Introduction

The following is a common scenario in machine learning. A learner is repeatedly
fed elements from an incoming stream of data. From this data, the learner must
eventually generate a hypothesis that correctly identifies the contents of this
stream of data. This is the case, for example, in many applications of neural
networks (see [Mit97]).

In many cases, it would be impractical for a learning algorithm to reconsider
all previously seen data when forming a new hypothesis. Thus, such learners
are often designed to work in an incremental fashion, considering only the most
recently presented datum, and possibly a few previously seen data that the
learner considers to be significant.

This scenario has been studied formally by Lange and Zeugmann [LZ96] in the
context of Gold-style language learning [Gol67]. Their model is called bounded

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 449–463, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

450 S. Lange, S.E. Moelius III, and S. Zilles

example memory (Bem) learning. Intuitively, as the learner is fed elements from
the incoming stream of data, the learner is allowed to commit up to k of these
elements to memory, where k is a priori fixed. The learner may change which
such elements are stored in its memory at any given time. However, any newly
committed element must come from the incoming stream of data, and , the num-
ber of such elements can never exceed k. Among the results presented in [LZ96]
is: for each k, there is a class of languages that can be identified by memorizing
k + 1 examples, but that cannot be identified by memorizing only k examples
(Theorem 1 below). Further results on the Bem-learning model are obtained
in [CJLZ99, CCJS07].

The Bem-learning model allows that any given example may be stored in the
learner’s memory indefinitely. However, most forms of computer memory are
volatile, in that they require energy in order to retain their contents [RCN03].
Moreover, it has been observed in various areas of machine learning that the
length of time for which data may be stored in a learner’s memory can have an
effect upon the capabilities of that learner (e.g., in reinforcement learning [LM92,
McC96, Bak02] and in neural networks [HS97]).

Motivated by these observations, we consider a variation of the Bem-learning
model in which the learner’s memory is constrained not only in how much data
may be stored, but also in how long that data may be stored. More specifically,
we consider a model which requires that, if a learner commits an example x to
memory in some stage of the learning process, then there is some subsequent
stage for which x no longer appears in the learner’s memory. We call this new
model temporary example memory (Tem) learning. In some sense, this model
captures the idea that memories fade.

Many interesting results concerning the Tem-learning model are presented.
For example, there exists a class of languages that can be identified by mem-
orizing k + 1 examples in the Tem sense, but that cannot be identified by
memorizing k examples in the Bem sense (Theorem 3). Thus, being able to
store k+1 examples temporarily, can allow one to learn more than being able to
store k example indefinitely. On the other hand, there exists a class of languages
that can be identified by memorizing just 1 example in the Bem sense, but that
cannot be identified by memorizing any number of examples in the Tem sense
(Theorem 4). Thus, being able to store just 1 example indefinitely, can allow one
to learn more than being able to store any number of examples temporarily.

Results are also presented concerning the special cases of: learning indexable
classes of languages, and learning (arbitrary) classes of infinite languages. For
the case of indexable classes of languages, there exists such a class that can be
identified by memorizing an arbitrary but finite number of examples in the Bem
sense, but that cannot be identified by memorizing an arbitrary but finite number
of examples in the Tem sense (Theorem 5). In the case of classes of infinite
languages, however, a completely different picture emerges. In particular, any
such class that can be identified by memorizing an arbitrary but finite number
of examples in the Bem sense, can also be identified by memorizing an arbitrary
but finite number of examples in the Tem sense (Theorem 8). Intuitively, this

Learning with Temporary Memory 451

latter result says that, when learning classes of infinite languages, restriction to
temporary memory is, in fact, not a proper restriction.

In the context of both learning indexable classes of languages, and learn-
ing (arbitrary) classes of infinite languages, some problems remain open. These
problems are stated formally in Sections 5 and 6.

Due to space constraints, many proofs are omitted or abbreviated. Complete
proofs of all theorems can be found in [LMZ08].

2 Preliminaries

Computability-theoretic concepts not covered below are treated in [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}. Lowercase italicized letters

(e.g., a, b, c), with or without decorations, range over elements of N, unless
stated otherwise. In some cases, we treat N as the set of all strings over some
finite alphabet Σ. In such cases, lowercase typewriter-font letters (e.g., a, b, c)
are used to denote alphabet symbols. For a symbol a and n ∈ N, an denotes
the string consisting of n repetitions of a (e.g., a3 = aaa). For all strings x, |x|
denotes the length of x, i.e., the number of symbols in x.

A language is a subset of N. Uppercase italicized letters (e.g., A, B, C), with
or without decorations, range over languages. For all A, Fin(A) denotes the
collection of all finite subsets of A. For all nonempty A ⊆ N, minA denotes
the minimum element of A, where min ∅ def= ∞. For all nonempty, finite A ⊆ N,
maxA denotes the maximum element of A, where max ∅ def= −1. L, with or
without decorations, ranges over collections of languages.

Let # be a reserved symbol. For all languages L, t is a text for L def⇔ t =
(xi)i∈N, where {xi | i ∈ N} ⊆ N ∪ {#}, and L = {xi | i ∈ N} − {#}. For
all L, Text(L) denotes the set of all texts for L. For all texts t = (xi)i∈N,
content(t) def= {xi | i ∈ N} − {#}. For all texts t, and all n ∈ N, t[n] denotes the
initial segment of t of length n.

For all one-argument partial functions ψ, and all x ∈ N, ψ(x)↓ denotes that
ψ(x) converges; ψ(x)↑ denotes that ψ(x) diverges. We use ↑ to denote the value
of a divergent computation.

σ, with or without decorations, ranges over finite initial segments of texts for
arbitrary languages. For all σ, |σ| denotes the length of σ (equivalently, the size of
the domain of σ). For all σ = (xi)i<n, content(σ) def= {xi | i < n}−{#}. λ denotes
the empty initial segment (equivalently, the everywhere divergent function). For
all σ0 and σ1, σ0 · σ1 denotes the concatenation of σ0 and σ1.

ϕ0, ϕ1, ... denotes any fixed, acceptable numbering of all one-argument partial
computable functions from N to N. Φ denotes a fixed Blum complexity measure
for ϕ. For each i, s, x ∈ N,

ϕs
i (x) def=

{
ϕi(x), if [x < s ∧ Φi(x) ≤ s];
↑, otherwise. (1)

For each i, s ∈ N, W s
i

def= {x | ϕs
i (x)↓}. For each i ∈ N, Wi

def=
⋃

s∈N
W s

i . For each
s ∈ N, W↑ def= W s

↑
def= ∅.

452 S. Lange, S.E. Moelius III, and S. Zilles

An inductive inference machine (IIM) is a partial computable function
whose inputs are initial segments of texts, and whose outputs are elements of
N [OSW86]. M, with or without decorations, ranges over IIMs.

Definitions 1 through 3 below introduce formally the Gold-style learning cri-
teria of relevance to this paper. Therein, Lim, Sdr , and I t are mnemonic for
limiting, set-driven, and iterative, respectively. The first of these, Lim-learning
(Definition 1 below), is the most fundamental. Intuitively, an IIM M is fed
successively longer finite initial segments of a text for a target language L. M
successfully identifies the language (from the given text) iff M converges to a
hypothesis that correctly identifies the language (i.e., to a j such that Wj = L).

Definition 1 (Gold [Gol67])

(a) Let M be an IIM, and let L be a language. M LimTxt–identifies L iff, for
each text t = (xi)i∈N ∈ Text(L), there exists n ∈ N such that WM(t[n]) = L
and M(t[i]) = M(t[n]) for all i ≥ n.

(b) Let M be an IIM, and let L be a class of languages. M LimTxt–identifies L
iff, for each L ∈ L, M LimTxt–identifies L.

(c) LimTxt = {L | (∃M)[M LimTxt–identifies L]}.

The Lim-learning model allows that an IIM consider the entire initial segment
of text presented to it when forming a new hypothesis. Thus, the IIM may
consider: the order in which elements appear within that initial segment, and
the multiplicity with which they appear. The set-driven (Sdr) learning model
(Definition 2 below) restricts this. In particular, the Sdr -learning model requires
that an IIM consider only the contents of any initial segment, and not the order
or multiplicity of the elements therein.

Definition 2 (Wexler and Culicover [WC80])

(a) Let M be an IIM, let L be a language, and let M : Fin(N) → N be a partial
computable function. M SdrTxt–identifies L via M iff (i) and (ii) below.
(i) M LimTxt–identifies L.
(ii) For each text t = (xi)i∈N ∈ Text(L), and each i ∈ N, M

(
content(t[i])

)
=

M(t[i]).
(b) Let M be an IIM, and let L be a class of languages. M SdrTxt–identifies L

iff there exists M such that, for each L ∈ L, M SdrTxt–identifies L via M .
(c) SdrTxt = {L | (∃M)[M SdrTxt–identifies L]}.

Both of the preceding learning models allow that an IIM consider an unbounded
number of elements when forming a new hypothesis. This does not seem practi-
cable, in general, and motivates a desire for memory limited models of learning.
Iterative (I t) learning (Definition 3 below) is such a memory limited model. The
I t-model requires that an IIM consider only its most recently conjectured hy-
pothesis, and the most recently occurring element of an initial segment of text.
Thus, the IIM cannot , in general, consider previously conjectured hypotheses,
nor previously occurring elements of an initial segment of text.

Learning with Temporary Memory 453

Definition 3 (Wiehagen [Wie76])

(a) Let M be an IIM, let L be a language, let M : N × N → N be a partial
computable function, and let j0 ∈ N. M I tTxt–identifies L via (M, j0) iff (i)
and (ii) below.
(i) M LimTxt–identifies L.
(ii) For each text t = (xi)i∈N ∈ Text(L), (α) through (γ) below.

(α) For each i ∈ N, M(t[i])↓.
(β) M(t[0]) = j0.
(γ) For each i ∈ N, M(t[i + 1]) = M

(
M(t[i]), t(i)

)
.

(b) Let M be an IIM, and let L be a class of languages. M I tTxt–identifies L
iff there exists (M, j0) such that, for each L ∈ L, M I tTxt–identifies L via
(M, j0).

(c) I tTxt = {L | (∃M)[M I tTxt–identifies L]}.

Note that, in Definition 3(b), the behavior of M on any text t for a language
in L is completely determined by j0 and the behavior of M on j0 and t. Thus,
when referring to an iterative (or iterative-like) learner, we will, in some cases,
refer only to (M, j0) and avoid mention of M altogether. We do so similarly
for set-driven learners (Definition 2). For iterative-like learning criteria that we
define below (Definitions 4 and 5), we do so in terms of such (M, j0) directly. In
all such cases, it will be evident how to construct an appropriate IIM M from
(M, j0).

3 Bounded Example Memory (Bem) Learning

The following is a natural relaxation of I t-learning called k-bounded example-
memory (Bemk) learning (Lange and Zeugmann [LZ96]). Recall that the I t-
learning model allows that an IIM consider the most recently occurring element
of an initial segment of text, but not previously occurring elements. By contrast,
the Bemk-learning model allows that the IIM consider up to k such previously
occurring elements, where k ∈ N+ is a priori fixed.

Definition 4 (Lange and Zeugmann [LZ96]). Let k ∈ N+ be fixed.

(a) Let M :
(
N × Fin(N)

)
× N → N × Fin(N) be a partial computable function,

let j0 ∈ N, and let L be a language. (M, j0) BemkTxt–identifies L iff, for
each text t = (xi)i∈N ∈ Text(L), (i) through (iii) below.
(i) For each i ∈ N, Mi(t)↓, where M0(t) = 〈j0, ∅〉 and Mi+1(t) =

M
(
Mi(t), xi

)
= 〈ji+1, Xi+1〉.

(ii) There exists n ∈ N such that Wjn = L and ji = jn for all i ≥ n.
(iii) For each i ∈ N, Xi+1 ⊆ Xi ∪ {xi} and |Xi+1| ≤ k, where X0 = ∅.

(b) Let (M, j0) be as in (a), and let L be a class of languages. (M, j0) BemkTxt–
identifies L iff, for each L ∈ L, (M, j0) BemkTxt–identifies L.

(c) BemkTxt = {L | (∃M, j0)[(M, j0) BemkTxt–identifies L]}.

454 S. Lange, S.E. Moelius III, and S. Zilles

For the remainder, let π2
1(〈j,X〉) = j and π2

2(〈j,X〉) = X , for each j ∈ N and
X ∈ Fin(N).

Note that Definition 4 allows an IIM to change the contents of its example
memory infinitely often, even after it has converged to its final hypothesis. Thus,
changing the contents of the example memory does not constitute a mind-change.

The classes (BemkTxt)k∈N+ defined in Definition 4(d) above form a proper
hierarchy, as stated in the following theorem.

Theorem 1 (Lange and Zeugmann [LZ96]). For each k ∈ N+, BemkTxt ⊂
Bemk+1Txt .

A natural variation of Lange and Zeugmann’s model is to eliminate the restric-
tion on the number of examples that can be memorized, i.e., to allow that the
IIM store an arbitrary number of examples in its memory. We call the resulting
learning model Bem∗-learning.

The formal definition of Bem∗-learning is obtained from Definition 4 by re-
placing Bemk by Bem∗ and by dropping the condition |Xi+1| ≤ k in (a)(iii).1

This definition immediately implies the following.

Proposition 1. For each k ∈ N+, BemkTxt ⊆ Bem∗Txt .

Kinber and Stephan [KS95] studied a flexible notion of memory limited learning
that subsumes our definition of Bem∗-learning. As an immediate consequence
of their results, one obtains a characterization of Bem∗-learning in terms of set-
driven learning (Definition 2 above). Recall that, with set-driven learning, the
IIM can consider neither the order of the elements in the text, nor the multiplic-
ity with which they appeared. However, the full set of previously seen examples
is always accessible. The similarity to the definition of Bem∗-learning is obvious;
nonetheless, the proof of the characterization is not completely straightforward.
The reader is referred to [KS95] for details.

Theorem 2 (Kinber and Stephan [KS95]). SdrTxt = Bem∗Txt ⊂ LimTxt .

4 Temporary Example Memory (Tem) Learning

This section introduces the temporary example memory (Tem) learning model.
This model is a natural restriction of Bem-learning. It requires that, if a learner
commits an example x to memory in some stage of the learning process, then
there is some subsequent stage for which x no longer appears in the learner’s
memory.2

1 N.B. The Bem∗-learning model does not afford the same capabilities to a learner
as those provided by the Lim-learning model. Since the examples are stored in the
learner’s memory as a set , the learner cannot consider the order in which those
elements appeared, nor the multiplicity with which they appeared.

2 As noted by one anonymous referee, one might reasonably allow elements occurring
infinitely often in the text to remain in the learner’s memory indefinitely. However,
such a weakened restriction leads to a model equivalent to the one considered herein.
The proof of this fact is omitted.

Learning with Temporary Memory 455

Bem1Txt ⊂ Bem2Txt ⊂ Bem3Txt ⊂ · · · Bem∗Txt
∪ ∪ ∪ ∪

Tem1Txt ⊂ Tem2Txt ⊂ Tem3Txt ⊂ · · · Tem∗Txt

Bem1Txt �⊆ Tem∗Txt

Fig. 1. Summary of the results of Section 4

Figure 1 summarizes the results of this section. The main results are the
following. Theorem 3 says that there exists a class of languages that can be
identified by memorizing k + 1 examples in the Tem sense, but that cannot
be identified by memorizing k examples in the Bem sense. On the other hand,
Theorem 4 says that there exists a class of languages that can be identified by
memorizing just 1 example in the Bem sense, but that cannot be identified by
memorizing any number of examples in the Tem sense.

The following is the formal definition of Temk-learning. Note the addition of
part (a)(iv), as compared to Definition 4.3

Definition 5. Let k ∈ N+ be fixed.

(a) Let M :
(
N × Fin(N)

)
× N → N × Fin(N) be a partial computable function,

let j0 ∈ N, and let L be a language. (M, j0) TemkTxt–identifies L iff, for
each text t = (xi)i∈N ∈ Text(L), (i) through (iv) below.
(i) For each i ∈ N, Mi(t)↓, where M0(t) = 〈j0, ∅〉 and Mi+1(t) =

M
(
Mi(t), xi

)
= 〈ji+1, Xi+1〉.

(ii) There exists n ∈ N such that Wjn = L and ji = jn for all i ≥ n.
(iii) For each i ∈ N, Xi+1 ⊆ Xi ∪ {xi} and |Xi+1| ≤ k, where X0 = ∅.
(iv) For each i ∈ N, there exists i′ ≥ i such that xi �∈ Xi′+1.

(b) Let (M, j0) be as in (a), and let L be a class of languages. (M, j0) TemkTxt–
identifies L iff, for each L ∈ L, (M, j0) TemkTxt–identifies L.

(c) TemkTxt = {L | (∃M, j0)[(M, j0) TemkTxt–identifies L]}.
The preceding definition immediately implies the following.

Proposition 2. For each k ∈ N+, TemkTxt ⊆ BemkTxt .

The formal definition of Tem∗-learning is obtained from Definition 5 by replacing
Temk by Tem∗ and by dropping the condition |Xi+1| ≤ k in (a)(iii). Again, a
few observations follow immediately.

Proposition 3

(a) For each k ∈ N+, TemkTxt ⊆ Tem∗Txt .
(b) Tem∗Txt ⊆ Bem∗Txt .

3 For simplicity, Definition 5 allows that when an example is removed from memory be
determined by the learner, as opposed to, say, by the environment. Technically, this
gives the learner more control than absolutely necessary. However, this also makes
the negative results obtained even more surprising (see, e.g., Theorem 4).

456 S. Lange, S.E. Moelius III, and S. Zilles

The following is the first main result of this section. Intuitively, it says that being
able to store k + 1 examples temporarily, can, in some cases, allow one to learn
more than being able to store k examples indefinitely.

Theorem 3. For each k ∈ N+, Temk+1Txt − BemkTxt �= ∅.
Proof (Sketch). Let k ∈ N+. For separating Temk+1 and Bemk we use a class
that was already used in [LZ96] for the separation of Bemk+1 and Bemk. We
set Σ = {a, b}. For every j, �0, . . . , �k ∈ N, let

L(j,�0,...,�k) = {aj+1} ∪ {bz | z ≤ j} ∪ {b�0 , . . . , b�k}. (2)

By Lk we denote the class containing L = {b}∗ and all the languages L(j,�0,...,�k)

for j, �0, . . . , �k ∈ N. The proof that Lk ∈ Temk+1Txt is omitted, due to space
constraints. That Lk /∈ BemkTxt is proven in [LZ96]. � (Theorem 3)

Theorem 3 has the following consequences.

Corollary 1
(a) For each k ∈ N+, TemkTxt ⊂ Temk+1Txt .
(b) Tem∗Txt −

⋃
k∈N+ BemkTxt �= ∅.

(c)
⋃

k∈N+ BemkTxt ⊂ Bem∗Txt .
(d)

⋃
k∈N+ TemkTxt ⊂ Tem∗Txt .

In contrast to Theorem 3, restriction to temporary memory can have a significant
effect upon a learner’s capabilities, as demonstrated by our next main result.
Intuitively, this result says that being able to store just 1 example indefinitely,
can allow one to learn more than being able to store any number of examples
temporarily. The proof involves an infinitary self-reference argument.

Theorem 4. Bem1Txt − Tem∗Txt �= ∅.
Proof (Sketch). Let L =

{L | 0 �∈ L ∧ (∀e ∈ L)[We = L]}
∪
{
L | 0 ∈ L ∧ (∃u ∈ L− {0})

[
Wu = ∅

∧ (∀e ∈ L− {0, u})[We = L− {0, u}]
]}

.
(3)

The proof that L ∈ Bem1Txt is omitted, due to space constraints. The proof
that L �∈ Tem∗Txt follows. By way of contradiction, let M be such that M
Tem∗Txt -identifies L. By the Operator Recursion Theorem [Cas74, Cas94], there
exist distinct ϕ-programs (ej)j∈N, none of which are 0, and whose behavior
is determined by the construction in Figure 2. In conjunction with (ej)j∈N, a
series of finite sequences (σs)s∈N is constructed. Note that, in the construction
of (σs)s∈N, σs+1 is defined ⇔ stage s is exited. So, if there is a least s0 such that
stage s0 is not exited, then, for all s′ ≥ s0, let σs′+1 = σs0 .

Claim 1. (a) through (d) below.
(a) (∀s ∈ N)[σs ⊆ σs+1].
(b) (∀s ∈ N)

[
[s = 0 ∨ stage s− 1 is exited] ⇒ (∀j < 2s)[content(σs) ⊆ Wej]

]
.

(c) (∀j ∈ N)[Wej ⊆
⋃

s∈N
content(σs)].

(d) (∀s ∈ N)[content(σs) ⊆ {ej | j < 2s}].

Proof of Claim. Clear by the construction of (ej)j∈N and (σs)s∈N. � (Claim 1)

Learning with Temporary Memory 457

Set σ0 = λ, and execute stages s = 0, 1, ..., successively, as follows.

Stage s. Find the least m ∈ N (if any) for which one of the following conditions applies,
and act accordingly.

Cond. (i) (∃i ∈ {0, 1})[M(σs · e2s+i · #m)↑]. Go into an infinite loop.

Cond. (ii)
�
¬(i) ∧ (∃i ∈ {0, 1})[(π2

1 ◦ M)(σs · e2s+i · #m) �= (π2
1 ◦ M)(σs)]

�
.

(a) For the least i ∈ {0, 1} satisfying the condition, set σs+1 = σs · e2s+i · #m.
(b) For each j < 2s + 2, list content(σs+1) into Wej .
(c) Proceed to stage s + 1.

Cond. (iii) [¬(i)-(ii) ∧ (∀i ∈ {0, 1})[(π2
2 ◦ M)(σs · e2s+i · #m) = ∅]

�
.

(a) Set σs+1 = σs.
(b) Terminate the construction.

Cond. (iv)
�
¬(i)-(iii) ∧ m > 0 ∧ (∃i ∈ {0, 1})[(π2

2 ◦ M)(σs · e2s+i · #m) =
(π2

2 ◦ M)(σs · e2s+i · #m−1) �= ∅]
�
.

(a) For the least i ∈ {0, 1} satisfying the condition, set σs+1 = σs · e2s+i · #m.
(b) For each j < 2s + 2, list content(σs+1) into Wej .
(c) Terminate the construction.

Fig. 2. The construction of (ej)j∈N and (σs)s∈N in the proof that L �∈ Tem∗Txt (part
of Theorem 4). Note: nothing is listed into Wej , for any j, aside from the above.

Consider the following cases.

Case (I) (∃s ∈ N)(∀m ∈ N)[none of Cond. (i)-(iv) apply for m in stage s].
Then, for all m ∈ N, (i) through (iv) below.

(i) (∀i ∈ {0, 1})[M(σs · e2s+i · #m)↓].
(ii) (∀i ∈ {0, 1})[(π2

1 ◦ M)(σs · e2s+i · #m) = (π2
1 ◦ M)(σs)].

(iii) (∃i ∈ {0, 1})[(π2
2 ◦ M)(σs · e2s+i · #m) �= ∅].

(iv) m > 0 ⇒ (∀i ∈ {0, 1})[(π2
2 ◦M)(σs · e2s+i · #m) �=

(π2
2 ◦M)(σs · e2s+i · #m−1)

∨ (π2
2 ◦M)(σs · e2s+i · #m−1) = ∅].

By (i) and (ii), clearly, for all i ∈ {0, 1},

(π2
2 ◦M)(σs ·e2s+i) ⊇ (π2

2◦M)(σs ·e2s+i ·#) ⊇ (π2
2◦M)(σs ·e2s+i ·#2) ⊇ · · · . (4)

Since, for all σ, (π2
2 ◦M)(σ) is a finite set, both of the sequences corresponding

to (4) must eventually reach a fixpoint. But, clearly, by (iii) and (iv), at least
one such sequence does not reach a fixpoint (a contradiction).

Case (II) (∃s,m ∈ N)[Cond. (i) applies for m in stage s]. Then, clearly,

(∀s′)[stage s′ is exited ⇔ s′ < s]. (5)

Thus, for all j < 2s,

content(σs) ⊆ Wej {by (5) and Claim 1(b)}
⊆ content(σs) {by (a) and (c) of Claim 1, and (5)}
⊆ {ej | j < 2s} {by Claim 1(d)}.

(6)

458 S. Lange, S.E. Moelius III, and S. Zilles

Clearly, by the construction of (ej)j∈N,

(∀i ∈ {0, 1})[We2s+i = ∅]. (7)

Let i ∈ {0, 1} be least such that

M(σs · e2s+i · #m)↑. (8)

Let t′ be such that t′ = σs ·e2s+i ·#m ·0 ·# ·# · · · · . Let L′ = content(t′). By (6)
and (7), clearly, L′ is a language in L of the second type in (3) (where, u = e2s+i).
But, by (8), M does not Tem∗Txt-identify L′ from t′ (a contradiction).

Case (III) (∃s,m ∈ N)[Cond. (iii) applies for m in stage s]. Then, clearly,

(∀s′)[stage s′ is exited ⇔ s′ ≤ s]. (9)

Thus, for all j < 2s,

content(σs) = Wej {by (9) and Claim 1(b)}
⊆ content(σs+1) {by (a) and (c) of Claim 1, and (9)}
= content(σs) {by the case and the constr. of (σs)s∈N}
⊆ {ej | j < 2s} {by Claim 1(d)}.

(10)

Clearly, by the construction of (ej)j∈N,

(∀i ∈ {0, 1})[We2s+i = ∅]. (11)

Note that part of Cond. (iii) is that Cond. (ii) does not apply. Thus,

(∀i ∈ {0, 1})[M(σs · e2s+i · #m) = 〈(π2
1 ◦ M)(σs), ∅〉]. (12)

For all i ∈ {0, 1}, let t′i be such that t′i = σs · e2s+i · #m · 0 · # · # · · · · . For all
i ∈ {0, 1}, let L′

i = content(t′i). By (10) and (11), clearly, L′
0 and L′

1 are distinct
languages in L of the second type in (3) (where, u = e2s for L′

0, and u = e2s+1

for L′
1). But, by (12), M cannot distinguish L′

0 and L′
1 (a contradiction).

Case (IV) (∃s,m ∈ N)[Cond. (iv) applies for m in stage s]. Let i ∈ {0, 1} be
least such that

(π2
2 ◦ M)(σs · e2s+i · #m) = (π2

2 ◦ M)(σs · e2s+i · #m−1) �= ∅. (13)

Note that, part of Cond. (iv) is that Cond. (ii) does not apply. Furthermore,
by the case, m > 0. Thus, it must also be that Cond. (ii) does not apply for
m− 1 (in stage s). Consequently,

M(σs · e2s+i · #m)
= 〈(π2

1 ◦ M)(σs · e2s+i · #m), (π2
2 ◦ M)(σs · e2s+i · #m)〉 {immediate}

= 〈(π2
1 ◦ M)(σs · e2s+i · #m), (π2

2 ◦ M)(σs · e2s+i · #m−1)〉 {by (13)}
= 〈(π2

1 ◦ M)(σs), (π2
2 ◦ M)(σs · e2s+i · #m−1)〉 {by ¬(ii) for m}

= 〈(π2
1 ◦ M)(σs · e2s+i · #m−1), (π2

2 ◦ M)(σs · e2s+i · #m−1)〉 {by ¬(ii)
for m− 1}

= M(σs · e2s+i · #m−1) {immediate}.
Clearly, then, for all n ≥ m,

M(σs · e2s+i · #n) = M(σs · e2s+i · #m−1). (14)

Learning with Temporary Memory 459

Next, note that, by the construction of (σs)s∈N,

σs+1 = σs · e2s+i · #m. (15)

Clearly,
(∀s′)[stage s′ is exited ⇔ s′ ≤ s]. (16)

Thus, for all j < 2s + 2,

content(σs+1) ⊆ Wej {by (16) and Claim 1(b)}
⊆ content(σs+1) {by (a) and (c) of Claim 1, and (16)}
⊆ {ej | j < 2s + 2} {by Claim 1(d)}.

(17)

Let t be such that t = σs+1 · # · # · · · · . Let L = content(t). By (17), clearly, L
is a language in L of the first type in (3). But, by (13), (14), and (15), M does
not Tem∗Txt -identify L from t (a contradiction).

Case (V) [¬(I)-(IV)]. Then, clearly,

(∀s ∈ N)(∃m ∈ N)[Cond. (ii) applies for m in stage s]. (18)

Let t = lims→∞ σs. By Claim 1(a), t is well-defined, and, by (18) and the con-
struction of (σs)s∈N, t is total. Clearly,

(∀s ∈ N)[stage s is exited]. (19)

Thus, for all j ∈ N,

content(t) =
⋃

s∈N
content(σs) {immediate}

⊆ Wej {by (19), and (a) and (b) of Claim 1}
⊆
⋃

s∈N
content(σs) {by Claim 1(c)}

⊆ {ej | j ∈ N} {by Claim 1(d)}.

(20)

By (20), content(t) is a language in L of the first type in (3). But, by (18), M
never reaches a final conjecture on t (a contradiction). � (Theorem 4)

The preceding result, along with Theorem 1 and Propositions 2 and 3, yields the
following corollary.

Corollary 2
(a) For each k ∈ N+, TemkTxt ⊂ BemkTxt .
(b) Tem∗Txt ⊂ Bem∗Txt .

5 Tem-Learning of Indexable Classes of Languages

In this section, we consider the special case of Tem-learning of indexable classes
of languages. A class of languages L is indexable iff (by definition) there exists
a computable function d : N × N → {0, 1} such that L = {Li | i ∈ N} where,
for each i ∈ N, Li = {x ∈ N | d(i, x) = 1} [LZZ08]. Many interesting and
natural classes of languages are indexable. For example, the classes of regular
and context free languages [HMU01] are each indexable.

The next two results say that two of the important separation results obtained
in Section 4 are witnessed by indexable classes of languages.

460 S. Lange, S.E. Moelius III, and S. Zilles

Corollary 3 (of the proof of Theorem 3). For each k ∈ N+, there is an
indexable class of languages Lk such that Lk ∈ Temk+1Txt − BemkTxt .

Proof of Corollary. One need only observe that each of the Lk constructed in
the proof of Theorem 3 is an indexable class. � (Corollary 3)

Theorem 5. There is an indexable class of languages L ∈ Bem∗Txt−Tem∗Txt .

Proof (Sketch). Let 〈·, ·〉 : N × N → N be any 1-1, onto, computable function.
For all A,B ⊆ N, let A× B = {〈a, b〉 | a ∈ A ∧ b ∈ B}. Let L be such that

L =
{
{e} ×A | e ∈ N ∧ 0 ∈ A ∧ A ∈ Fin(N)

}
∪ {Le | e ∈ N}, (21)

where, for each e ∈ N, Le =
⋃

s∈N
content(σs

e), and (σs
e)s∈N is constructed as

follows.

Set σ0
e = 〈e, 1〉, and execute stages s = 0, 1, ..., successively, as follows.

Stage s. Act according to the following (decidable) conditions, then go to
stage s + 1.
Cond. (i) (∃n ≤ s)[Φe(σs

e · #n) ≤ s ∧ (π2
2 ◦ ϕe)(σs

e · #n) = ∅]. For the least
n ∈ N satisfying the condition, set σs+1

e = σs
e · #n · 〈e, s + 2〉.

Cond. (ii) [¬(i)]. Set σs+1
e = σs

e .

Note that, for all e, s ∈ N, 〈e, s + 2〉 ∈ Le ⇔ Cond. (i) applies in stage s in the
construction of (σs

e)s∈N. Furthermore, it is clearly the case that {〈e, 1〉} ⊆ Le ⊆
{e} × (N + 1). Thus, each Le is computable. By only slightly more reasoning, it
can be seen that L is an indexable class.

It is easily seen that L ∈ SdrTxt . Thus, by Theorem 2, L ∈ Bem∗Txt . The
proof that L �∈ Tem∗Txt is omitted, due to space constraints. � (Theorem 5)

It is currently open whether or not the remaining separation results of Sec-
tion 4 can be witnessed by indexable classes of languages.

Problem 1. Let k ∈ N+, A ∈ {Bem1Txt , ...,BemkTxt}, and B ∈ {TemkTxt ,
Temk+1Txt , ..., Tem∗Txt}. Is there an indexable class of languages L ∈ A−B?

6 Tem-Learning of Classes of Infinite Languages

In this section, we consider the special case of Tem-learning of classes of infinite
languages. Our main result of this section, Theorem 8, says that any class of
infinite languages that can be identified by memorizing an arbitrary but finite
number of examples in the Bem sense, can also be identified by memorizing an
arbitrary but finite number of examples in the Tem sense.

Our first result of this section says that one of the important separation results
obtained in Section 4 is witnessed by a class of infinite languages.

Theorem 6. For each k ∈ N+, there exists a class Lk of infinite languages such
that Lk ∈ Temk+1Txt − BemkTxt .

Learning with Temporary Memory 461

Proof (Sketch). Let k ∈ N+. Fix Σ = {a, b, c}. The witnessing class can be
defined by taking the class Lk used in the proof of Theorem 3 and by adding
the infinite set {c}∗ to every language in this class. Further details are omitted.

� (Theorem 6)

Before presenting our next main result, it is worth recalling the following.

Theorem 7 (Osherson, Stob, and Weinstein [OSW86]). Let L be any
class of infinite languages. Then, L ∈ LimTxt iff L ∈ SdrTxt .

Note that Theorems 2 and 7 have the following corollary.

Corollary 4 (of Theorems 2 and 7). Let L be any class of infinite languages.
Then, L ∈ LimTxt iff L ∈ Bem∗Txt .

Thus, Bem∗-learning is not a proper restriction when learning classes of infinite
languages. This is in contrast to Theorem 2 which also says that Bem∗-learning
is a proper restriction when learning classes of arbitrary languages.

Our next main result says that Tem∗-learning is equivalent to Bem∗-learning
when learning classes of infinite languages. Thus, by Corollary 4, Tem∗-learning
is similarly not a proper restriction when learning classes of infinite languages.

Theorem 8. Let L be any class of infinite languages. Then, L ∈ Bem∗Txt iff
L ∈ Tem∗Txt .

Proof (Sketch). By Proposition 3, it suffices to show that, for each class of infinite
languages L, if L ∈ Bem∗Txt , then L ∈ Tem∗Txt . So, let L be a class of infinite
languages, and suppose that L ∈ Bem∗Txt . An M ′ is constructed such that M ′

Tem∗Txt -identifies L. Due to space constraints, we give only the construction
of M ′, and not the proof of its correctness.

By Theorem 2, there exists M such that M SdrTxt -identifies L. Without loss
of generality, suppose that M(∅)↓. Let pM be such that, for all finite A ⊆ N,
ϕpM (A) = M(A). By 1-1 s-m-n [Rog67], there exists a 1-1 computable function
f such that, for all finite A,B ⊆ N, and all k ∈ {0, 1}, Wf(A,B,k) = WM(A).

For all L ∈ L, all t = (xi)i∈N ∈ Text(L), and all i ∈ N, let M ′ be as
follows. M ′

0(t) = 〈f(∅, ∅, 0), ∅〉 and M ′
i+1(t) = M ′(〈f(Ai, Bi, ki), Xi〉, xi

)
=

〈f(Ai+1, Bi+1, ki+1), Xi+1〉, where Ai+1, Bi+1, ki+1, and Xi+1 are determined
as in Figure 3.

The remainder of the proof is omitted. � (Theorem 8)

Corollary 5. Let L be any class of infinite languages. Then, L ∈ LimTxt iff
L ∈ Tem∗Txt .

It is currently open whether or not the remaining separation results of Section 4
can be witnessed by classes of infinite languages.

Problem 2. Let k ∈ N+, A ∈ {Bem1Txt , ...,BemkTxt}, and B ∈ {TemkTxt ,
Temk+1Txt , ..., Tem∗Txt}. Is there a class of infinite languages L ∈ A − B?

462 S. Lange, S.E. Moelius III, and S. Zilles

A0 = B0 = X0 = ∅ and k0 = 0. For each i ∈ N, Ai+1 = Ai, Bi+1 = Bi, ki+1 = ki, and
Xi+1 = Xi, unless stated otherwise.

if xi �= # then

let B∗
i =

(
Bi, if ki = 0;

W
smin

i
M(Ai)

, if ki = 1, where smin
i = min{s | (W s+1

M(Ai)
∩ Xi) �= ∅};

/* For the latter case, it can be shown that smin
i < ∞. */

let X+
i = (Xi ∪ {xi});

let Ci = (B∗
i ∪ X+

i);
let Si =

˘
s ≤ max(Ci) | B∗

i ⊆ W s
M(Ai)

⊆ Ci ∧
`
W s+1

M(Ai)
∩ (X+

i − W s
M(Ai)

)
´

�= ∅
¯
;

if (∃A′)
ˆ
Bi ⊆ A′ ⊆ Ci ∧ ϕ

max(Ci)
pM (A′)↓ �= ϕ

max(Ci)
pM (Ai)↓

˜
then

Ai+1 ← A′; Bi+1 ← Ci; ki+1 ← 0; Xi+1 ← ∅;
else if Si �= ∅ then

ki+1 ← 1; Xi+1 ← (X+
i − W

smax
i

M(Ai)
), where smax

i = max(Si);

else
Xi+1 ← X+

i ;
end if;

end if.

Fig. 3. The behavior of M ′ in the proof of Theorem 8

7 Conclusion

We introduced a new model of language learning called temporary example mem-
ory (Tem) learning. This model is a natural restriction of bounded example
memory (Bem) learning. In particular, it requires that, if a learner commits an
example x to memory in some stage of the learning process, then there is some
subsequent stage for which x no longer appears in the learner’s memory. In some
sense, this model captures the idea that memories fade.

Aside from the open questions mentioned in Sections 5 and 6, the follow-
ing would constitute an interesting line of research. In some sense, an IIM can
memorize examples that it has seen by coding them into its hypotheses, i.e., by
exploiting redundancy in the hypothesis space. This “memory” is, in principle,
unbounded in the number of examples that it can retain, and in how long it can
retain them.4 From a practical point of view, the option to memorize examples
in this way probably does not meet the intuitive requirements of a model of
incremental learning. Thus, it would be interesting to consider the Bem and
Tem-learning models in conjunction with hypothesis spaces that have no redun-
dancy, i.e., Friedberg numberings. Note that such numberings have already been
considered as hypothesis spaces in the context of I t-learning [JS07].

4 Of course, since the IIM must eventually converge to a single hypothesis, the IIM
can memorize examples in this way only finitely often.

Learning with Temporary Memory 463

References

[Bak02] Bakker, B.: Reinforcement learning with long short-term memory. Ad-
vances in Neural Inform. Processing Systems 14, 1475–1482 (2002)

[Cas74] Case, J.: Periodicity in generations of automata. Mathematical Systems
Theory 8(1), 15–32 (1974)

[Cas94] Case, J.: Infinitary self-reference in learning theory. Journal of Experimen-
tal and Theoretical Artificial Intelligence 6(1), 3–16 (1994)

[CCJS07] Carlucci, L., Case, J., Jain, S., Stephan, F.: Results on memory-limited
U-shaped learning. Inform. Comput. 205(10), 1551–1573 (2007)

[CJLZ99] Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning
for bounded data mining. Inform. Comput. 152(1), 74–110 (1999)

[Gol67] Gold, E.M.: Language identification in the limit. Inform. Control 10(5),
447–474 (1967)

[HMU01] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata
theory, languages, and computation, 2nd edn. Addison Wesley, Reading
(2001)

[HS97] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Com-
putation 9(8), 1735–1780 (1997)

[JS07] Jain, S., Stephan, F.: Learning in Friedberg numberings. In: Hutter, M.,
Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754,
pp. 79–93. Springer, Heidelberg (2007)

[KS95] Kinber, E., Stephan, F.: Language learning from texts: mind changes, lim-
ited memory, and monotonicity. Inform. Comput. 123(2), 224–241 (1995)

[LM92] Lin, L.J., Mitchell, T.: Reinforcement learning with hidden states. In:
Proc. of 2nd Intl. Conf. on Simulation of Adaptive Behavior, pp. 271–280
(1992)

[LMZ08] Lange, S., Moelius, S.E., Zilles, S.: Learning with temporary memory
(expanded version). Technical report, University of Delaware (2008),
http://www.cis.udel.edu/∼moelius/publications

[LZ96] Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal
of Computer and System Sciences 53(1), 88–103 (1996)

[LZZ08] Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive
languages from positive data: A survey. Theor. Comput. Sci. 397(1-3),
194–232 (2008)

[McC96] McCallum, R.A.: Learning to use selective attention and short-term mem-
ory in sequential tasks. In: Proc. of 4th Intl. Conf. on Simulation of Adap-
tive Behavior, pp. 315–324 (1996)

[Mit97] Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education, New
York (1997)

[OSW86] Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists, 1st edn.
MIT Press, Cambridge (1986)

[RCN03] Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits:
A Design Perspective, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs
(2003)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York (1967) (Reprinted, MIT Press, 1987)

[WC80] Wexler, K., Culicover, P.W.: Formal Principles of Language Acquisition.
MIT Press, Cambridge (1980)

[Wie76] Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Elektron. Inform. Kybernetik 12(1/2), 93–99 (1976)

http://www.cis.udel.edu/~moelius/publications

Erratum: Constructing Multiclass Learners from

Binary Learners: A Simple Black-Box Analysis
of the Generalization Errors

Jittat Fakcharoenphol1 and Boonserm Kijsirikul2

1 Department of Computer Engineering, Kasetsart University,
Bangkok, Thailand

jtf@ku.ac.th
2 Department of Computer Engineering, Chulalongkorn University,

Bangkok, Thailand
Boonserm.K@chula.ac.th

Abstract. There are errors in our paper “Constructing Multiclass
Learners from Binary Learners: A Simple Black-Box Analysis of the
Generalization Errors,” which appeared in ALT’05 [3]. The errors are
related to our uses of union bounds. We briefly describe the problem
and discuss which of our results can be shown to hold. We also provide a
counter example for our previous claim in the full version of the erratum.

1 Background

In [3], we analyzed various multiclass learning algorithms that use binary classifi-
cations as subroutines. We viewed binary classifiers as black-boxes and analyzed
the error rate of the multiclass construction as a function of binary error rates.
This approach is mainly known as learning reductions [1].

In what follows, we assume that the readers are familiar with the pair-wise
reductions such as Decision Directed Acyclic Graphs [5] (DDAG), Adaptive Di-
rected Acyclic Graphs [4] (ADAG).

2 The Errors

The problems in that paper is in our analysis of adaptive constructions, i.e.,
those whose set of invoked binary classifiers changes over the input. They include
DDAG, ADAG, and Randomized Decision Directed Acyclic Graphs (R-DDAG).
More specifically, the errors are regarding our use of the union bound.

To see the problem, we consider our analysis of ADAG for the problem with
k classes. We start with the setting. Let D be the distribution over X , set of
all data points. There are

(
k
2

)
classifiers: there is a binary classifier Ai,j for each

pair i �= j. Error rate of classifier Ai,j , εi,j is defined to be

Pr
x∼D

[Ai,j(x) gives a wrong prediction|x belongs to class i or class j].

Y. Freund et al. (Eds.): ALT 2008, LNAI 5254, pp. 464–466, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Erratum: Constructing Multiclass Learners from Binary Learners 465

In the ADAG reduction, we have a full binary tree T , with k leaves initially
labelled with all classes, while all internal nodes are unlabelled. Call the leaf
labelled with i, Li. Given a data point x, the prediction algorithm picks any
unlabelled node u whose children are all labelled. Suppose that they are labelled
with i and j. We then call Ai,j(x) and assign the result of the classifier as the
label of u. The algorithm iterates until there is no unlabelled node left. The
multiclass prediction is the label of the root node.

Our analysis first assume that the data point belongs to class i. Let I(i) denote
the set of internal nodes of T on the path from Li to the root. The algorithm
makes a wrong prediction if any classifier called on these nodes make mistakes.
Denote by E(u) the event that the classifier on node u makes a wrong prediction;
thus, the multiclass error rate is Pr

[⋃
u∈I(i) E(u)

]
≤
∑

u∈I(i) Pr[E(u)].
For any node u, let L(i) denote the set of leaf labels in the subtree rooted

at u. We claim, erroneously, that maxj∈L(u) εi,j is an upperbound on Pr[E(u)].
If this were true, we would have that, since |I(i)| ≤ #log k$, the error rate is

at most
∑�log k�

j=1 εi,rj , when rj is the class c with the j-th largest error rate εi,c.
The above claim would have work if each classifiers Ai,j is randomized and

for any data point x, it makes a mistake with probability εi,j . However, usually
for a fixed x, the error is not random.

The correct analysis of Pr[E(u)] must consider all binary classifiers Ai,j for
j ∈ L(u). Let event F(i, j) denote the event that the classifier Ai,j is used at
node u and makes a wrong prediction. Thus, Pr[E(u)] = Pr[

⋃
j∈L(u) F(i, j)] =∑

j∈L(u) Pr[F(i, j)]. With no further assumption, we can only bound this with∑
j∈L(u) εi,j , using the union bound. Thus, the probability of making mistake

is at most
∑

j 	=i εi,j , using again the union bound. In the case of uniform error
rate, this only gives the bound of (k−1)ε. This analysis is tight (see an example
in [2]).

The erroneous theorems are Theorems 2, 3, and 4. In Theorem 2, we claim an
upper bound δi for input from class i to be at most max{

∑
j<i εi,j ,

∑
j>i εi,j}.

The correct upperbound is
∑

j 	=i εi,j . This is the correct bounds for Theorems 3
and 4 as well.

Our analyses of non-adaptive constructions (Theorems 1, 5, and 6) remain
correct.

3 A Tight Example

In the full version of the erratum [2], we describe the probability space of the
input with k classes and a set of binary classifiers such that the binary error rate
is 1/(k − 1) while multiclass error rate of the constructions is 1, for k > 2.

Acknowledgment. We would like to thank John Langford for a useful
discussion.

466 J. Fakcharoenphol and B. Kijsirikul

References

[1] Beygelzimer, A., Dani, V., Hayes, T., Langford, J., Zadrozny, B.: Error limiting
reductions between classification tasks. In: ICML 2005, pp. 49–56 (2005)

[2] Fakcharoenphol, J., Kijsirikul, B.: Erratum: Constructing multiclass learners
from binary learners: A simple black-box analysis of the generalization errors,
http://www.cpe.ku.ac.th/∼jtf/papers/blackbox-erratum.pdf

[3] Fakcharoenphol, J., Kijsirikul, B.: Constructing multiclass learners from binary
learners: A simple black-box analysis of the generalization errors. In: Jain, S., Si-
mon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 135–147.
Springer, Heidelberg (2005)

[4] Kijsirikul, B., Ussivakul, N., Meknavin, S.: Adaptive directed acyclic graphs for
multiclass classification. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS
(LNAI), vol. 2417, pp. 158–168. Springer, Heidelberg (2002)

[5] Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classi-
fication. In: Advance in Neural Information Processing System, vol. 12. MIT Press,
Cambridge (2000)

http://www.cpe.ku.ac.th/~jtf/papers/blackbox-erratum.pdf

Author Index

Agarwal, Shivani 7
Angluin, Dana 272
Antos, András 287
Arias, M. 303
Aspnes, James 272

Balcan, Maria-Florina 316
Balcázar, J.L. 303
Bartók, Gábor 329
Becerra-Bonache, Leonor 359
Blum, Avrim 316

Case, John 359, 389, 404, 419
Chernov, Alexey 138, 199
Clémençon, Stéphan 22
Cortes, Corinna 38
Csiszár, Imre 1

Dashevskiy, Mikhail 214
de Brecht, Matthew 374

Fakcharoenphol, Jittat 464

Glocer, Karen A. 256
Gretton, Arthur 183
Grover, Varun 287
Györfi, László 108, 183

Hatano, Kohei 227
Herbster, Mark 54
Hoory, Shlomo 344

Jain, Sanjay 359, 434

Kalnishkan, Yuri 199
Keim, Daniel A. 2
Kijsirikul, Boonserm 464
Kötzing, Timo 389, 404

Lange, Steffen 449
Lovász, László 3

Mannila, Heikki 4
Mansmann, Florian 2

Margalit, Oded 344
Maurer, Andreas 70, 79
Mitchell, Tom M. 5
Moelius III, Samuel E. 419, 449
Mohri, Mehryar 38
Moribe, Jun-ichi 227
Mukherjee, Indraneel 240

Oelke, Daniela 2
Ortner, Ronald 123

Pontil, Massimiliano 70, 79

Reyzin, Lev 272
Riley, Michael 38
Rostamizadeh, Afshin 38
Ryabko, Daniil 169

Sabato, Sivan 92
Schapire, Robert E. 240
Shamir, Ohad 92
Shen, Alexander 138, 154
Stephan, Frank 359, 434
Szepesvári, Csaba 287, 329

Takeda, Masayuki 227
Takimoto, Eiji 227
Tishby, Naftali 92

Vajda, István 108
Vayatis, Nicolas 22
Vereshchagin, Nikolai 138
Vishwanathan, S.V.N. 256
Vovk, Vladimir 138, 154, 199

Warmuth, Manfred K. 256

Yamamoto, Akihiro 374

Zhdanov, Fedor 199
Ziegler, Hartmut 2
Zilles, Sandra 329, 449

	Title Page
	Preface
	Organization
	Erratum
	Table of Contents
	On Iterative Algorithms with an Information Geometry Background
	Visual Analytics: Combining Automated Discovery with Interactive Visualizations
	Some Mathematics behind Graph Property Testing
	Finding Total and Partial Orders from Data for Seriation
	Computational Models of Neural Representations in the Human Brain
	Generalization Bounds for Some Ordinal Regression Algorithms
	Introduction
	Previous Results
	Our Results

	The Ordinal Regression Problem
	Black-Box Bounds for Regression-Based Algorithms
	Direct Stability Analysis for Regression-Based Algorithms
	Stability Analysis for More General Algorithms
	Margin Bound for Chu & Keerthi’s Algorithm
	Conclusion
	References

	Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm
	Introduction
	Setup and Optimal ROC Curves
	Piecewise Linear Approximation of the Optimal ROC Curve
	Piecewise Constant Scoring Functions
	One-Step Approximation to the Optimal ROC Curve
	A Tree-Structured Recursive Approximation Scheme

	A Tree-Structured Weak Ranker
	The TreeRank Algorithm
	Consistency of TreeRank and Rate Bounds

	References

	Sample Selection Bias Correction Theory
	Introduction
	Sample Selection Bias Correction
	Problem
	Weighted Samples
	Bias Correction

	Distributional Stability
	Distributional Stability of Kernel-Based Regularization Algorithms

	Effect of Estimation Error for Kernel-Based Regularization Algorithms
	Cluster-Based Estimation
	Kernel Mean Matching

	Experimental Results
	Conclusion
	References

	Exploiting Cluster-Structure to Predict the Labeling of a Graph
	Introduction
	Background
	Prediction on a Graph with a Perceptron
	Three Clusters Are Hard for the Perceptron

	Preliminaries
	The Signed Laplacian

	ThePounce Algorithm
	Proof of Theorem 2

	The Exponential Embedding
	Discussion
	References

	A Uniform Lower Error Bound for Half-Space Learning
	Introduction
	Notation
	Proofs
	Previous Lower Bounds
	Evaluation of Domain Knowledge
	References

	Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces
	Introduction
	Examples of Coding Schemes
	Principal Component Analysis
	K-Means Clustering or Vector Quantization
	Nonnegative Matrix Factorization
	Sparse Coding of Olshausen and Field

	Proofs
	Notation, Definitions and Auxiliary Results
	Proof of the Main Results

	References

	Learning and Generalization with the Information Bottleneck
	Introduction
	The Information Bottleneck Framework
	Finite Sample Analysis
	A Learning Theoretic Perspective
	I(Y;T) as a Measure of Performance
	I(X;T) as a Regularization Term

	Relationship with Sufficient Statistics
	Proofs
	Proof of Thm. 1
	Proof of Thm. 2

	Discussion
	References

	Growth Optimal Investment with Transaction Costs
	Introduction
	Mathematical Setup: Investment with Transaction Cost
	The Related Markov Control Problem
	Optimal Portfolio Selection Algorithms
	Summary
	Proofs
	References

	Online Regret Bounds for Markov Decision Processes with Deterministic Transitions
	Introduction
	MDPs with Deterministic Transitions
	General Remarks
	Outline

	An Upper Confidence Bound Algorithm
	Online Regret Bounds
	Logarithmic Upper Bounds
	Lower Bounds

	An Application: Bandits with Switching Cost
	Setting
	Bandits with Switching Cost as Deterministic MDPs

	Conclusion
	References

	On-Line Probability, Complexity and Randomness
	On-Line Probability Distributions
	On-Line Kolmogorov Complexity \KR
	On-Line A Priori Probability and \KA
	Relations between \KR and \KA
	On-Line Randomness
	On-Line Randomness Criterion
	Muchnik’s Paradox
	Selection Rules and On-Line Randomness
	Randomness with Respect to Classes of Measures
	On-Line and Prequential Randomness
	References

	Prequential Randomness
	Introduction
	Game-Randomness
	Measure-Randomness
	MainResult
	Proof of Theorem 1 and Corollary 1
	References

	Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes for the Existence of a Predictor
	Introduction
	Preliminaries
	MainResults
	Discussion
	References

	Nonparametric Independence Tests: Space Partitioning and Kernel Approaches
	L_1-Based Statistic
	Large Deviation Properties
	Asymptotic Normality

	Log-Likelihood Statistic
	Pearson χ^2 Statistic
	Kernel-Based Statistic
	Large Deviation Property
	Limit Distribution

	Experiments
	References

	Supermartingales in Prediction with Expert Advice
	Introduction
	Aggregating Algorithm
	Supermartingales
	Two Examples of Supermartingales
	A Supermartingale Criterion If the AA Is Realizable
	Defensive Forecasting

	Second-Guessing Experts
	The DF for Second-Guessing Experts
	The AA for Second-Guessing Experts

	References

	Aggregating Algorithm for a Space of Analytic Functions
	Introduction
	Aggregating Algorithm
	Application to ${A}_{h}\,(C)$
	Upper Bound
	Conclusion
	References

	Smooth Boosting for Margin-Based Ranking
	Introduction
	Preliminaries
	BoostingtheAUC
	Boosting the Margin over Pairs of Instances
	Experiments
	Conclusions and Future Work
	References

	Learning with Continuous Experts Using Drifting Games
	Introduction
	Expert Learning Model
	Choosing Weights
	Drifting Games
	Learning with Binary Experts Using Drifting Games
	Drifting Games for Continuous Experts

	Analysis of Drifting Games for Continuous Experts
	Lower Bounds
	Lower Bound for Drifting Game

	Proof of Theorem 5
	References

	Entropy Regularized LPBoost
	Introduction
	The Boosting Setting and LPBoost
	The Entropy Regularized LPBoost Algorithm
	The Dual Optimization Problem of Entropy Regularized LPBoost
	Iteration Bound for Entropy Regularized LPBoost
	Experimental Evaluation
	Conclusion
	References

	Optimally Learning Social Networks with Activations and Suppressions
	Introduction
	Model
	Social Networks
	Graphs of Social Networks
	Experiments
	Behavior and Equivalence
	Queries
	The Learning Problem
	A Note on the Generality of This Model

	General Social Networks
	A Matching $\Omega(n^2)$ Lower Bound

	Trees
	Limitations of Excitation Paths
	Finding Small Influential Sets of Nodes
	OpenProblems
	References

	Active Learning in Multi-armed Bandits
	Introduction
	Algorithm
	MainResults
	Illustration
	Related Work
	Conclusions and Future Work
	References

	Query Learning and Certificates in Lattices
	Introduction
	Preliminaries
	The Algorithm
	The Correctness Proof
	Invariant
	Termination
	Final Analysis

	Certificates
	Useful Facts
	The Certificate Set

	Certificates and the Learning Algorithm
	References

	Clustering with Interactive Feedback
	Introduction
	Related Work and Motivation

	Notation and Definitions
	Intervals
	Conjunctions and Disjunctions
	Conjunctions and Disjunctions in the Extended Model

	A General Upper Bound
	Lower Bounds
	Relation to Equivalence Query Model
	Conclusions
	References

	Active Learning of Group-Structured Environments
	Introduction
	The Approach of Learning Group-Structured Environments
	Related Work

	Preliminaries
	A Model for Learning Group-Structured Environments
	An Analysis of the Group Learning Model
	General Results on Learning Group Environments
	Learning Dihedral Groups
	Learning Abelian Groups

	Learning Injective Representations
	Conclusions
	References

	Finding the Rare Cube
	Introduction
	Learning Partitions to Cubes
	Learning Partitions to p-Cubes
	Efficient Learning Partitions into p-Cubes
	Some Questions and Notes
	References

	Iterative Learning of Simple External Contextual Languages
	Introduction
	Notation and Preliminaries
	$\SEC_{p,q}$ Is Consistently Iteratively Learnable
	Padding Is Necessary
	Learnability and the Unary Alphabet
	Classes with One Context Only
	A Special Case
	References

	Topological Properties of Concept Spaces
	Introduction
	Concept Spaces and Learning in the Limit
	Algebraic Closure Operators
	Structural Properties of Concept Spaces
	Finite Thickness and Finite Elasticity
	Scattered Concept Spaces
	Alexandrov Concept Spaces
	Finite Tell-Tales

	Concluding Remarks
	References

	Dynamically Delayed Postdictive Completeness and Consistency in Learning
	Introduction
	Mathematical Preliminaries
	Complexity Results
	General Results
	Results Mostly Not Comparing Graphs
	Dependencies on the Countdown Graphs

	References

	Dynamic Modeling in Inductive Inference
	Introduction and Motivation
	Mathematical Preliminaries
	Unified Approach to Limit Learning Criteria
	Definitions
	Examples

	Cooperation and Secretiveness
	General Crossfeeding
	References

	Optimal Language Learning
	Introduction
	Preliminaries
	Properties of Optimal Learners
	Optimal Identification of Subclasses
	References

	Numberings Optimal for Learning
	Introduction
	Preliminaries
	Optimality and Effective Optimality
	Consistent Learning
	Learning with Additional Information
	References

	Learning with Temporary Memory
	Introduction
	Preliminaries
	Bounded Example Memory (\Bem) Learning
	Temporary Example Memory (\Tem) Learning
	\Tem-Learning of \Indexable Classes of Languages
	\Tem-Learning of Classes of \Infinite Languages
	Conclusion
	References

	Erratum: Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors
	Background
	The Errors
	ATightExample
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

